## BRITISH MUSEUM (NATURAL IHISTORY)

## THE FAMILIES AND GENERA

 OF
## LIVING RODENTS

3 APR 1941
BY
PRESENTED J. R. ELLERMAN
WITH A LIST OF NAMED FORMS (1758-1936)
BY
R. W. HAYMIAN and G. W. C. HOL'T

VOLUME II. FAMILY MURIDAE

```
LONDON:
```

PRINTED BY ORDER OF THE TRUSTEES OF THE BRITISH MUSEUM

Sold at The British Museum (Nateral History), Cromwell Road, S.W.7. and by
B. Quaritch, Ltd.; Dulau \& Co., Ltd.; and the Onford L'Niversity Press
(All rights reserzed)

## CONTENTS

Order RODENTIA
Superfamily MUROIDAE pageFamily Muridae1
Subfamily Murinae
30
30
Genus Eliurus, Milne-Edwards ..... 75
Genus Anisomys, Thomas ..... 77
Genus Hapalomys, Blyth ..... 79
Genus Pogonomys, Milne-Edwards ..... 8 I
Genus Lenomys, Thomas ..... 83
Genus Chiropodomys, Peters ..... 84
Genus Vandeleuria, Gray ..... 86
Genus Micromys, Dehne ..... 89
Genus Apodemus, Kaup ..... 92
Genus Thamnomys, Thomas ..... 103
Genus Grammomys, Thomas ..... 104
Genus Carpomys, Thomas ..... 107
Genus Batomys, Thomas ..... 108
Genus Pithecheir, Cuvier ..... 109
Genus Crateromys, Thomas ..... 110
Genus Hyomys, Thomas ..... III
Genus Mallomys, Thomas ..... 112
Genus Conilurus, Ogilby ..... 113
Genus Zyzomys, Thomas ..... II 4
Genus Laomys, Thomas ..... II5
Genus Mesembriomys, Palmer ..... II 6
Genus Oenomys, Thomas ..... IIS
Genus Mylomys, Thomas ..... 119
Genus Dasymys, Peters ..... 120
Genus Arvicanthis, Lesson ..... 123
Genus IIadromys, 'Thomas ..... 127
Genus Pelomys, Peters ..... 127
Genus Lemniscomys, Trouessart ..... 130
Genus Rhabdomys, Thomas ..... 133
Genus Hybomys, Thomas ..... 135
PAGE
Genus Millardia, 'Thomas ..... 137
Genus Pyromys, 'Thomas ..... 138
Genus Dacnomys, 'Thomas ..... I 39
Genus Eropeplus, Miller \& Hollister ..... 140
Genus Stonocephalomys, Frick ..... 1.41
Genus Aethomys, Thomas ..... 142
Genus Thallomys, Thomas ..... 145
Genus Rattus, Fischer ..... I. 48
Genus Gyomys, Thomas ..... 220
Genus Leporillus, Thomas ..... 22 I
Genus Pseudomys, Gray ..... 222
Genus Apomys, Mearns ..... 224
Genus Melomys, Thomas ..... 220
Genus Lromys, Peters ..... 232
Genus Coelomys, Thomas ..... 234
Genus Malacomys, Milne-Edwards ..... 235
Genus Hacromys, Thomas ..... 236
Genus Chiromyscus, Thomas ..... 237
Genus Zelotomys, Osgood ..... 237
Genus IIylcnomys, Thomas ..... 238
Genus Muriculus, 'Thomas ..... 239
Genus Mus, Linnaeus ..... 240
Genus Mycteromys, Robinson \& Kloss ..... 254
Genus Legoadina, Thomas ..... 255
Genus Colomys, Thomas \& Wroughton ..... 256
Genus Nesoromys, Thomas ..... 258
Genus Crumomys, Thomas ..... 258
Genus Macruromys, Stein ..... 260
Genus Lophuromys, Peters ..... 260
Genus Notomys, Lesson ..... 263
Genus Mastacomys, Thomas ..... 266
Genus Golunda, Gray ..... 267
Genus Echiothrix, Gray ..... 268
Genus Acomys, Gcoffroy ..... 269
Genus Uranomys, Dollman ..... 275
Genus Bandicota, Gray ..... 277
Genus Vesokia, Gray ..... 280
Genus Beamys, Thomas ..... 282
PAGE
Genus Saccostomus, Peters ..... 283
Genus Cricetomys, Waterhouse ..... 286
Genus Phloeomys, Waterhouse ..... 291
Subfamily Rhynchomyinae ..... 296
Genus Rhynchomys, Thomas ..... 296
Subfamily Hydromyinae ..... 297
Genus Hydromy's, Geoffroy ..... $29^{8}$
Genus Parahydromy's, Poche ..... 300
Genus Crossomy's, Thomas ..... 301
Genus Chrotomys, Thomas ..... 302
Genus Celaenomys, Thomas ..... 302
Genus Leptomys, Thomas ..... 303
Genus Xeromys, 'Thomas ..... 304
Subfamily Dendromyinae ..... 305
Genus Dendromus, Smith ..... 306
Genus Steatomys, Peters ..... 311
Genus Malacothrix, Wagner ..... 313
Genus Prionomys, Dollman ..... 315
Genus Petromyscus, Thomas ..... 315
Subfamily Deomyinae ..... 316
Genus Deomys, Thomas ..... 317
Subfamily Otomyinae ..... 318
Genus Otomys, Cuvier ..... 318
Genus Parotomys, Thomas ..... 325
Subfamily Cricetinae ..... 326
Genus Oryzomys, Baird ..... $34^{\circ}$
Genus Megalomys, Trouessart ..... 359
Genus Neacomys, Thomas ..... 360
Genus Nectomys, Peters ..... 361
Genus Rhipidomys, Tschudi ..... 363
Genus Thomasomy's, Coues ..... 366
Genus Phaenomys, Thomas ..... 371
Genus Chilomys, Thomas ..... $37^{2}$
Genus Tylomys, Peters ..... 373
Genus Ototylomys, Merriam ..... 374
Genus Nyctomys, Saussure ..... 374
Genus Nesomys, Peters ..... 375
Genus Rhagomy's, Thomas ..... 377
PAGE
Genus Reithrodontomy's, Giglioli ..... 377
Genus Peromyscus, Gloger ..... 384
Genus Baiomys, True ..... 101
Genus Calomyscus, Thomas. ..... 402
Genus Onychomys, Baird ..... 403
Genus Akodon, Meyen ..... 406
Genus Zygodontomys, Allen ..... $+17$
Genus Microxus, Thomas ..... 419
Genus Lenoxus, Thomas ..... 420
Genus Oxymycterus, Waterhouse ..... 420
Genus Blarinomys, Thomas ..... 422
Genus Notiomys, Thomas ..... 423
Genus Scapteromys, Waterhouse ..... 425
Genus Scotinomys, Thomas ..... 427
Genus Cricetulus, Milne-Edwards ..... 428
Genus Phodopus, Miller ..... $+36$
Genus Cricetus, Leske ..... 437
Genus Mesocricetus, Nehring ..... 44
Genus Mystromys, Wagner ..... 444
Genus Hesperomys, Waterhouse ..... 445
Genus Eligmodontia, Cuvier ..... 449
Genus Graomys, Thomas ..... 450
Genus Phyllotis, Waterhouse ..... 451
Genus Chinchillula, Thomas ..... 456
Genus Irenomys, Thomas ..... 456
Genus Neotomy's, 'Thomas ..... 457
Genus Reithrodon, Waterhouse ..... 458
Genus Euneomys, Coues ..... 459
Genus Chelemyscus, Thomas ..... 460
Genus Holochilus, Brandt ..... 461
Genus Sigmodon, Say \& Ord ..... 463
Genus Sigmomys, Thomas ..... 467
Genus Andinomys, Thomas ..... 468
Genus Neotomodon, Merriam ..... 46
Genus Neotoma, Say \& Ord ..... 769
Genus Hodomys, Merriam ..... 478
Genus Velsonia, Merriam ..... 479
Genus Hypogeomys, Grandidier ..... 480
PAGE
Genus Ichthyomy's, Thomas ..... 481
Genus Rheomys, Thomas ..... $4^{82}$
Genus Anotomys, Thomas ..... 483
Subfamily Gyminuromyinae ..... 487
Genus Gymnuromys, Forsyth Major ..... 488
Subfamily Tachyoryctinae ..... 489
Genus Brachyuromys, Forsyth Major ..... 49 I
Genus Tachyoryctes, Rüppell ..... 492
Subfamily Gerbillinae ..... 497
Genus Gerbillus, Desmarest ..... 500
Genus Microdillus, Thomas ..... 510
Genus Tatera, Lataste ..... 510
Genus Taterillus, Thomas ..... 520
Genus Desmodillus, Thomas \& Schwann ..... 522
Genus Desmodilliscus, Wettstein ..... 523
Genus Pachyuromys, Lataste ..... 523
Genus Ammodillus, Thomas ..... 524
Genus Meriones, Illiger ..... 525
Genus Psammomys, Cretzchmar ..... 537
Genus Brachiones, Thomas ..... 538
Genus Rhombomys, Wagner ..... 539
Subfamily Myospalacinae ..... 541
Genus Myospalax, Laxmann ..... 541
Subfamily Microtinae ..... 548
Genus Brachytarsomys, Günther ..... 555
Genus Dicrostonyx, Gloger ..... 556
Genus Synaptomys, Baird ..... 558
Genus Myopus, Miller ..... 560
Genus Lemmus, Link ..... 561
Genus Clethrionomys, Tilesius ..... 565
Genus Aschizomys, Miller ..... 574
Genus Eothenomy's, Miller ..... 575
Genus Anteliomys, Miller ..... 57
Genus Alticola, Blanford ..... 578
Genus Hyperacrius, Miller ..... 581
Genus Phenacomys, Merriam ..... 582
Genus Dolomy's, Nehring ..... $58+$
Genus Orthriomys, Merriam ..... 585
PAGE
Genus Herpetomys, Merriam ..... 586
Genus Microtus, Schrank ..... 586
Genus Lasiopodomys, Lataste ..... 616
Genus Proedromys, Thomas ..... 617
Genus Phaiomys, Blyth ..... 617
Genus Vcodon, I lodgson ..... 618
Genus Pcdomys, Baird ..... 620
Genus Pitymys, Mc.Ilurtrie ..... 621
Genus Blanfordimys, Argyropulo ..... 626
Genus Articola, Lacepède ..... 627
Genus Lagurus, Gloger ..... ${ }^{6} 33$
Genus Neofiber, True. ..... 635
Genus Ondatra, Link . ..... 636
Genus Prometheomys, Satunin ..... 638
Genus Ellobius, Fischer ..... 639
Appendin 1. List of new names published in this work ..... ${ }^{6}+3$
tppendin 11. Correction to List of named forms in genus Sciurus ( $\mathrm{Vol} 1, \mathrm{p} .3+3$ ) ..... ${ }^{6}+3$
tppendix 111. Further notes on named forms in the genus Kattus ..... 64+

## LIST OF TEXT-FIGURES

Fig. Page

1. Anisomys imitator, Thomas
do.do.Micromys minutus, Pallasdo.
do. 6.7. Apodemus sylvaticus, Linnaeus
do. 9.

o.
10. Rattus rattus, Linnaeusdo.
12. R. rattus, Linnaeus and $R$. norvegicus, Berkenhout
13. Rattus (Micaëlamys) granti, Wroughton Cheekteeth $\times \mathrm{I}_{3}$ ..... 170Rattus rattus, Linnaeus
78
78
Skull $\times$ I
Skull $\times$ I ..... 78 ..... 78
Cheekteeth $\times 7$ ..... 79
Skull $\times 5$ ..... 88
do. ..... 88
Cheekteeth $\times 13$ ..... 89
Skull $\times 3^{\frac{1}{2}}$ ..... 94
8 . do. do. ..... 94
Cheekteeth $\times 10$ ..... 95
Skull $\times 2 \frac{1}{2}$ ..... 152
do. ..... 153
Cheekteeth $\times 5$ ..... 153
do. $\times 10$
14. Acomys dimidiatus, Cretzchmar Skull $\times 2 \frac{1}{2}$ ..... 270
do. ..... 270
15. ..... do.
16. Acomys dimidiatus minous, Bate Cheekteeth $\times$ ro ..... 271
17. Cricetomy's gambianus, Waterhouse Skull $\times$ I ..... 288
18. ..... do.
19. do.
20. Cricetulus migratorius, Pallasdo.288
Cheekteeth $\times 7$ ..... 289
Skull $\times 3 \frac{1}{2}$ ..... 430
21. do. do. ..... 430
Cheekteeth $\times 20$ ..... 431
do. 22.
23. Cricetus cricetus, Linnaeus
do.
do.
24.
26. Mesocricetus neztoni, NehringSkull $\times 2$438
do. ..... 439
Cheekteeth $\times 5$ ..... 439
Skull $\times 2$ 은 ..... $44^{2}$27.do.
28. do.
29. Gymnuromys roberti, Forsyth Major
do. ..... 442
Cheekteeth $\times{ }^{1} 3$ ..... 443Cheekteeth $\times 12$489
30. Tachyoryctes cheesmani, Thomas Skull $\times 1 \frac{1}{2}$ ..... 49431.do.
32. do.
do. ..... 494
Cheekteeth $\times 6$ ..... 495
FIG. ..... page
33. Meriones libycus crassus, Sundevall ..... 526
34. do. do. ..... 526
35. do. Cheekteeth $\times 12$ ..... 527
30. Myospalax fontanieri fontanus, 'Thomas Skull $\times \mathbf{1} \frac{1}{2}$ ..... 542
37. do. do. ..... 543
38. do. do. ..... 543
39. Myospalax psilurus \& M. fontanieri, posterior views of Skull $\times 1 \frac{1}{2}$ ..... 544
40. ..... do.
Cheekteeth $\times 7$ ..... 544
41. Lemmas lemmus, Linnaeus
Skull $\times 3$
Cheekteeth $\times 9$ ..... 563
42. Cletlurionomy's glareolus, Schreber Skull $\times 3$ ..... 566
$+3$. ..... do.
do. ..... 566
$+4$. do.
45. Wicrotus agrestis, Linnaeus Skull $\times 2$ 늘 ..... 588
Cheekteeth $\times I_{4}$ ..... 56
to. do. ..... do. 588
$4 \%$ do.Cheekteeth $\times 12$589
48. Arcicola terrestris, Linnaeus Skull $\times 2$ ..... 62849. do.
50. do.
do. ..... 628
Cheekteeth $\times 8$ ..... 629
(With the exception of Figs. 9, 12, 16, and 25, from Miller's Catalogue of the Mammals of Western Europe, and Figs. $36-38$, and 41 from Hinton's Monograph of Voles and Lemmings, by the same artist, all the figures have been specially drawn for this volume by Mr. A. J. Engel Terzi.)

## Family MURIDAE

1896. Thomas: Muridae (included Lophiomys). Subfamilies Hydromyinae, Rhynchomyinae, Phloeomyinae, Gerbillinae, Murinae, Dendromyinae, Otomyinae, Cricetinae, Neotominae, Microtinae, "Siphneinae" = Myospalacinae. Spalacidae, part, Rhizomyinae, part (Tachyoryctes).
1897. Tullberg: Families Spalacidae, part (Myospalax and Tachyoryctes); Nesomyidae; Cricetidae; Arvicolidae; Hesperomyidae; Muridae (with subfamilies Murini, Phloeomyini, Otomyini); Gerbillidae.
1898. Miller \& Gidley: Family Cricetidae (with subfamilies Cricetinae, Gerbillinae, Microtinae (and included Lophiomyinae)); Family Rhizomyidae, part, subfamily Tachyoryctinae; Family Spalacidae, part, subfamily Myospalacinae; Family Muridae (with subfamilies Dendromyinae, Murinae, Phloeomyinae, Otomyinae, Hydromyinae).
1899. Winge: Family Muridae, part; subfamilies Rhizomyini (Rhizomys, Tachyoryctes, and genera from Madagascar); Cricetini (with groups Criceti (included Lophiomys), Hesperomyes, and Arvicolae); and Murini, with groups Mures, Gerbilli, and Hydromyes.
1900. Weber: Farnily Spalacidae (part, Tachyoryctes, Myospalax); Family Nesomyidae; Family Muridae (with subfamilies Cricetinae, Microtinae, Murinae, Gerbillinae, Hydromyinae (and included Lophiomyinae)).

Geographical Distribltion.-Throughout the Holarctic, Indo-Malayan, Australasian, African and Neotropical regions, from Arctic regions of Eurasia south to the Cape of Good Hope, and Tasmania; east to Fiji and other islands of the Pacific; Madagascar; and in the New World from Arctic regions including Greenland south to Tierra del Fuego, and including the Galapagos Islands.

Nember of Gevera.- I have examined and retained one hundred and eighty-six genera, divided among twelve subfamilies. At least six, and perhaps more, valid genera are not represented in the British Museum.
(In the first volume, containing all other Rodents, one hundred and fortyseven genera were retained, and four besides these are not represented in London.)

The Family Muridae belongs according to the present classification to the Superfamily Muroidae, a group containing also four families, Muscardinidae, Lophiomyidae, Rhizomyidae, and Spalacidae, which have been dealt with in the first volume. A key to these families has already been given.

Notes on the essential characters of the family Muridae have also been given in Voume I. For reference purposes, these are repeated here.

Characters.-Zygomasseteric structure primitively (Deomys), nearly as in Sicistinae (Dipodidae), except that the infraorbital foramen is more generalized, less enlarged, and not conspicuously wider below than above. In all remaining genera the zygomatic plate is broadened and tilted upwards to a greater or lesser degree; masseter lateralis extends its line of
attachment on to zygomatic plate, and masseter lateralis superficialis has its anterior head distinct, so far as known, from the zygoma. Infraorbital foramen always transmitting muscle; but never extremely enlarged; usually or always less so than in such superfamilies as Anomaluroidae, Ctenodactyloidae, Pedetoidae, and Dipodoidae. Nandihle with angular portion not distorted outwards by masseter muscle.

Skull usually with constricted frontals; auditory bullae in the majority not much enlarged, but may become so (Gerbillinae); or may be much reduced, as in Phloooms's, etc. Jugal typically considerably shortened; but long in Tachyoryctes and others.

Dental formula in the majority i. $\frac{1}{1}$, c. $\frac{2}{1}, \mathrm{p} . \frac{0}{2}, \mathrm{~m} . \frac{3}{3}=10$. In some forms the cheekteeth are reduced to $\frac{2}{2}$ (Rhyuchomys, and some Hydromyine genera). In one genus, Desmodilliscus, the cheekteeth formula is $\frac{3}{\frac{3}{2}}$. Nolars rooted except in Myospalax, Rhombomys, and the majority of the Microtinae.

Fibula, so far as known, reduced and fused high on the leg with the tibia. Digits of hindfoot five, with the one exception of Malacothrix, in which they are reduced to four. In a few African genera, the forefoot may have three functional digits, or three digits only.

External form as a rule small and generalized; sometimes much modified for underground life (Myospalax, Ellobius, Prometheomys, Notiomys, etc.); sometimes highly specialized for aquatic life: cranially as well as externally in Ichthyomys and allies, Hydromys, Crossomys; externally in Oudatra, etc. In some forms, hindfoot extremely specialized for arboreal life; a fully opposable and clawless hallux is developed in IIapalomys, Chiropodomys, Vandelenvia, Chiromyscus. In one case, Votomys, and possibly in some Gerbillinae, apparently specialized for bipedal saltatorial life. Spiny covering may be developed (Acomys, some species of Rattus, etc.), but is never comparable to that of specialized Hystricoid Rodents. Tail typically naked and scaly; uniformly haired in Crateromys, one species of $\lambda^{\top}$ fotoma, most Gerbillinac, and others.

Infraorhital foramen typically specialized into a wider upper portion for muscle-transmission and a narrower lower one for nerve transmission, its lower border very generally $V$-shaped, and not straight (compare Rhizomyidae). Checkteeth laminate, cuspidate, or prismatic, but never agreeing in pattern with that of Nuscardinidae (i.e., not basin-shaped with weak transverse ridges and corner cusps, nor flaterowned with a series of raised narrow transverse ridges extending across erown). External form various, but when subfossorial, eyes retained, and zygomatic plate not specially narrowed and turned downwards (compare spalacidae). Temporal fossae never rooled in by bony outgrowths (compare Lophiomyidae). Nasseter muscle, so far as known, not rising beside infraorbital foramen on its inner side (compare Rhizomyidac).

In this group 1 recognize twelve subfamilies. The Lophiomyidae, Spalacidae, and Rhizomyidae are probably offshoots of the present family, and are too highly specialized to be included. The Nuseardindae seem to stand very near the Muridac, but to be more primitive than Nuridae; that family 1 regard as fundamentally the most generalized of living Rodents except Aplodontidae and perhaps Bathyergidac.

With reference to the cheekteeth formula of Muridae, I must note that according to some authors, the three cheektecth represent P.4, M.1. and M.2, and it is suggested that M.3 is suppressed. There seems to be considerable evidence in favour of this view ${ }^{1}$; but for convenience throughout this work I adopt the customary notation.

## THE RATS FROM MADAGASCAR

There are six genera that I have examined, containing seven well-marked species in all, from Madagascar. They are excessively difficult to classify. Most authors have referred them to a subfamily Nesomyinae, whose sole character scems to be "Habitat in Madagascar," or dumped them all in the subfamily Cricetinae. It does not seem to me possible to take either course.
'The sole character given by Tullberg for the group which is unusual among the Nuridae he examined is the fact that the tongue possesses three papillae circumvallatae, but he only examined two genera, Gymnuromys and Eliurus. But this character, although in most other Muridae he examined was reduced to one, was present in Cricetomys (three); while two were present in Myospalax and Tachyoryctes. It is not a character which one can use throughout the Order; and is apparently variable in closely allied genera in other groups (for instance, Petaurista, o, Pteromys, 3, in the Pteromys group of Sciuridae). It is probably merely a primitive character which may be met with in any group.

The Rats of Madagascar may be arranged as follows, in key form.

> Skull specialized, Microtine in aspect, with zygomatic plate strongly tilted upwards, infraorbital foramen small, and temporal ridges fusing to form a median interorbital ridge. Cheekteeth prismatic, but brachyodont.
> Brachytarsonys

Skull without the specializations just described.
Cheekteeth laminate, a series of transverse plates, these plates equalsized, pressed closely together, the general effect simple. MI. 3 slightly larger than M.2, and M. 2 equal in elements to M.i. Elicrus
Cheekteeth never a series of plain transverse plates.
Cheekteeth flatcrowned, the folds of the molars becoming isolated on crown surface as long thick transverse enamel ridges which extend across crown, and in progressive forms cease to appear as re-entrant folds, being completely isolated. Folds much curved. Brachycromys
This specialization at highest development, M. 3 larger. Brachyuromys ramirohitra
This specialization usually not reached until old age. M. 3 smaller.
Brachyuromys betsileoensis

[^0]Cheekteeth without the pattern just described.
Cheekteeth completely flatcrowned, the laminae excessively tightly pressed together and compressed; all traces of cusps obliterated; the pattern a series of extremely narrow line-like folds isolated, or nearly so, on crown surface. M. 3 is broader and a little longer than $M .2$, and $\lambda 1.2$ is slightly larger than M.I.

Gyminuromys
Cheektecth without the pattern just described.
Cheekteeth hypsodont, prismatic in appearance, with inner and outer re-entrant folds present, but no signs of cusps, the general effect simple.

Hypogeomys
Cheekteeth brachyodont, not prismatic, excessively comples, with clear cusps, these arranged biserially; outer main folds of upper molars with subsidiary ridges present (or elements apparently corresponding to them). Nesomys
Of these genera, Hypogeomy's has many noticeable external specializations, but the external form of the others, though the size is usually relatively large, is generalized.

A feature in which these Rats differ from normal Muridae is the very general fact that M. 2 is scarcely smaller than M.s, and M. 3 is often as large as, or larger than, M.z.

Winge referred them all to his Rhizomyini (also containing Tachoryctes), on this character (M. 2 scarcely smaller than M.1), whereas in his Murini and Cricetini (containing the rest of the family), M. 2 is "clearly smalles than M.i."

But unfortunately, though very generally so, this is not always the case, as for instance Anisomy's in Marinae, and some American Cricetine genera, which have the elements of M. 2 exactly as in M.I.

The cranial peculiarities of Brachytarsomys are very similar to those of the Nicrotinae, except the much less specialized posterior portion of the palate. The molars also are Nicrotine in aspect, so that Finton has suggested that this genus will perhaps have to be transferred from the "Nesomyinae" to the Dicrotinae. It further differs from Microtinae in the brachyodont molars. But the pattern of the cheekteeth, and the specialized Microtine skull (with fused interorhital crest, and weak squamosal crest), oecurring together are very significant, and the genus is here regarded as a primitive Nicrotine.

Brachyuromys resembles Tachyorvetes closely in dental pattern, as long ago was pointed out by Forsyth Major. It differs markedly in dental characters from any Cricetine seen. B. betsileornsis is less specialized, though probably to be considered as a near ally or forerunner of typical Brachywomys. The folds are not quite entirely isolated, and are usually separated by a space in the middle of the tooth. The pattern, particularly of M.2, is not altogether unlike that of Sigmodon, among Neotropical Cricetinae. I am uncertain of the status of this form, which should probahly form a distinct genus. There is not the slightest doubt in my mind that Tachyoryctes is a member of the Nuridae,
and that typical Brachyuromys on account of its dental pattern probably stands very close to it, altlrough the pattern might have been derived independently.

From Cricetinae with a similar pattern, $B$. betsileoensis differs in the more reduced M.1, just as does Nesomy's from the Oryzomy's group of Cricetine genera.

Nesomy's is the most primitive genus from Nladagascar dentally. The cusps are developed as in, and the general pattern is similar to the very complex-toothed Neotropical Cricetinae like Oryzomys, differing, however, in at least two very important characters; M. 2 is similar in elements to M.i in Nesomys, more reduced than M.I in elements in Oryzomy's; and M.i in Nesomy's has the anterointernal corner evenly rounded, and apparently lacking all traces of the anterointernal cusp, which is always conspicuous in Oryzomys and allies.

Hypogeomy's is also similar to Cricetine genera, but right at the other end of the series ; being most like Neotoma or that section of Cricetinae in dental characters; a highly specialized hypsodont more or less prismatic dentition, with inner and outer folds (in Hypogeomy's narrow, and not well open), and all traces of cusps obliterated. The pattern is more or less similar in all upper teeth, but M. 3 is a little reduced. It differs from Neotoma and prismatic Cricetinae in the suppression of the anterointernal fold of M.1, in this character (reduction of anterointernal side of \1.1), differing from Neotoma just as Nesomys differs from Oryzomys. The pattern is not as "Microtine" as in Neotoma, but is compared with that genus because it seems to be more near it than to any of the others.

Gymnuromys is probably a derivative of Vesomys. But it is extremely highly modified dentally, differing in general dental effect from all other Muridae, and indeed from all Rodents examined. The general ridge-plan is similar to that of Nesomy's, and also as I have noted seems to have some similarity to that of the Dormouse Platacanthomys, though the dental effect of all three genera is very different.

Eliurus is running parallel to the most highly specialized Murinae (Phloeomys, etc.). The cheekteeth are, apparently from birth, a series of absolutely transverse plates. This is the most simplified pattern known among the Rats of Madagascar. The plates are pressed together (though nothing like so tightly as those of Gymmuromy's), and further differ from those of Gymmuromy's in being straight instead of considerably curved. It differs from Murinae in the character usual to these Madagascar genera, namely, M.2 is not reduced in elements; and here, as in Gymnuromys and others, M. 3 tends to be slightly larger than M.z. There is, however, no tendency towards reduplication of elements such as is found in Otomyinae, another group with the molars a series of transverse plates.

These Rats must have been isolated very early in Madagascar-perhaps before the various subfamilies of Nurinae as we now accept them were fully differentiated. Free from competition, they retain many primitive characters such as are not usually met with elsewhere in Muridae; yet they parallel different groups of Muridae in essential development. The key I have listed above shows that there are no characters which will hold this group together as a subfamily, and that they are strongly differentiated. (Apart from the primitive character of a relatively long jugal, which may be met with anywhere independently
withn the Muridae, their cranial characters are not peculiar, and certainly will not divide them from other Muridae.)

I have therefore no alternative but to refer them to different subfamilies.
Brachytarsomys is regarded as a primitive Nicrotine; Brachyuromys is referred to the Tachyoryctinae; Gymnuromys must, I think, be retained apart from all other Nuridae as type of a special subfamily; Nesomys is a primitive member of the Cricetinae, and $1 t y$ pogeomys is one of the most highly specialized Cricetinae known; Eliurus I refer to the Ahrinae, though it is not closely allied to other Nurinae. It is curious that Eliurus, which is the most specialized dentally of all Madagascar Rats, according to the theories held here, should be referred to the Murinae, which are regarded as dentally the lowest subfamily in the group. The specialization reached by Eliurus is in essential pattern as high as the most specialized dental type known in Murinae, Phlocomys; but the proportions of the teeth are more primitive than in any known Murine except perhaps Anisomys.

## Key to the Scbfamilies of Muridae

Zygomatic plate completely beneath the infraorbital foramen.
Subfamily Deominisae
(Deomys)
Zygomatic plate tilted upwards to a greater or lesser degree.
Cheekteeth prismatic in pattern, frequently evergrowing. Skull much specialized, either for underground life, or by ridges for attachment of jaw muscles.
Zygomatic plate not tilted strongly upwards; infraorbital foramen large ; lambdoid crest slanting forwards to posterior zygomatic root. (External form is much specialized for underground life; cheekteeth evergrowing.) Subfamily Myospalacinae (1)yospalax)

Zygomatic plate tilted very strongly upwards; infraorbital foramen small, narrowed and reduced; lambdoid crest not slanting forwards to level of posterior zygomatic root. (The skull is profoundly modified by ridges for jaw-muscle attachment, with tendency to develop median interorbital crest, squamosal crests, etc.)

Subfamily Microtinae
Cheekteeth brachyodont; third lower molar not reaching down to level of incisors.

Group Brachytarsomyes (Brachytarsomys)
(heekteeth strongly hypsodont; third lower molar always reaching down to level of incisors.
Lower incisor short, lingual to inolars.
Group 1.emmi
(Dicrostonyx, Synaptomys, Myopus, Lemmus)

Lower incisor long, passing from lingual to labial side of molars between bases or roots of M. 2 and M.3. Group Nicroti (Clethrionomys, Aschizomys, Eothenomys, Anteliomys, Alticola, Hyperacrius, Dolomy's, Phenacomys, Arvicola, Phaiomys, Blanfordimys, Pitymys, Neodon, Pedomys, Proedronys, Orthriomys, Herpetomys, Microtus, Lasiopodomys, Lagurus, Ondatra, Neofiber, Prometheomys, Ellobius)
Cheekteeth various, but with one exception (out of over a hundred and fifty genera), not evergrowing; when prismatic the skull is not much specialized by ridges for jaw-muscle attachment, as described above, nor for underground life.
Upper incisors vestigial. Cheekteeth so reduced as to be almost invisible to the naked eye. Subfamily Rhynchomyinae (Rhynchomys)
L'pper incisors and cheekteeth never excessively reduced.
Skull specialized, with tendency to great inflation of auditory bullae, enlargement of braincase, and weakening of rostrum, its general type suggestive of that found elsewhere in bipedal saltatorial Rodentia, such as Dipodidae, or Heteromyidae. Limbs with tendency towards lengthening; external form always specialized for life in plains or desert regions. (In one genus, molars evergrowing; the cheekteeth are primitively with cusps arranged biserially in the upper series, progressively becoming a series of laminae separated by relatively wide inner and outer reentrant folds, the folds approximately opposite and equal, the general effect simple.) Subfamily Gerbillinas
(Tatcra, Taterillus, Gerbillus, Microdillus, Desmodillus, Desmodilliscus, Pachyuromys, Ammodillus ; Meriones, Psammomys, Brachiones, Rhombomys)

Skull never specialized as just described, with less tendency to inflation of bullae, etc. (In most forms the skull is relatively generalized.)
Cheekteeth a series of transverse plates; M. 3 becoming the dominant tooth, always larger than M.2, usually larger than M.1, and with reduplication of elements.

Subfamily Otomivinae
(Otomys, Parotomys)
Cheekteeth when a series of transverse plates never with M. 3 the dominant tooth. M. 3 without reduplication of elements.

Cheekteeth completely flatcrowned, the laminae excessively tightly packed together and compressed, the pattern is series of extremely narrow line-like folds isolated, or nearly
so, on crown surface. 11.3 is broader and a little longer than M1.2, and M .2 is slightly larger than M.i.

Subfamily Gymnuronywnae
(Gymurromys)
Cheekteeth never with the pattern just described.
Cheekteeth with the re-entrant folds isolating to form extremely thick parallel curved ridges extending across flat crowns; the general effect in elements considerably simplified in fully adult. Subfamily Tachyoryctinae
Skull much specialized for fossorial life. Jugal tending to extend to the lachrymal.

Group 'Tachyoryctae (Tachyoryctes)
Skull generalized. Jugal long, but not extending to lachrymal. Group Brachyuromyes (Brachyuromys)
Cheekteeth with re-entrant folds not isolating to form thick parallel ridges; when isolating, the elements not reduced, and the general pattern more complex, and the isolation of the folds less complete.
Cheekteeth cuspidate, laminate or prismatic; when cuspidate, the cusps of the upper molars arranged in two longitudinal rows; and the laminae hearing the cusps separated by wide folds. (When prismatic, skull not specially modified, compare Microtinae.)

Subfamily Cricetinae
(Oryzomys, Hegalomys, I'cucomys, Aectomys, Rhipidomys, Thomasomys, Phaenomys, Chilomys, Tylomys, Ototylomys, Jyctomys, Otonyctomys (the last not seen), Visomys, Rhayomys, Reithrodontomys, Peromyscus, Baiomys, Calomyscus, Onychomys, Akodon, Zygodontomys, Hicroxus, Lenoxas, Oxymycteras, Blarinomys, Xotiomys, Scapteromys, Scotinomys, Cricetulus, Cricetus, Phodopus, Mesocricetus, Mistromys, Ifesperomys, Eligmodontia, Graomys, Phyillotis, Chinchillhla, Irenomys, Reithrodon, Veotomys, Euntomys, Chulemyscus, Sigmomys, Sigmodon, Holochilus, Andinomys, Veotomodon, Tcanopus (the last not seen), . Neotoma, Holomars, Xenomys (the last not seen); Nelsomia, Hypogeomys, Rheomys, Ichthyomys, Anotomys)
Chechteeth cuspidate or laminate; when cuspidate the cusps of the upper molars are arranged in three longitudinal rows; the laminae bearing the cusps are pressed tugether, not separated by wide folds.

Cheekteeth simplified, more or less basinshaped (probably derived from triserial pattern with the outer row of the upper molars suppressed); M. $\frac{3}{7}$ absent or vestigial.

Subfamily Hydromyinae
(Neromys, Leptomys, Chrotomys, Celaenomys, Pseudohydromys (the last not seen); Parahydromys, Hydromys, Crossomys)
(heekteeth less simplified, and not obviously basinshaped. M. $\frac{3}{3}$ present.
Inner row of cusps of the upper molars much reduced, so that there is only one functional inner cusp in first and second upper molars. M. $\frac{3}{4}$ strongly reduced. Subfamily Devdromyinae
(Steatomys, Dendromus, Halacothrix; Prionomys; Petromyscus)
Inner row of cusps of the upper molars not specially reduced, so that there is more than one functional cusp in the first and second upper molars.

Subfamily Mlerinae
M. 2 similar in size and elements to M. 1.

Lower incisors normal; M. 3 rather larger than I. 2

Group Eliuri (Eliurus)
Lower incisors extremely compressed, and highly specialized; M. 3 smaller than M.z.

Group Anisomyes

- (Anisomys)
M. 2 is more reduced in elements than M.i. Group Mures
(Hapalomys, Pogonomys, Chiropodomys, I'andeleuria, Lenomys, Nicromys, Apodemus, Thamnomys, Grammomys, Carpomys, Batomys, Crateromys, Pithecheir, Mallomys, Hyomys, Conilurus, Zyzomys, Laomys, Mesembriomys; Oenomys, Mylomys, Dasymys, Arcicanthis, Pelomys, Rhabdomys, Lemniscomys, Hybomys, Hadromys, Villlardia, Pyromys, Stenocephalemys, Dacnomy's, Eropeplus, Thallomys, Aethomys, Rattus, Lorentzimys (the last not seen), $\dot{G}$ yomys, Leporillus, Pseudomys, Apomys, Uelomys, L romys, Colomys, Malacomy's, Haeromy's, Chiromyscus, Zelotomys, Colomys, \esoromys, Leggadina, Mus, Muriculius, Hylenomys, Mycteromys, Crunomys, Vacruromys;

Notomys; Mastacomys; Golunda; Lophuromys, Cranomys, Acomys; Echiothrix, Melasmothrix (the last not seen); Beamys, Saccostomus; Cricctomys; Bandicota, Nesokia; Phlocomys)

## DISTRIBUTION

Below is given a list of the genera, principal species, and their approximate ranges, of the family Muridae, in the geographical regions of the world. A similar list, including the Rodentia other than Muridae, will be found in Vol. 1.

Mlridae of the Palafarctic
Genus Micromys
minutus. England, Central Europe, north to Germany, south to Fraitce, Italy, Rumania; Finland, Russia; Siberia to Amur region; Szechuan; Japan.
Genus Apodemus
mystacinus group. Asia Minor, Greece.
sylzaticus group. All Europe (including Iceland). Siberia, to Altai; Turkestan. Asia Minor, Syria, Persia, Kashmir; Moroceo.
geisha group. Japan.
speciosus group. Eastern Siberia; Japan; Szechuan, Manchuria.
ugrarius group. Eastern Europe (Germany to Bulgaria); Russia, Turkestan; Ussurj (East Siberia). Szechuan, Kansu, Manchuria, Shantung, Korea.
Genus Arricanthis
niloticus. Egypt.
Genus Lemniscomys
barbàrus. Morocco.
Genus Millardia
meltada. Punjab.
(jenus Rattus
rattus group. Throughout Europe. Russian '1urkestan. Tibet, Kashmir; Japan; ligypt, Syria, etc. Morocco.
norvegicus group. 'Throughout Europe. Siberia; Manchuria, Shansi, Kansu, and most of Palacarctic China.
confuciamus group. Szechuan, 'Tibet, Shantung, Shensi, C'hihli.
edzardsi group. Szechuan.
coucha group. Noroceo.
Genus . Mus
musculus group. Throughout the entire Palatarctic region.
booeluga. Punjab.
platythrix. Punjab.
Genus Golunda
cllioti. Punjah and North-west Frontier.

Genus Acomys
russatus. Egypt, Sinai.
cahirinus group. Egypt, Tripoli, Cyprus, Crete.

## Genus Bandicota

bengalensis. Kashmir.
Genus Nesokia
indica. North-west Fronticr, Afghanistan, Russian 'Iurkestan, Chinese 'Turkestan; Mesopotamia, Syria, Palestine, Egypt.
Genus Calomyscus
bailwardi. Persia, Baluchistan, Russian Turkestan.
Genus Cricetulus
barabensis group. South Siberia, west to Barnaul, east to Amur; Mongolia, Manchuria, Chihli, and Shantung.
longicaudatus group. 'Tibet, Shansi, Chihli, Mongolia, Kansu, and Minussinsk district (Siberia).
lama group. Tibet, Kashmir.
migratorius group. Greece, South Russia, Syria, Asia Minor, Persia, Russian and Chinese Turkestan.
eversmanni group. South-east Russia, Turkestan, Mongolia. triton group. Kansu, Shantung, Shensi, Chihli, Korea, and South Ussuri.
Genus Phodopus
songorus group. Southern Siberia (East Kazakstan to Transbaikalia), and Mongolia.
roborovskii group. Shensi, Tibet, Mongolia, (?) Manchuria.
Genus Cricetus
cricetus. Belgium, North France, Germany, Hungary, Yugoslavia, Rumania, Russia, Caucasus, Turkestan to Minussinsk; (?) Iraq.
Genus Mesocricetus
auratuts group. Caucasus, North Persia, Syria, Rumania, Bulgaria.
Genus Myospalax
fontanieri group. Kansu, Shansi, Szechuan.
smithi. Kansu.
psilurus. Chihli, Manchuria, Transbaikalia, Ussuri.
myospalax. Russian Altai.
armandi group. Mongolia, Irkutsk.
Genus Gerbillus
campestris group. Morocco, North Algeria, Tripoli.
garamantis group. Algeria; Baluchistan.
dasyurus group. Egypt, Sinai, Palestine.
simoni group. Algeria; Egypt.
gerbillus group. Algeria across North Africa to Syria and Mesopotamia.
pyramidum group. Norocco across North Africa to Egypt, Palestine.

## Genus Tatera

indica. Punjah, Persia, Mesopotamia, Syria.
Genus Pachyromys
duprasi. North Algeria; Egypt.
Genus Meriones
calurus. sinai.
persicus group. Persia, Baluchistan, Russian Turkestan, Transcaucasia.
tamaricims group. Palestine, Syria, Asia Ninor, Caucasus, Southeast Russia, Russian Turkestan, Gobi desert, Chinese 'Turkestan.
libycus group. Egypt, Tripoli, Algeria; Morocco; Palestine, Syria, Afghanistan, Persia, Russian Turkestan, Transcaucasia, Gobi desert.
meridiamis group. South-east Russia, Caucasus, Russian Turkestan, Mlongolia, Shansi, Chihli.
unguiculatus. Mongolia, Shansi, Transbaikalia,
hurrianue. Punjab, North-west Frontier.
(ienus Psammomys
obesus group. Algeria, 'Tripoli, Egypt, Palestine.
Genus Brachiones
praetualkii. Chinese 'Turkestan, Gobi desert.
Genus Rhombomys
opimus. Russian Turkestan, Chinese Turkestan, Mongolia.
(;enus Dicrostonyx
torquatus. Arctic Russia, Siberia, and islands to the north.
Gonus Myopus
schisticolor. Scandinavia, North Russia, Altai, North-east Siberia, North Nongolia.
Genus Lemmus
lemmus. Scandinavia, North-west Russia.
whensis group. Northern Russia, Siberia, and islands to the north. (ienus Clethrionoms's
slareolus group. Europe from sweden to Pyrenees and Sugoslavia, and lingland eastwards 20 Cral Alountains. Tianshan; Syansk Mountains (west of Lake Baikal).
nageri group. Switzerland, Italy, Yugoslavia, France; Norway; Ifebrides; Channel Islands; Asia Minor; Tianshan.
metilus group. North Scandinavia, Northern Russia and Siberia; Japan. 'To Altai, Manchuria.
mfocamus group. Scandinavia, Russia, Siberia to Kamtchatka; Kotea, Kansu, Shansi, Szechuan, Ilupeh; Mongolia, Chihli; Japan.
(sikotanensis (Clethrionomys?); Kuriles.)

Genus Aschizomys
lemminus. North-east Siheria.
Genus Eothenomys
melanogaster. Szechuan.
Genus Anteliomys
chinensis group. Szechuan.
Genus Alticola
roylci group. Russian Turkestan, Chinese Turkestan, Kashmir, Tianshan, Mongolia.
stoliczkanus group. Tibet, Kashmir.
macrotis. Syansk Mountains (Siberia).
strelzozci group. Siberian Altai, Mongolia.
Genus Hyperacrius
wymuci group. Kashmir, Punjab.
Genus Dolomys
bogdanori. Yugoslavia, Greece.
Genus Microtus
agrestis group. Europe, including Scandinavia, England and Ilebrides, Spain (and south to North Italy, Yugoslavia); U.S.S.R. to Lake Baikal; Mongolia; Zungaria.
arzalis group. Europe, south of Baltic; Orkneys, Channel Islands (not England); (south to Spain and Greece); Asia Minor, Russia, Caucasus, Turkestan, Altai, Transbaikalia, Mongolia, Kansu, Korea, Japan.
ofconomus group. Scandinavia, Holland, Germany, Hungary, Russia, Siberia to Pacific coast, and Semirechyia.
guentheri group. Greece, Asia Minor, Palestine, Libya; Spain.
mizalis group. Spain, France, Switzerland, North Italy, South Germany, Yugoslavia; Caucasus, Asia Minor, Syria, Palestine.
socialis group. Persia, South Russia, Russian Turkestan.
roberti group. Asia Minor, Caucasus.
calamorum group. Transbaikalia, Ussuri, Manchuria, Shensi, Kiangsu.
middendorffi group. Siberia (L'ral, Ob, Yenesei regions).
gregalis group. Throughout Northern Siberia, south to Northern Kazakstan; Mongolia, Chinese Turkestan.
millicens. Szechuan.
mandarinus group. Shansi, Alongolia, Chihli.
Genus Lasiopodomys
brandti. Mongolia, Manchuria, Transbaikalia.
Genus Proedromys
bedfordi. Kansu.
Genus Phaiomy's
leucurus group. Tibet, Chinese Turkestan, North India (Upper Sutlej valley).

Genus Neodon
carruthersi. Russian Turkestan.
juldaschi. Russian Pamir.
oniscus, etc. Kansu, Szechuan.
Genus Pitymys
subterrancus group. Belgium, France. Hungary, Rumania, Switzerland, Italy, Iugoslavia, Lkraine, Asia Minor, Caucasus.
saziii group. Sicily, Italy, South France.
ibericus group. Spain, South France; Greece, Montenegro.
Genus Blanfordimys
afghanus group. Afghanistan, Russian Pamir.
Genus Arvicola
terrestris group. Europe (except Ireland); Siberia, to Amur River; Turkestan; Syria, Persia.
Genus Lagurns
lagurus group. South Russia, 'Turkestan to Zungaria.
lutcus group. Russian Turkestan, Chinese Turkestan, Zungaria, Zaidam, Mongolia.
Genus Prometheomys
schaposchnikozi. Caucasus.

## Genus Ellobius

talpinus group. South Russia, Turkestan, Altai, Chinese Turkestan, Nongolia.
fuscocapillus group. Baluchistan, Afghanistan, Aouth Russiin Turkestan, Persia, Asia Minor.

## Muridae of the Nearctic

Genera, principal species, and approximate ranges. (Canada and U.S..A. The House-Rats, and House-Mice, Rattus rattus, R. norregicus, and Mus musculus, are introduced; these species may occur in any part of the world.)
Genus Oryzomys
palustris group. Florida, 'Fexas, and South-eastern L'nited State's. Genus Reithrodontomys
humulis group. South Carolina, Virginia, Texas, Nebraska.
megalotis group. Colorado, Kansas, New Mexico, Arizona, California, Idaho.
fulzescens group. Texas, ()klahoma, Louisiana.
(ienus Peromyscus
califormicus group. Idaho, Utah, California, New Nexico, Arizona.
maniculatus group. 'Throughout the area: Labrador to Maska; California to Florida.
letucopus group. Texas, Arizona, north to Massachusetts, New Kork, and Montana; Florida, Georgia, Alabama.
boylii group. California, U'tah, 'Texas.
thui group. New Mexico, Colorado, California.
(Peromyscus) muttalli group. Virginia, South Carolina, to Arkansas.
floridamus group. Florida.
Genus Baionys taylori. Texas.
Genus Onychomys
leucogaster group. North Dakota, Idaho, New Mexico, Oregon, Utah, Arizona, California, Texas, Oklahoma, north to Alberta, Saskatchewan.
Genus Sigmodon
hispidus group. Florida, Texas, Arizona.
fulaizenter group. Texas, New Mexico.
Genus Neotoma
floridana group. Florida, Louisiana, Illinois, Nebraska, Kansas, Texas, New Mexico.
albigula group. Arizona, California, New Mexico, Ltah, Colorado. intermedia group. California, Arizona.
mexicana group. Colorado, Arizona, New Mexjco.
desertorum group. California, Utah, Arizona.
pennsylranica group. Pennsylvania, to Tennessee.
fuscipes group. California.
cinerea group. California, Nevada, Alberta, British Columbia, Washington, Oregon, Arizona, Colorado, South Dakota.

## Genus Dicrostomy:

hudsonius. Labrador.
rubricatus, etc. Alaska, Arctic Canada; Greenland.
Genus Synaptomys
cooperi. New Jersey, Virginia, Quebec, west to Kansas and Minnesota.
borealis. Alaska, Mackenzie, British Columbia, Washington; Labrador; New Hampshire.
Genus Lemmus
trimucronatus, etc. Alaska, Mackenzie, Alberta, to Baffin Land.
Genus Clethrionomys
dazesoni, and allies. British Columbia, Alaska, Yukon, Ungava, Oregon.
gapperi, and allies. Ontario, New Hampshire, New Jersey, the Dakotas, Mackenzie, Colorado, British Columbia, Idaho. North Carolina. New Mexico.
califormicus. California.
proteus. Labrador.

## Genus Phenacomys

intermedius group. British Columbia, Washington, Idaho, California, Wyoming, Montana. New Mexico.
ungaza group. Ungava, Quebec, Labrador, Mackenzie.
albipes group. California.
longicaudus group. Oregon.
pennsylazicus group. Labrador and North Carolina to Alberta, Nontana, Colorado, New Mexico. Admiralty lsland (Alaska). montamus group. \rizona, Wyoming, (alifornia, Utah, Nevada, Washington, Oregon, British Columbia.
califormicus group. California.
operarius group. Alaska, Mackenzie.
abbreviatus group. Alaska.
tozenschdi group. Oregon, California, British Columbia.
longicandus group. Washington to South Dakota, California, Arizona. lslands off Alaska.
mexicanus group. Texas, Arizona.
santhognathus group. Alberta to Alaska, and Arctic coast.
chrotorrhimus group. New llampshire, Labrador, Quebec, North Carolina.
richardsomi group. Washington, Idaho, Oregon, Wyoming, British Columbia, Alberta.
oregoni group. Oregon, California, British Columbia, Washington.
Genus Pedomys
ochrogaster group. Wisconsin, Missouri, Oklahoma, Louisiana, Nebraska, Kansas, the Dakotas, Colorado, Montana, Alberta,
Genus Pitymys
pinctorum group. Georgia, New York, Mississippi, Oklahoma, Florida.
Genus Lagurus
curtatus group. Nevada, Oregon. North Dakota, Washington, Utah, Alberta, Idaho, East California.
Genus Neofiber
alleni. Florida.
Genus Ondatra
zibethica group. Alaska to Iludson Bay; Labrador; most of U.S.A. except extreme south central portion; and not Florida.

Meridae of the lniou- Walayan Region
Genus Ilapalomys
longicuulutus group. Tenasserim, Annam, Hainan.
Genus Lenomys
maveri group. Celebes.
Genus ('hiroproilomys
sliveides group. Assam, Sumatra (Nias Island), Java, Borneo, Philippines (Calamianes Island).
fulzus. Vunnan.
Genus I andelenria
oleraced group. Peninsular India, Ceylon, Nepal, Tongking, Siam.

Genus Micromys
minutus. Assam.
Genus Apodemus
sylvaticus group. Yunnan.
speciosns group. Liukiu Islands; Nepal, Burma, Yunnan, Formosa. agrarius group. Fukien, Yunnan.
Genus Carpomys
melantrus. Luzon (Philippines).
phaeurus. Luzon (Philippines).
Genus Batomy's
granti. Luzon (Philippines).
Genus Pithecheir
melanurus. Malay Peninsula, Sumatra, Java.
Genus Crateromys
schadenbergi. Luzon (Philippines).
Genus Mallomys (?)
armandrillei (? Mallomys). Flores.
Genus Iladromys
humei. Manipur.
Genus Millardia
meltada group. Peninsular India, Ceylon.
kathlcenae. Burma.
glcadowi. Sind.
Genus Pyromy's priestleyi. Sind.
Genus Dacnomys
millardi. Sikkim, Assam, Laos.
Genus Eropeplus canus. Celebes.
Genus Rattus
baluensis group. Sumatra, Borneo.
macleari. Christmas Island.
natizittatus. Christmas Island.
blanfordi group. Peninsular India.
cutchicus group. Peninsular India.
canus group. Selangor, Sumatra (Pulau Tuangku), Java; Liukiu Islands.
rattus group. Throughout lndia, Ceylon, Burma, Southern China; Formosa, Hainan; Annam, Siam, Malay Peninsula, Sumatra, Java, Borneo, Celebes, Philippines.
norcegicus group. Celebes, Philippines; Iunnan.
hoffmani group. Celebes. (?) Andamans.
concolor group. Burma, Sumatra, Java, Borneo, Celebes, Flores, Philippines.
mülleri group. Tenasserim, Siam, Malay Peninsula, Kwantung; Sumatra, Java, Borneo.

MURIDAE
(Ratus) chrysocomus group. Celebes.
coelestis group. Celebes.
xanthurus group. Celebes, Philippines.
confucianus group. South China, Hainan, Formosa, Nepal, Ceylon, Burma, Assam, Siam, Annam, Liukiu Islands, Sumatra, Bornco, Java.
cremoriventer group. Siam, Annam, Tenasserim, Sumatra, Java, Borneo, Celebes.
zhiteheadi group. Siam, Malay Peninsula, Sumatra, Borneo, Celebes.
bacodon. Borneo.
cha group. Sikkim, Iunnan.
lepturus. Java.
hartelsi. Java.
rajah group. Tenasserim, Annam, Siam, Formosa, Malay Peninsula, Sumatra, Java, Borneo, Philippines.
cdrourdsi group. Himalayas, Assam, South China, Annam, Siam, Malay Peninsula, Sumatra, Java, Borneo.
hozersi group. Vunnan, Fukien, Siam, Assam, Burma, Tenasserim.
herdmorei group. Burma, Siam.
musschenbroeki group. Celebes.
hellroaldi group. Celebes.
dominator group. Celebes.
Genus Apomy's
hylocoetes group. Philippines.
Genus Coelomys
maymi group. Ceylon.
Genus Hueromy's
margarctlar group. Borneo, Celches.
(ienus Chiromyseus
chiropus. Burma, Annam.
Genus Mus
musculas group. Liukiu Islands, South China, Nepal, and through India. (Races named Java, Celebes, etc., ? introduced.)
booduga group. Peninsular India, Burma, Siam, Yunnan.
pahari. Sikkim, lunnan.
platythrix group. India, Ceylon, Burma.
(custancus, not seen; Philippines).
Genus Mycteromys
crociduroides. Java, Sumatra.
Genus Crmomys
fallax, cte. Philippines.

## ( ienus Golunda

cltioti. P'eninsular India, Ceylon, Bhutan, Nepal, Sind.
Genus Echiothrix
lencura group. Celehes.

Genus Melasmothrix
naso. Celebes.
Genus Acomys
cahirinus group. Sind.
Genus Bandicota
bengalensis group. Bengal, Peninsular India, Sind, Ceylon, Malay Peninsula, Sumatra.
gracilis. Ceylon.
indica group. Siam, Burma, Madras, Bengal, Yunnan, Formosa, Java, Sumatra.
gigantea group. Peninsular India. Annam.
Genus Nesokia
indica. Sind, North India.
Genus Phloeomys
cumingi group. Philippines (Luzon).
Genus Rhynchomy's
soricoides. Philippines (Luzon).
Genus Celaenomy's silacews. Philippines (Luzon).
Genus Chrotomys
whiteheadi. Philippines (Luzon).
Genus Gerbillus
garamantis group. Sind.
gerbillus group. Sind.
Genus Tatera
indica group. Sind, Peninsular India, Ceylon.
Genus Meriones Inurrianae. Delhi (from Palaearctic India).
Genus Eothenomys melanogaster group. Burma, Assam, Iunnan, Fokien; (?) Formosa. olitor group. Yunnan.
Genus Anteliomy's chinensis group. Yunnan.
Genus Alticola roylei. Kumaon (from Palaearctic India).
Genus Microtus calamorum group. Vunnan.
Genus Phaiomys leucurus group. Nount Everest.
Genus Neodon sikimensis. Sikkim. forresti. Yunnan.
There are also three genera named from the Philippines, which are not represented in London: Limnomys, Tarsomy's, Tryphomy's.

## Afuridas of Africa

(This area includes Arabia, hut not the northern coastal Palaearctic portion of Africa.)

## Genus Thamnomvs

rutilens group. Cameroons, Congo.
femustus group. Congo, Ruwenzori.
Genus Grammomys
dolichurus group. Sudan, Kenya, Lganda, Tanganyika, East Congo, Portuguese East Africa, south to Capetown district; Liberia, 'Timbuktu.
ruddi. Portuguese East Africa.
Genus Oenomys
hyproxanthus group. Gaboon, Gold Coast, Congo, Uganda, Kenya, Angola.
Genus Mylomys
cuninghamei. Sudan, Kenya, Lganda, Congo, Gold Coast.
Genus Dasymys
incompus group. South Africa, South-west Africa, Angola, Congo, Uganda, Kenya, Sudan, Abyssinia, Nigeria, Liberia.
Genus Arzicanthis
miloticus group. Sudan, Arabia, Eganda, Abyssinia, Somaliland, Kenya, Fanganyika, East Congo; Asben, Gold Coast, Sierra Leone, Portuguese Guinea; south to Northern Rhodesia.
Genus Pelomys
fallax group. Portuguese East Africa, Rhodesia, South-west Africa, Congo, Angola, Lganda, Kenya.
harringtoni group. Abyssinia.
rex. Abyssinia.
isseli. Lake Victoria (kome Island).

## Genus Lemniscomys

burharus group. Sudan, Kenya, 'langanyika, East Congu, Asben, Nigeria, Gambia.
sthiatus group. Sierra Leone, Nigeria, Sudan, Kenya, Abyssinia.
griscldu group. (Jamhia, East Congo, Angola, Kenya, Tanganyika, Portuguese East Africa, South-west Africa, South Africa.
(ienus Rhubdomys
primilio. South Africa to Angola and Kenya.
Genus IIybrmys
umicittutus group. Leganda, (ameroons, Nigeria.
trizirgutus. Liberia, Gold Coast.
(jenus Stenocephalcmis
alhocanulata. Abyssinia.
Genus Aethomys
zeclamhue. Kinya, Lganda, Cungo, North Rhodesia.
(Aethomys) kaiseri, etc. East Congo, Kenya, Uganda, 'I'anganyika, Sudan, Nigeria, Angola.
chrysophilus. Kenya, Tanganyika, South Congo, South Africa, South-west Africa, Portuguese East Africa.
Genus Thallomys
namaquensis group. South Africa, South-west Africa, Portuguese East Africa.
nigricauda group. Kenya, Angola, South-west Africa, South Africa.

## Genus Rattus

rattus group. Arabia, Kenya, etc.
longicaudatus group. Cameroons, Congo.
tulbergi group. Gold Coast, Nigeria, Liberia, Congo, Kenva, Sudan, Tanganyika, Uganda.
aeta group. Cameroons, Nigeria, Liberia, Angola, Congo, Kenya. defua. Liberia.
zerreauxi group. Abyssinia, Somaliland, Kenya, Angola, Southwest Africa, South Africa, Gold Coast.
coucha group. South Africa, South-west Africa, Abyssinia, Kenya, Uganda, Sudan, Tanganyika, Gold Coast, Nigeria, Senegal.
granti. Cape Colony.
zoosnami. Bechuanaland.
Genus Malacomys
longipes. Congo, Gabon.
edzardsi. Liberia.
Genus Zelotomys
hildegardeae group. Kenya, Last Congo, Angola, North Rhodesia.
Genus Hylenomys
callewaerti. South Congo.
Genus Muriculus
imberbis. Abyssinia.
Genus Mus
musculus group. Arabia, Somaliland, etc.
bufo group. Uganda, Kenya, East Congo.
minutoides group. Kenya, Abyssinia, Uganda, Congo, Angola, Portuguese East Africa, South-west Africa, South Africa; Gold Coast, Cameroons, Nigeria.
tencllus group. Kenya, South Africa.
Genus Colomys
goslingi group. Kenya, Congo, Cameroons.
Genus Lophuromys
zcoosnami group. Uganda.
sikapusi group. 'Tanganyika, Kenya, Abyssinia, Congo, Cameroons, Gold Coast.

Genus Acomys
cahirims, and others. Sudan, Arabia, Asben, Kenya, Abyssinia, Somaliland, Rhodesia, Portuguese East Africa.
zeilsoni. Kenya, Sudan, Uganda.
subspinosus. Cape region.
Genus L ranomys
ruddi group. Uganda, Nyasa, Gold Coast, Nigeria, Gambia.
Gemus Beamys
lindei group. Kenya, Nyasa.
Genus Saccostomus
campestris group. Portuguese East Africa, South Africa, Southwest Africa, Uganda, Kenya.
Genus Cricetomys
gambianus group. Gambia, Liberia, Nigeria, Gaboon, Congo, Angola, South-west Africa, 'Transvaal, Portuguese East Africa, Kenya, Uganda, Sudan, Zanzibar.

## Genus Dendromus

mesomelas group. South Africa, South-west Africa, Angola, Kenya, Congo, Abyssinia, Sudan, Uganda, Nigeria.
melanotis group. South Africa, South-west Africa, Angola, Kenya, Abyssinia, Congo, Nigeria.
lowati group. Abyssinia.
Genus Steatomys
pratcnsis group. Portuguese East Africa, Congo, South Africa, South-west Africa, Angola, Tanganyika, Sudan, Nigeria, Kenya.
bocagci group. Angola, Nigeria, Gold Coast.
Genus Malacothrix
typicus. South Africa, South-west Ifrica.
Genus Prionomys
batesi. Cameroons.
Genus Petromyscus
collinus group. South-west Africa.
monticularis. South-west Africa.
Gienus Dcomys
fornginens. Congo.
Genus Otomys
laminatus. South Africa.
unchuctue. Angola, Tanganyika.
typus group. Abyssinia, Kenya, Uganda.
irroratus group. Kenya, U'ganda, East Congo, Tanganyika, Cameroons, Portuguese East Africa, Rhodesia, South Africa,
kerocnsis. Cape Colony.
(mheri. Orange River Colony.
umisulcatus group. South Africa, South-west Africa.

## Genus Parotomys

brantsii. South Africa, South-west Africa,
littledalet. South Africa.
Genus Mystromys
albicandatus group. South Africa.
Genus Tachyoryctes
macrocephalus group. Abyssinia.
splendens group. Abyssinia, Somaliland, Kenya, Uganda, North 'Tanganyika, East Congo.
Genus Gerbillus
campestris group. Arabia, Sudan, Asben.
garamantis. Arabia.
famulus. Arabia.
dasyurus group. Arabia, Sudan, Somaliland, Kenya.
simoni group. Somaliland, Kenya.
nancillus. Sudan.
vallinus. South-west Africa, South Africa,
szalius group. South Africa, South-west Africa.
gerbillus group. Sudan, Kenya, Somaliland, Arabia, Nigeria, Rio de Oro.
pyramidum group. Somaliland.
Genus Microdillus
peeli. Somaliland.
Genus Tatera
robusta group. Sudan, Somaliland, Kenya, Abyssinia, Tanganyika, Gold Coast. Portuguese Guinea.
liodon group. Sudan, Uganda, North Rhodesia, Kenya, East Congo, Angola.
afra group. Uganda, East Congo, South Africa, Portuguese East Africa, South-west Africa, Angola, Tanganyika, Nigeria, Gambia, Gold Coast.
ruddi group. Zululand.
boehmi group. Uganda, Tanganyika, Kenya, Nyasa.
Genus Taterillus
emini group. Senegal, Nigeria, Sudan, East Congo, Kenya, Uganda, Abyssinia.
Genus Desmodillus
auricularis. South Africa, South-west Africa.
Genus Desmodilliscus
braueri. Sudan, Nigeria.
Genus Ammodillus
imbellis. Somaliland.
Genus Meriones
rex group. Arabia.
libycus group. Sudan, Arabia, Asben.

Genus Psammomy's
obestrs group. (?) Sudan.
There are also two named genera which are unrepresented in London: Nilopegamys, from Abyssinia, and Leimacomys, from Togoland, West Africa.

## Muridae of the Neotropical Region

(According to Flower \& Lydekker, Mexico should be included in this region.) Genus Oryzom's
pälustris group. Guatemala, Mexico, Nicaragua, Honduras, Panama, Jamaica.
melanotis group. Nexico.
alfaroi group. Nexico, Guatemala, Costa Rica, Panama.
talamancae group. Costa Rica, Panama, Colombia, Venezuela.
bomblimus group. Costa Rica, Panama.
dezius group. Panama, Colombia, Venezuela, Ecuador.
tectus group. Panama, Colombia, Venezuela.
pyrthorhimus group. East Brazil (Bahia).
barbacoas. Colombia, Ecuador.
galapagoensis. Galapagos.
intectus. Colombia.
zurrimi. Paraguay.
ratticeps. South Brazil, Paraguay.
longicaudatus. Peru to South Chile and Patagonia.
fulrescens group. Mexico, Costa Rica, Panama, I'eru, Colombia, Venezuela, British Guiana, Natto Grosso.
minntus group. Ecuador, Peru, Colombia.
indefessus group. Galapagos.
bicolor group. Panama, Ecuador, Bolivia, South Brazil, Venezuela, Colombia, Peru, British Guiana.
caliginosus group. Panama, Colombia, Ecuador, Costa Rica.
Many species named from all countries in South America,
Genus Megalomys
desmarcstii group. Jartinique, St. Lucia,
Genus Veacumys
spinosus group. Peru, Colombia, Matto Grosso, Ecuador, British Guiana, Panama.
Genus Nectomis
ailjari, Costa Rica, Nicaragua, Panama.
hammondi. Jicuador.
dimidiotus. Vicaragua.
sqummipes, and others. South Brazil, British Guiana, Paraguay, C'olombia, Ecuador, Peru.
Genus Rhipidomprs
lewioductylus groap), Panama, British (buiana, Colombia, Vonezuela, Ecuador, Peru, Bubivia, Eastern Brazil, North Argentina.

## Genus Thomasomys

aureus group. Ecuador, Colombia, Peru.
pyrrhonotus group. Ecuador, Peru.
dorsalis group. South-east Brazil.
lugens group. Colombia, Venezuela, Ecuador.
cinereus group. Ecuador, Colombia, Peru, Bolivia, Venezuela, British Guiana, South Brazil, North Argentina.

## Genus Phaenomys

ferrugineus. Rio de Janeiro (Brazil).
Genus Chilomys
instans. Colombia.
Genus Tylomys
mudicaudus group. Mexico, Guatemala, Panama, Ecuador.
Genus Ototylomys
phyllotis group. Mexico, Guatemala, Nicaragua, Costa Rica.
Genus Nyctomys
sumichrasti. Mexico, Guatemala, Honduras, Nicaragua, Panama.
Genus Otonyctomy's
hatti. Mexico (Yucatan).
Genus Rhagomys
rufescens. Rio de Janciro (Brazil).
Genus Reithrodontomys
megalotis group. Mexico.
fulzescens group. Mexico.
rufescens group. Mexico, Guatemala, Costa Rica, Nicaragua.
lezipes group. Mexico (Jalisco).
chrysopsis group. Mexico.
mexicanus group. Mexico, Honduras, Guatemala, Costa Rica, Colombia, Ecuador.
temirostris group. Mexico, Guatemala, Panama.
Genus Peromyscus
californicus group. Northern Mexico.
maniculatus group. Mexico.
leucopus group. Mexico.
boylii group. Mexico, El Salvador.
truci group. Mexico.
mclanophrys group. Mexico.
lepturus group. Mexico, Guatemala, Costa Rica, Panama.
mexicamus group. Mexico, El Salvador, Guatemala.
megalops group. Mexico.
thomasi group. Mexico, Panama.
Genus Baiomys
taylori group. Mexico, Honduras.
Genus Onychomys
lencogaster group. Mexico.

Genus Akodon
boliviensis group. Uruguay, Argentina, Patagonia, Chile, Paraguay, Last Brazil, Peru, Bolivia, Ecuador.
lengtarun. Paraguay.
obscurus. Uruguay.
urichi group. Ecuador, Colombia, Peru, Venezuela.
kempi. East Argentina.
budini. Jujuy (Argentina).
lasiotis. East Brazil.
subterraneus group. South-east Brazil.
amoenus group. Peru, Bolivia, North Argentina,
lactens. Jujuy.
bacchante. Bolivia, North Argentina.
jelskii. Peru.
pulcherrimus. Peru.
longipilis group. Argentina, Chile, Patagonia.
Genus Zygodontomys
cherriei, etc. Costa Rica, Panama, Colombia, Brazil, Venezuela, Dutch Guiana, Perı, Ecuador.
Genus Microxus
bogotensis, etc. Colombia, Ecuador, Peru, Rio Grande do Sul, Patagonia.
Genus Lenoxus
apicalis. Peru.
Genus Oxymycterus
nasutus group. Argentina, Brazil (north to Pernambuco), Paraguay, Bolivia, Peru, Uruguay.
Genus Blarinomys
breviceps. East Brazil.
Genus Notiony's
edwardsii. Patagonia.
zaldiziames group. Chile, Patagonia.
megalony: group. Chile, Patagonia, Mendoza (Argentina).
Genus Scapteromys
tumidus group. Uruguay, East Argentina.
gnambiquarae group. Matto Grosso, North Argentina.
Genus Scotinomys
tesuina group. Mexico, Guatemala, Ilunduras, Costa Rica, Panama.
Genus Hesperomy's
venustus. Argentina.
fecundus. Bolivia.
lepidus. Peru.
bimaculatus, and others. Uruguay, Argentina, Paraguay, Bolivia, Peru, East Brazil.
gevbillus. Pern.

Genus Eligmodontia
typus group. Argentina, Bolivia.
Genus Graomys
griscoflazus. Argentina, Patagonia, Paraguay, Bolivia.
Genus Plyllotis
amicus and allies. Peru, Ecuador.
xanthopygus. Patagonia.
darwini, etc. Peru, Ecuador, Chile, Bolivia, Argentina.
sublimis group. Peru, North Argentina.
boliviensis group. Peru, Bolivia, Patagonia.
garleppi. Bolivia.
Genus Chinchilhula
sahamac. Bolivia.
Genus Irenomys
longicaudatus. Chile.
Genus Neotomy's
ebriosus group. Peru, North Argentina.
Genus Reithrodon
typicus group. Argentina, Uruguay, Chile, Patagonia.
Genus Euncomy's
chinchilloides, etc. Argentina, Patagonia.
Genus Chelemy'scus
fossor, North-west Argentina.
Genus Holochilus
rulpinus, etc. Brazil, Argentina, Paraguay, Chile, Patagonia,
Genus Sigmodon Uruguay, Peru, British Guiana, Venezuela.
hispidus group. Mexico, Honduras, Nicaragua, Costa Rica, Panama.
fuleiventer group. Mexico.
hirsutus, etc. Colombia, Yenezuela, Ecuador, Peru.
Genus Sigmomys
alstoni group. British Guiana, Venezuela.
Genus Andinomy's
edax. Bolivia.
Genus Neotomodon
alstoni group. Mexico.
Genus Veotoma
floridana group. Mexico.
albigula group. Mexico.
mexicana group. Mexico, Guatemala, Nicaragua.
desertorum group. North Mexico.
Genus llodomys
alleni group. Mexico.
Genus Teanopus
phenax. Mexico.

Genus linomys
nelsoni. Mexico.
Genus Velsonia
neotomodon group. Mexico.
Genus Ichthyomys
'hydrobates group. Ecuador, Colombia, Peru, Venezuela.
Genus Rheomys
trichotis group. Panama, Costa Rica, El Salvador, Colombia.
Genus Anotomys
leander. Eeuador.
Genus Orthriomys
umbrosus. Mexico.
Genus Itcrpetomys
guatemalensis. Guatemala.
Genus Microtus
mexicams group. Mexico.
Genus Pitymys
quasiater. Western Mesico.
There are also four named genera not represented in London: Scolomys, from Ecuador; Veusticomys, from Ecuador; Daptomys, from Venezuela; Podoxymys, from British Guiana.

## Muridae of the Australasian Region

Genus Anisomys
imitator. New Guinea.
Genus Pogonomys
macrourus group. New Guinea.
forbesi group. New Guinea, and adjacent islands.
Genus Hyomys
mecki. New Guinea.
Genus Mallomys
rothschildi. New Guinea.
Genus Conilurus
albipes group. New South Wales.
pemicillutus group. North Australia, Melville Island.
Genus Zysomys
argurus. South and North-west Australia.
Genus Laomys
pedumculatus group. Central and North-west Australia.
Genus Mesembriomys
gouldi group. North Australia, Queensland, Melville Island.
meacrurus. Northern West Australia.
Genus Rattus
rathes group. Aru 1skands, Ceram, New Guinea.
concolor group. Joluccas, New Guinea, Fiji, Ilawais, etc.
(Ratus) lewcopus group. Queensland, New Guinea, Ceram, Solomon Islands.
verecundus group. New Guinea.
niobe group. New Guinea.
tunneyi-rillosissimus group. New Guinea, North Australia, MeIville Island, Queensland, New South Wales, South Australia, Central and North-west Australia.
fuscipes-lutreolus group. New South Wales, Queensland, North Australia, South Australia, West Australia, 'Tasmania.

## Genus Lorentzimys <br> nouhuysii. New Guinea.

Genus Gyomys
noz'aehollandiae group. Queensland, New South Wales, Victoria, Central and South Australia.
Genus Leporillus
apicalis. South Australia.
conditor. New South Wales.
Genus Psetudomys
australis group. New South Wales, South Australia, Queensland, West Australia, Tasmania.
nanus group. Queensland, New South Wales, West Australia.

## Genus Melomys

leripes group. Ceram, New Guinea.
porculus group. Solomon Islands.
cervinipes group. New Guinea, Queensland, Melville Island, Moluccas, Ceram.
bruijnii group. New Guinea, Ceram.
sapientis. Solomon 1slands.
ponceleti. Solomon Islands.
Genus Vromys
neobritannicus. New Britain.
caudimaculatus group. New Guinea, Queensland, Aru and Kei Istands.
imperator group. Solomon Islands.
Genus Leggadina
forresti group. Northern and South Australia.
delicatula group. North, Central, and South Australia, Queensland.
(Mus musculus, races named New Guinea, etc. Introduced ?)
Genus Nesoromys
ceramicus. Ceram.
Genus Macruromys
elegans. New Guinea.
major. New Guinea.

## Genus Votomys

Iongicandatus group. West Australia, New South Wales.
mitchelli group. New South Wales, South Australia, Queensland, West Australia, Northern Territory:
cerzinus group. South Australia.
Genus Mastacomys
fuscus. Tasmania.
Genus Hydromys
chrysogaster. Tasmania, South Australia, West Australia, New South Wales, Queensland, Northern Territory, Aru and Kei 1slands, New Guinea, New Britain.
Genus Parahydromys
asper. New Guinca.
Genus Crossomys
moncktoni. New Guinea.
Genus Leptomys
clegans. New Guinea.
Genus Xeromys
inyoiles. Queensland.
Genus Pseudoliydromys
murimus. New Guinea.
Muridae of Madagascar
Genus Eliurus
myoximus group.
(ienus Vesomys rufus group.
Genus Hypogeomys
antimena.
Genus Gymmuromys roberti.
Genus Brachyuromys betsileoensis. ramirohitra.
Genus Brachytarsomys albicauda.
Genus Macrotarsomys
bastardi.

## Subfamily MURINAE

${ }_{1} 896$. Thonas: Murinae; Phloeomyinae; Cricetinae, part, Eliurus.
1899. Tullberg: Muridae, part, Murini and Phloeomyini; Nesomyidae, part, Eliurus. 191S. Miller \& Gidley: Murinae, Phloeomyinae. Also Cricetidae, part, Eliurus (presumably).
1924. Winge: Muridae, Murini, part, Mlures, part; Rhizomyini, part, Eliurus.
1028. Weber: Murinae, part. Nesomyidae, part, Eliunts.

Natural Distribltion:-Cosmopolitan in the Old World, including Australasia, and as here understood Madagascar.
Number of Genera.- Seventy-one have been retained, not including a few named genera unrepresented in London.

Characters.-Jaw muscles as in typical Juridae, the infraorbital foramen enlarged to transmit a portion of muscle; zygomatic plate always broadened and tilted upwards to a greater or lesser degree; infraorbital foramen usually specialized into a wider portion for muscle-transmission and a lower, narrower one for nerve-transmission; cheekteeth $\frac{3}{3}$; molars rooted; upper molars laminate or cuspidate, when cuspidate, the cusps arranged in three longitudinal rows, the inner row not vestigial, always with two functional cusps (compare Dendromyinae), the laminae of molars, either with or without cusps, not separated by wide folds or valleys, but pressed tightly together (compare Cricetinae); M1.3 not tending to become the dominant tooth, or only to a very slight degree in exceptional cases (compare Otomyinae), skull and external form not modified for semi-saltatorial plains or desert life (as lengthening of limbs, great enlargement of bullae and braincase, etc.) (compare Gerbillinae); cheekteeth not becoming basinshaped, and with the outer row of cusps usually normally developed, and always traceable (compare Hydromyinae); incisors and cheekteeth not vestigial (compare Rhynchomyinae), external form not modified for subfossorial life, and molars not evergrowing (compare Myospalacinae), cheekteeth not prismatic and skull not developing squamosal crest, median interorbital crest, etc. (compare Microtinae), cheekteeth not characterized by pattern of long oblique isolated enamel folds (compare Tachyoryctinae), and zygomatic plate not completely beneath infraorbital foramen (compare Deomyinae).

External form various, but never highly specialized for aquatic life, or for underground life; but either generalized or presenting various degrees of specialization towards arboreal life. In one case, apparently saltatorial (Notomy's).

As thus defined, the group contains the genera currently referred to the subfamily, and also the genera Crunomys, Phlocomys, Saccostomus, Beanys, and Eliurus, which will be discussed below.

## HISTORY OF THE CLASSIFICATION OF THE SUBFANIILY FRON1 1896

(The genera not regarded as valid in the present work are marked *)
1896. In 1896, Thomas proposed a classification of the Order Rodentia. The Murinae, as here understood, contained the following genera:
Mu's, Linnaeus, ${ }^{1758}$. Type-Mus musculus. (Used in a broad sense, equivalent to the present Rattus, Mus, Micromys, Apodemus, and many others. Apparently included Dasymys.) Cosmopolitan in the Old World.

Goluxda, Gray, 1837. Type-G. cllioti, Gray. Indian. (Included also Pelomss, Peters, African.)
Coniltrt's, Ogilby, 1838. Type-C. constructor. (Synonym-Hapalotis, Lichtenstein, 1829 , preoccupied.) Australian. Included apparently Notomys, Mesembriamys, Leporillus, etc.
Pithecheir, Cuvier, is 8 S. Type- $P$. melamurus. Indo-Malayan.
tcomys, Geoffroy, 183 . Type--.Wus cahirinus. African and Southern Palaearctic.
Cricetomys, Waterhouse, 1840 . Type-C. gambiamus. African.
Vandelelria, Gray, i8y2. Type- Mus oleraceus. Indian.
Nesokia, Gray, 1842. Type-Arcicola indica. Palaearctic, and as then understood (i.e., with Bandicota), Indo-Malayan.
Arvicanthis, Lesson, isfz. Type-Lemmus niloticios. African.
Saccostones, Peters, 1847 . 'Type--S. campestris. African.
Mapaloays, Blyth, is 59. Type-H. longicaudatus. Indo-Malayan.
Lophuromys, Peters, is74. Type-Lasiomys afer. African. (Lasiomys, Peters, 1 So6; name preoccupied.)
Echothrix, Gray, is6-. Type-E. leacura. Cilebes. (Called "Craurothrix" (Thomas), on the assumption that Echiothrix was preoccupied.)
Uromys, Peters, $186 \%$. Type-Mus macropus ( $=$ Mapalotis caudimaculatus). Australasian.
Chmopononis, I'eters, 180.8. Type-C. penicillutus. Indo- . Malayan.
Malacomys, Milne-Edwards, i876. Type-17. longipes. African.
Mastaconys, Thomas, i882. Type-ih. fuscus. Tasmania.

* Chreromis, Thomas, 1888 . Type-C. forhesi, from New Guinea, Subsequently shown to be a subgenus of the earlier described
Pogonomys, Milne-Edwards, 1877 . Type-P. macromiss, from New Guinea. Crateronys, Thomas, 5 S95. Type C. schudenhergi. Philippines.
Carponys, Thomas, s895. Type C. melamurus, Philippines.
Batomys, Thomas, 1895 . Type-B. granti. Philippines.
Referred to other subfamilies were:
P'hlofonys, Waterhouse, i839 (Phlocomrinae). Type--P. cumingi. Philippines.
Elitres, Milne-Edwards, 1885 . ("Sigmodontinae"--('ricetinae.) TypeE. myoxinus. Nadagascar.
since this classification, the genus
Dasymys, Peters, 1875. 'Fype-D.guensï (- Ius incomtus), African, has currently heen given generic rank.

1897. Thomas described Crowomys for the new species fallax, from the Philippines, regarded as a member of the Hydromyinae.
Waite erected *Podanomalts for the Australian saltatorial species Hapalotis longicaudatus. But this name has been subsequently shown to be antedated by Notomiss, 1, esson, 1842.
Waite erected *Thylaconrs for the Australian species Hapalotis cotimus. This name being preoccupied, was replaced in igoo by *Ascopharys.x, Waite.
1898. Thomas erceted Mallomys for the new species rothschildi from New Guinca. (The genus has recently been held to include "Mus" armandzillei, Jentink, a Giant Rat from Flores, not represented in the British Museum.)
'Thomas erected Levomys for the species Mus meyeri, Jentink, from Celebes.
1899. Thomas erected Muriculus for the species Mus imberbis, from Abyssinia. Thomas revived Peters' name Pelomys, 1852 (type-Mus fallax, from Africa), for the African species which had previously been referred to Golunda, which genus was thus restricted to India.
1900. 'Thomas erected Anisomys for the new species imitator from New Guinea.
Thomas erected Hyomys for the new species meeki from New Guinea.
Miller erected *Lenothrix for the new species camus from an island off Sumatra. Kloss, 1921, and other authors refer it to Rattus.
1901. Thomas erected Oenomys for the African species Mus hypowanthus.
1902. Thomas gave generic rank to the small Palaearctic species previously referred to Wus in which the posterointernal cusp of the upper molars is retained, under the name Micromys, Dehne, 184r (type- 1 . agilis $=$ Mus soricimus). The genus as then understood was taken to include also the species now referred to Apodemus.
Mearns erected Apomys for the new species hylocoetes from the Philippines.
Mearns erected *Bullinits for the new species bagopus, from the Philippines; shown by Thomas to be a synonym of Rattus.
Mearns erected Limnomys for the new species sibuanus from the Philippines. It is not represented at the British Museum, not dealt with in the present work and appears to be a synonym of Rattus.
Mearns erected Tarsomys for the new species apoensis, from the Philippines. It is not represented in the British Museum and not dealt with in the present work.
1903. Thomas erected Mylonys for the new species cuninghamei from Africa.

Thomas revised the Australian Rats which had previously been referred to Conilurus, which was restricted as now understood.

He erected Leporillés for Comilurus apicalis.
He erected *Amomys for Mus hirsutus ( - Hapalotis gouldi); and included in it forms subsequently referred to Zyzomys and Laomys. Ammomys being preoccupied (a synonym of the Microtine genus Pitymys), the name was replaced by Nesembriomys, Palmer, the same year.

He revived Lesson's name Notomys, type-Dipus mitchelli, i842 (see also 1897). In Votomys he included Waite's genus "Ascopharynx."
1907. Thomas revised the genus Nesokia, and divided it into three.

He revived Grev's name Bandicota, 1873 (type-Mus giganteus, I lardwicke; Indo-Malayan).

Ile erected *Guomys for Nesokia bengalensis.
2-Living Rodents-II

Thomas erected Timanomis for the African species in which the posterointernal cusp of the upper molars is retained (type-Thamnomys remustus, Thomas). It contained two groups, the latter subsequently separated as Grammomys.
Thomas \& Wroughton erected Colomys for the new species goslingi from Arica.
1908. 'T'homas showed that Kaup's name Apodenus, i829, type-Mus agrarius, must stand for the Palaearctic Mice previously referred to Micromys (see 1005). The genus . Micrombs has been retained, and restricted to M. minutus, the name Apodemus used for the other Palaearctic Field-Mice. (Niller, igiz, Cat. Namm. West. Europe, and others.)
1909. 'Thomas revised his genus "Ammomys" - Mesembriomys.

He erected Zyzomis for the species argurus (Australian).
He erected Laomys for the species pedenculatus (Australian).
Dollman crected Uranomys for the new species ruddi from Africa.
Thomas erected Beanys for the new species hindei from Africa.
1910. Niller restrictet the genus Mus to those forms in which "the mechanical scheme of the molars (is) modified by the elongation of crown of anterior tooth until it forms the main portion of toothrow . . . M. 3 small and tending to disappear." As thus restricted it contained only the House-Mice and those small species which had been referred to *Leggada, Gray, 1837 (type-1Ius booduga), which wals shown by Miller to he indistinguishable from Muts. This conclusion was reached by Thomas, 1914, Journ. Bombay Nat. IIist. Soc., XXII, p. 682, who, however", later revived "Leggada."

Niller gave generic rank to the remainder of the Rats and Nice with a less modified twothrow which had been formerly referred to Mus, under the name *Epums, 'Trotessart, 1 SSI (type-Mus rattus). It has been subsequently shown that the correct name to be used for this group is Rattus, Fischer, 1775.
Thomas revived Gray's name Psevdonys, 1832 (type- $P$. anstralis, from Australia), for certain Australian species considered distinct from Epimys ( $=$ Rattus). lle further divided it into subgenera, each of which have subseguently been given generic rank: *Thetomys (Mus namus), Gyomys (Mus novaehollandiac), and LegGadina (Mus forresti).
Thomas erected *DFsmomys for the Abyssinian species Pelomys harringtoni.
'Thomas crected Hyboziys for the African species Mus univittatus, and inchuded in the genus Mus triaroatus, the latter subsequently separated as *Typomys.
Osgood erected Zelotoniys for the African species Mus hildegardeae, 'Thomas.
Thomas crected *Bunomys for the species. Mus coelestis, from Celehes. It is regarded by Tate, 1936, as an offshoot of the Rattus chrysocomus group.

Thomas erected *Stenomis for the species Mus zerecundus and its allies from New Guinea.
Thomas erected *Cxromys for the species Mus imperator and Mus rex, from the Solomons; Tate suggests that it is Tromy's, and Rämmler refers it to that genus.
1911. Miller erected Tryphoarys for the new species adustus from the Philippines. It is not represented in the British Musenm and not dealt with in the present book.
Jentink erected Lorentzimys for the new species nouhuysii from New Guinea. It is not represented at the British Museum, and not dealt with in the present work.
'Thomas erected Hafromys for the species Mus margarettae and allies (Indo-Malayan islands), stated to be like Chiropodomys, but with no posterointernal cusp in the upper molars.
Thomas erected *Typomys for the African species Mus trizirgatus, previously referred to Hybomys (see 1910). Ingoldby considers it a synonym of $1 I y b o m y s, 1929$, and in this he has been followed by Jlayman.
Thomas revised certain Field-Rats from India previously included in Mus, and subsequently in Epimys ( = Rattus).

He erected Millardia for Mus meltada, Gray.
He erected Hadronys for Mus humei, Thomas.
He erected *Grypomys for Mus gleadozci, Murray.
He erected Pyromys for the new species priestleyi from Sind.
1912. Wroughton erected *Cremnomys for the new species cutchicus from India.
1914. Thomas erected *LegGadilla for certain Indian Mice, previously referred to "Leggada." (Type-Mus platythrix.)
Frick erected Stenocephalemys for the new species albocaudata, from Abyssinia.
1915. Thomas divided the African species of Epimys (=Rattus) into subgenera based on mammary formula. All his names have subsequently been given generic rank.

> He erected Aethomys, type-Mus hindei.
> *Mastomys, type-Mus coucha.
> *Praonys, type-Mus tullbergi.
> *Myomys, type-Mus colomus.

Thomas revised his genus Thammomys, and erected Grammonys for those species in which the posterointernal cusp of the upper molars is becoming reduced (type-Mus dolichurue, Smuts). Hollister, 19I9, regards it as a synonym of Thamnomys. It is here retained.
Thomas erected Coelomys for the new species mayori from Ceylon.
1916. Robinson $\mathbb{\&}$ Kloss erected *Oromys for the new species crociduroides from Sumatra. This name being preoccupied, it was replaced, 19ts, by Mycteromys, Robinson \& Kloss.

Thomas revised the African Rats which had previously been referred to Areicanthis.

Ile erected Rhabdomys, for Mus pumilio.
Ite followed I Ieller in giving generie rank to 'Trouessart's subgenus Lemniscomys, 188ı (type-Mus barbarns). Ile restricted Areicanthis to the testicnlaris group.
'Thomas erected *Dtelotmens for his species Lenothrix legaths from Liukiu Islands.
Thomas erected Dacnonrs for the new species millardi from East India.
1917. 'Thomas erected *Guya for his species Millardia kathleenac fron Burma.

Kloss crected *Tavtaqus for the new species thai from Siam.
'Thomas erected *Dioms for a new species crumpi, based on one broken skull, with much worn teeth, the external characters of which are unknown. It is here regarded as unidentifiable.
1920. Thomas erected Thallomys for certain African species, separating them from Rattus, subgenus Acthomys. (Type--1Ius migricauda.)
Thomas erected *Ochronys for the African species Hus rooosnami, Schwann, separating it from Rathes.
1921. Miller \& Hollister erected Eropeples for the new species camus from Celcbes.
Miller \& Hollister erected Mriasmothrix for the new species naso from Celebes; it is not represented in London and is not dealt with in the present work.
1922. Thomas erected Nesoromys for his species Stenomys ceramicus from Ceram.
Thomas revised those Rats previously referred to Uromys.
lle erected Melomys (type-Uromys mfescens) for the smaller species.

Ile erected *holomys for the species $U$, sapientis from the Solomon Islands. This species is regarded as a subgenus of Melomys by Rümmler, 1936. In Rümmler's revision of the genus Melomys, 1936, two new subgenera are proposed, Paramelomys and *Pogonomelomys.
1924. De Beaux erected *Konmay for the new species isseli from an island in Lake Victoria (Africa). It is regarded as a subgenus of Pelomys by 1 latt and G. Allen.
Ognev divided the Palaearetic genus Apodemus into two, erecting *Sylvaenus for Mus sylvaticus and restricting Apodemus to the agrarins group. He gave no list of species to give an idea of the limits of either "genus." Forms referred by Vinogradov to "Sylz'acmus" do not agree with those referred by 'Thomas to "Nemomys" (below).
'1'homas divided the Palaearctic genus Apodemus into two subgenera, proposing *Nemomys for Mus sylzaticus. See remarks under Sylzacmus, above.
1925. Thomas crected Chiromyscus for his species Mus chiropus, from Burma.
(Chiro- 'The species had been referred by Wroughton to Haeromys in the myscus) Indian Mammal Survey.

Thomas erected Ilybenomys for the new African species callewaerti.
1926. 'Thomas revised the African species previously included in Rattus. Aethomys and *Praomys were discussed, and given generic rank (see 1915).

He erected *Stochomys for Dasymys longicaudatus, 'Tullberg.
He erected *Dephomys for Mus defua, Miller.
He crected *Hylomyscus for Epimys aeta, Thomas, and related forms.
1928. Dukelski erected *ilsomys for "Mus sylzaticus major" (=Apodemus speciostus major).
Osgood erected Nilopegamys for the new species plumbeus from Abyssinia; it is not represented in London, and not dealt with in the present work.
1933. Stein erected Macrlemys for the new species elegans from New Guinea. 1934. Taylor erected *INsulamus for the new species calamianensis from the Philippines. It is regarded by Tate as probably a synonym of Chiropodomys.
1935. Troughton erected *Unicomys for the new species ponceleti from the Solomon Islands. It is regarded as a synonym of Melomys, subgenus Solomys by Rümmler, 1936.
1936. Sody erected *Maxomys for Mus bartelsi from Java ( $=$ Rattus bartelsi).

## OUTLINE OF CLASSIFICATION HERE ADOPTED

Not including a few genera not represented at the British Museum, the most important of which are Lorentzimys and Melasmothrix, l have retained seventy-one genera in this subfamily, though some of these are very doubtfully distinguishable from Rattus. Below is a list of these genera and the principal species referred to them.

## Group Eliuri

Genus 1. Elitruts, Milne-Edwards.
Principal species: E. myoxinus group (all named forms).

## Group Anisomyes

Genus 2. Anisomys, Thomas.
Sole species: A. imitator.

> Group Wures (remainder of subfamily)
> Posterointernal-cusp Section
> (Generalized complex-toothed types)

Genus 3. Hapalomys, Blyth.
Principal species: II. longicaudatus.

Genus 4. Pogonomys, Milne-Edwards (as revised by Rümmler).
Subgenus Pogonomys: P. macromus, P. mollipilosus, P. sylvestris.
Subgenus Chiruromys: P. forbesi, P. lania, $P^{P}$. vates.
Gemus 5. Lenomys, 'thomas. Principal species: L. mayeri.
Genus 6. Chiropodomys, Peters.
Principal species: C. gliroides group (all named forms, except (?) C. futzus).
Genus 7. Vandflelria, Gray.
Principal species: $V$. oleracea group (all named forms).
Genus 8. Micromys, Dehne.
Principal species: M. mimutus and races.
(ienus 9. Apodemus, Kaup.
Principal species: A. mystacinus group; A. sylvaticus group, with flaricollis, etc.; A. geisha group; A. speciosus group, with semotus and gurkha; A. agrarius group.
(jenus ro. Thamionys, Thomas.
Principal species: T. eremustus group; T. motilans group.
Genus 1f. Grammomys, Thomas.
Principal species: G. dolichorus group (all named forms except perhaps ruddi).
(Specialized usually simpler-toothed types)
(ienus 12. (ARPonys, Thomas.
Principal species: C. melanurus group; C. phactorus group.
Genus 13. Batomys, Thomas.
Principal species: B. granti.
Genus 14. Pithecheir, Cuvier.
Sole species: P. melanurus.
(ienus r5. Crateromys, Thomas.
sole species: C. schadenthergi.
Gienus i6. Hyomys, 'Thomas.
Principal species: II. merki.
Genus 1\%. Mallomys, Thomas. Principal species: M. rothschildi; (?) M. armandzillei (not seen).
Gemus is. Conilures, Ogilby.
Principal species: C. alhepes group; C. penicillatus group.
(ienus 19). Lamms, 'I homas. l'rincipal species: L. pectunculatus; L. zvodzardi.
(ienus 20. 'Zyzomy's, Thomas. sole species: Z. argurts.
Genus 21. Mesembriomys, Palmer.
Principal species: M. gonldi group; M. macrurus group.
Rattus suction (no posterointernal cusp)
Genus 22. Oenonits, Thomas. Principal species: O. hypoxauthes group.

Genus 23. Mylomys, Thomas.
Principal species: M. cuninghamei and races.
Genus 24. Dhsymys, Peters.
Principal species: D. incomtus group.
Genus 25. Arvicantihs, Lesson.
Principal species: A. niloticus group (all named forms).
Genus 26. Hadromys, Thomas.
Sole species: H. lumei.
Genus 27. Pelomys, Peters.
Principal species:
Subgenus Pelomys: P. fallax group.
Subgenus Desmomys: P. harringtoni group; (?) P. rex.
Subgenus Komemys: P. isseli.
Genus 28. Leminscomys, Trouessart.
Principal species: $L$. barbarus group; $L$. striatus group; $L$. griselda group.
Genus 29. Rhabdonys, Thomas.
Principal species: R. pumilio and races.
Genus 30. Hybomys, Thomas.
Principal species: H. univittatus group; H. trivirgatus group.
Genus 3r. Millardia, Thomas.
Principal species: M. meltoda group; M. kathleenae group; M. gleadowi group.
Genus 32. Pyromys, Thomas.
Sole species: $P$. priestleyi.
Genus 33. Dacnomys, Thomas.
Principal species: D. millardi group.
Genus 34. Eropeplus, Miller \& Hollister.
Sole species: E. canus.
Genus 35. Stenocephalemys, Frick.
Sole species: S. albocaudata.
Genus 36. Aethomys, Thomas.
Principal species: A. walambae, A. chrysophilus, A. kaiseri.
Genus 37. Thallomys, Thomas.
Principal species: T. namaquensis group; T. nigricauda group.
Genus 38. Rattus, Fischer.
Principal species:
Subgenus Rattus (classification based on that of Tate, [936).
R. balucnsis group; R. macleari group; R. naticittatus group; $R$. blanfordi group; R. cutchicus group; R. camus group, with legatus; R. rattus group, with cicerex, tanezumi, gestri; R. norvegicus group; R. hoffmani group; R. concolor group; R. mülleri group; R. xanthurus group, with dominator, bontanus, creretti, huzonicus, bagopus, etc.; $R$. chrysocomus group; $R$. coclestis group; $R$. confucianus group, with huang, lepcha, fulvescens, (?) andersoni, (?) musschenbroekiz; R. cremoriqenter group, with (?) beccarii (not seen); R. quhiteheadi group; R. baeodon group; R. lepturus group; R. eha group; R. bartelsi group;

## MLTRINAE

(Ratus) R. rajath group, with smrifer, hellwealdi, inflatus, moi, etc.; R. edwardsi group, with sabamus, zoeiforons, etc.; $R$. bozeersi group, with mackenaici; R. berdmorei group, with manipulus; R. lewcopus group; R. zerccumlus group; R. nobe group; R. tunneyi group, with melzillcus, culmorum, sordidus, colletti, conatus, zoodwardi and zillosissimus; R. fuscipes group, with assimilis, greyi, manicatus, mondrainens, iellerosus, zelutimes, and lutreolus.
Suhgenus Stochomys: R. lingicaudatus group.
Sulgenus Proongs: R. tullbergi group.
Subgenus Mylomyscus: R. acta group, with stella, alleni, ete.
Sulgenus Dephomys: R. defna group.
Subgenus Myomys: R. zerreauxi group (albipes, brockmani, fumatus, dultomi, angolensis, shortridgci, etc.).
Subgenus Mastomys: R. coucha group, (?) R. pernamus.
Sulggenus Micaëlanys: R. granti group.
sulgemus Octromys: R. zoosnami.
Genus 39. Gyomiss, Thomas.
Principal species: G. nozad hollandiat, etc.
Genus 4o. Leporillus, Thomas.
Principal species: L. apicalis, L. comditor (the last not seen).
Genus 4i. Psecmomys, Gray.
Principal species:
Subgenus Pscudomys: $P$. australis group.
Subgenus Thetomys: $P$. nanhs group.
Genus 42. Apomys, Nearns.
Principal species: A. hylocodes group (including datac).
Genus 43. Mflomys, Thomas.
Principal species:
Subgenus Paramelomys: M. lecipes group.
Subgenus Melomys: M. porculus gronp; M. ecrinipes group; M. bruijnii group.
Subgenus Solomys: M. sapientis; M. pancelcti (not seen).
(Classification based on that of Rümmler, 1938)
Genus 44: Lromys, Peters.
Principal species: L. neobritamicus group; L. caudimacutatus group, with anak; Li. imperator group, with rex.
Genus 45. C'oeloniss, Thomas.
Principal species: (. mavori group.
Genus fo. Malacomis, Milnc-Etwards.
Principal species: M. lungipes, M. elweardsi.
Genus 47. Ilafromis, Thomas.
Principal species: 11. margarctlac.
Genus 48. ('hironyscus, 'Thomas.
Sole species: C. chiropus.
Genus 49. Zelotomis, Osgood.
Principal species: $Z$. hildegardcae group.

Genus 50. Muriculus, Thomas.
Sole spccies: M. imberbis.
Genus 51. Mylenomys, 'Thomas.
Sole species: 11 . callezaerti.
Genus 52. Mus, Linnacus.
Principal species:
Subgenus Mus: M. musculus group; M. booduga group, with thai, pahari, and others; M. bufo group, with triton; M. minutoides group, with bellus, etc.; M. tenellus group, with deserti.
Subgenus Leggadilla: M. platythrix group.
Genus 53. Mycteromys, Robinson \& Kloss.
Sole species: M. crociduroides.
Genus 54. Leggadina, Thomas.
Principal species: L. forresti group; L. delicatula group.
Genus 55. Colomys, Thomas \& Wroughton.
Principal species: C. goslingi and races.
Genus 56. Macruroatys, Stein.
Principal species: M. elegans (not seen); M. major.
Genus 57. Nesoroniys, Thomas.
Sole species: N. ceramicus.
Genus 58. Crunomys, Thomas.
Sole species: C. fallax, C. melanius.
(Specialized and distinct offshoots)
Genus 59: Lophuromys, Peters.
Principal species: L. zoosnami group; L. sikapusi group, with aquilus, flaropunctatus, etc.
Genus 60. Notomys, Lesson.
l'rincipal species: $N$. longicaudatus group; $N$. mitchelli group.
Genus 61. Mastacomys, Thomas.
Principal species: 11. fuscus.
Genus 62. Golunds, Gray.
Principal species: G. ellioti and races.
Genus 63. Echiothrin, Gray.
Principal species: E. leucura.
Genus 64: Acomys, Geoffroy.
l'rincipal species: A. subspinosus group; A. cahirinus group; A. russatus, A. wilsoni, and others.

Genus 65. Uranomys, Dollman.
Principal species: $U$. ruddi group (all named forms).
Genus 66. Bandicota, Gray.
Principal species: $B$. bengalensis group; $B$. gracilis group; $B$. indica group. with savilei; B. gigantea group.
Genus 67. Nesok1A, Gray.
Principal species: $N$. indica and races.

## MLRIN゙AE

Genus 68. Beanys, Thomas.
Principal species: B. major, B. hindei only.
Genus 69. Saccostoniss, Peters.
Principal species: $S$. campestris group (all named forms).
(ienus jo. Cricetoniss, Waterhouse.
Principal species: C. gambiunus and races.
(jenus 71. Phloeoarys, Waterhouse.
Principal species: $P$. cumingi, $P$. pallidus unly:
Named genera unrepresented in London include Telasmothria naso, evidently near Echiothrix; Lorentzimys nouhuysii, evidently near Ruttus; Vilopegumis plumbers, evidently near Ratus; and Limnomys, Tarsomys and Tryphomels, all of which are probably not distinguishable from Rettus.

## DISCLSSION

As regards the evolution of the Mlurinae, some authors appear to consider them offshoots of the Criectinae, which have developed an extra (third) row of cusps on the upper molars. Hinton (Wlonograph of Voles and Lemmings, pages $122,123,1926$ ) takes the view that the " Tluridae, and indced :lll the simplicidentate Rodents, have descended from ancestors with brachyodont multi-tuberculate molars, in which the tubercles hoth in upper and lower molars were triserially arranged. . . . In the most primitive . . . Murinae, the transverse complication, occasioned by the triserial arrangement of the tubercles, is more completely preserved than in other subfamilies." It is not the purpose of this work to enter into an argument as to which of the two views is correct, but it should be stated that the view is here hold that the Murinae present the most archaic branch of the family. It is suggested that their presence in Australia indicates that they are an extremely ancient group. The theory that a section of them evolved there, rather than it arrived there from Southern Asia as is usualty accepted, is put forward in Volume 1.

In an attempt to revise the genera into natural groups which can be keyed for identification purposes, a few words are necessary on certain characters which have been used. The presence or absence of the posterointernal cusp, T. 7 , in the first and second upper molars, has been used as a generic character. This cusp is present in such a comparatively small number of genera and species, that I think it must undoubtedly he used as an important generic character, even bearing in mind that occasionally it may appear in genera which are normally without it. When this occurs, the cusp in question is about to become suppressed, and is minute; hut in genera here regarded as possessing the cusp, it is strong, well-decchoped, and not obliterated until old age, with the exception of the African Grommomys in which it is constantly present in the young, so far as 1 have seen, but always appears about to become suppressed.

I have also used as a generic character extreme reduction of the fifth finger, which occurs in some African genera as Mylomys, Lemiscomys, and P:lomys, until this finger loses its claw and apparently becomes restigial. It may be argued that this is inconsistent as I have not retained genera like Scartures
(Dipodidae), Marmotops (Sciuridae), and others, which are based on the absence or presence of a functionless digit. My reason for this is that in all Scarturus-like Dipodidae, i.e., in all specialized saltatorial members of the family, the digit which has become suppressed in "Scarturus" has long ceased to have any functional importance, and it appears that it is only a matter of time before the Allactaga Jerboas should lose both the functionless lateral digits; in "Marmotops" (with a minute thumb), as against Marmota (without a minute thumb), it is pointed out that nearly every living Squirrel except Cynomys is at the point of losing the thumb. But in Mice there appears no reason why the fifth finger should become so reduced as to be apparently valueless in a few genera, whereas in the vast majority of forms it is a well-developed functional digit. It is therefore in my opinion a valid generic character.

Many zoologists with whom I have had conversation appear to be of the opinion that there are far too many generic names which have been given to groups of doubtful value. The classification proposed here reduces many names to subgenera or synonymy; the only alternative is to give each specific group a generic name, which appears as unnecessary as it is inconvenient. For instance, in the genus Rattus, containing over three hundred forms as currently understood (and over five hundred as here understood), there are to be found types which appear very distinct from each other. At the same time these groups appear to be connected by forms which are intermediate in character. Tate, 1936, has divided the Indo-Malayan and New Guinea species into some fifteen specific groups; either each of these will have to receive a generic name, or many names, particularly African, which are currently accepted as full genera, and which are based on characters which in many cases occur over and over again in Indo-Malayan Rattus, will have to be synonymized with Rattus from which they were originally divided, as having no characters whatsoever to separate them from some branch or other of the genus Ratius, except the valueless character that they "come from Africa."

No name based on mammary formula is here retained, unless there is some very clear character that occurs with it that will separate it from Rattus. A glance at the table I have compiled when dealing with the genus Rattus (below) show that the formulas $3-3=12,2-3=10,3-2-10,2-2-8,1-3=8,1-2$ $=6$, and $0-2=4$, occur within this genus in forms that have never received a generic namc. And how to base generic names on the mammary formulas of an asscmblage such as this, with intermediates occurring from one extreme to the other, and different formulas occurring in a single specific group, is not clear. The number of roots of M.r has also been used as a generic character for African Rattus. It must be stated, therefore, that typical Rattus has 11.1 5 -rooted, but it is hy no means a constant character throughout Indo-\alayan Rattus; for instance, Rattus rajah has M.1 3-rooted, as in several groups of African Rattus which have received generic names.

The characters, or rather lack of characters, of all genera I have reduced to synonymy or subgenera, will be discussed fully below.

I have divided the subfamily into three generic groups, two of which contain
at single isolated genus, Elimus and Amisomys respectively, the third containing the whole of the remainder.

Winge, 1924, in his classification of the Order Rodentia, divides the whole of the Surida into three major groups: Rhizomyini, Cricetini, and Murini. llis first character, dividing his Rhizomyini from the rest, is "N. not or little larger than M. $2^{" \prime}$ (and in this branch he includes Rhizomys, Tachyoryctes, and all Rats from Nadagascar); whereas in the other subfamilies, MI. i has become larger than M. 2.

Whike this character does not hold good, apparently, for all Cricetinae, it is an interesting fact to note that in all the Murinae, with two exceptions only, Eliurus (which may not belong in the subfamily, and is transferred here largely for consenience) and Ansomys, this character is present, and M .2 is always more reduced in elements than M .1 , characterized by the invariable absence of the centre front cusp, T.z.
'The ancestral Thurine might be held to conform to the following hypothetical dentition: MI.1 not larger than M.2, and M1.3 not smaller (cf. Eliurus); all three rows of cusps of upper molars, including the posterointernal, fully developed, and probably with several subsidiary cusps prosent, as can be traced to-day in primitive forms as Apodemus, ete. Possibly an extra lamina antertorly, as may he suggested in some species of Mus, and in Leggotima, in the first molar (according to Ilintem, the primitive Mhrine contaned molars with no less than seventeen tubereles); lower molars with all three rows of cusps fully developed (cf. Ihapalomys), and probably with an extra lamina posteriorly, as in Hyomys and Pllocomys (corresponding to the "terminal heel" in most modern genera).
'The loss of cusps and tendency towards laminate dentition in Rattus (many progressive specics), tromys, and others which are here called "simple-toothed" is here held to be specialization from such forms as Thallomys and many others in which the eusps are well developed and angular, in that it seems to be a step towards the complete simplification of molars found in some outlying families of Rodentia in which all ridges and cusps of the molars are lost, as Aplodontidae, (seomyidae, Ctenodactylidae, Octodontinae. In Willer \& Gidley's classification, in support of the view that this type of tooth is a highly specialized one, may be noticed that the primitive Aplodontoid family, the Allomyidae, Miocene, has a comples dental pattern, "the tritubercular structure of upper teeth evident in unworn crowns, protoconule and metaconule large functional cusps in M1.1 and M.2, mesustyle appearing in hypsodont forms as a conspicuous median rith on onter surface of crown," "tc., whereas the modern Iplodontidae are noted as with "Checktceth growing from persistent pulp, the unworn eap showing evident pattern of Alloms's type, this soon wearing away and leaving a simple enamel ring."
'Taking the genera of Nurime one by one, we come first to the two genera in which M. 2 has retained its primitive character, and is equal to M.I, both in size and elements, retaining a complete foremost lamina. These two genera are here each referred to a separate gencric group.
bledres, if rightly referred to the present group, is the most primitise of the two, and the most isolated; in fact, it might form a separate subfamily
within the Mluridae. M. 2 is as large as M.1, and M. 3 has become in no way reduced, being as large as, or even larger than, M.2. The molars are a series of transwersc plates, as occurs elsewhere in the subfamily in the genera Vesokia and I'hloeomys; they appear to be cut in this condition. As in most Muridae from Madagascar (and in some from Africa), the jugal bone is long, and has not become much reduced. According to Tullberg, the tongue has three papillae circumvallatae, whereas in all other Muridae examined by this author, except Gymmuromy's (Gymnuromyinae, also from Madagascar) and Cricetomys (Murinae), both of which have three, and Tachyoryctes (Tachyoryctinae) and Myospalax (Myospalacinae) (each with two), the number is one. That too much attention must not be paid to this character is indicated, however, by the fact that according to this author the Sciurine genus Petaurista has none, whereas in the closely allied Pteromys there are three. The few species of Eliurus, confined to Madagascar, appear closely allied to each other, and are rather Dormouse-like in external appearance.

Anisonys from New Guinea, here regarded as type of a separate generic group, should perhaps also be referred to a distinct subfamily from other Murinae. The characters of this extraordinary genus have in my opinion been greatly underrated. 'There is one species, A. imitator, from New Guinea. 'The greatest specialization of this Rat is the extraordinary formation of the lower incisors, which are so compressed that the width of the pair is equal only to that of one of the upper incisors, which appears unique in the whole Order, though the Neotropical Cricetine "Fishing-Rat" Anotomys possesses a suggestion of it. The toothrows are shortened in Anisomys; the palate is lengthened; the incisive foramina are extremely shortened, a rare character in the subfamily; the lower incisor root forms a prominent process on the mandible next to the condylar process, which is also a rare character in Murinae. The cheekteeth are never strongly cuspidate; in the adult they lose all traces of the original pattern, which appears to be considerably different from other Murinae examined. M.2, as already stated, is not reduced in elements, and has the front lamina complete. M. 3 has here, however, become reduced, so that the genus is in this respect more progressive than Eliurus. The bullae of Anisomys, as in many Indo-Malayan and Australasian Rats, are much reduced. Externally, the size is relatively large, one of the larger members of the Murinae; the tail is poorly haired, with coarse scales; the hindfoot appears more or less arboreal.

The remaining genera agree in the character that the foremost lamina of N. 2 is never complete.

They may be divided, partly for convenience, into three great sections: those retaining the posterointernal cusp and having no extreme specialization of molars, i.c., those in which no reduction of the main cusps has started; those without the posterointernal cusp of the upper molars, and without other specializations, containing the majority of the subfamily, and centring round the genus Rattus; and a certain number of extremely specialized (or generalized) aberrant genera which appear to have no near relatives, such as Phloeomys, Saccostomus, Beamys, Cricetomys, Nesokia, Bandicota, Acomys, Uranomys, Lophuromys, Echiothrix, Golunda, Mastacomys, and Notomy's.

The first section contains forms in which there is a well-developed posterointernal cusp in M.r and M.2, with the exception of Grammomys in which this cusp appears to be becoming suppressed, and Mallomys, in which the cusp is absent in N.I and $\lambda 1.2$, but very strong in $\mathrm{NI}_{1}$; a complex-toothed giant form referred to the present scetion for convenience. The genera with posterointernal cusp present divide broadly into small generalized Nouse-like types, with the cusps of the molars angular, strong and complex, showing no signs of simplification, and incidentally generally with a wide geographical distribution, and the specialized types which have retained this cusp, which are either with more or less simplified laminate molars in adult, or have some other specialization such as very large size, etc., and which have in each case a very restricted geographical distribution.

Of the more complex-toothed primitive types, Hapaloars appears to be in some ways the most generalized in that the lower molars have in N1.I and N. 2 three rows of approximately equal-sized cusps, a feature unique in the entire subfamily, though the extra third row, at full development in IIapalomys, may he usually traced in most genera, and in two at least, Pogonomys and Chiropodomys, is comparatively quite well developed. 'The molars of Hapalomys have an appearance in general something like those of the African Oenomys, with the cusps all much raised up, which is according to Tullberg a modification towards vegetarian diet. The original front lamina of 11.2 has in Mapalomys hecome almost obliterated, a rare leature in the group; usually one or even two cusps of this lamina remain; N .3 is reduced; the skull is of the arboreal type so often found in Indo-Nalayan Muridae, which Nr. Tate has aptly defined as "Squirrel-formed"; the incisors are powerful, the bullae enlarged, and the hallux has become fully opposable, without claw, a highly specialized feature occurring in comparatively few genera. The range of the genus is Burma and Annam to Hainan; 1 have not seen the Hainan form, but all other named forms secm to belong to one species only. In connection with the suggestion that Hapalomys is an archaic type, it is interesting to note that Gregory (Orders of Nammals) considers that the primitive ancestral placental manmals were probably arboreal; certainly Hfapalomys is one of the most specialized for arboreal life of all Rats.

Pugononis, from New (iuinea, contaming six forms (according to Rümmler's recent classification), arranged in two subgenera, Pogonomps and Chirnomys, is a very complex-toothed genus. Thus X.i has ten cusps traceable, X. 2 nine (only the centre front lamina being suppressed). The lower molars have the subsidiary (third) row very clearly developed, though not comparable to Hapalonys. The bullae are reduced; the incisive foramina rather short. The hindfoot is arboreal, but without a fully opposable hallux; the tail is naked and prehensile.
lewomys appears to be a generalized complex-toothed Rat contined to Cilehes, with one or two valid species; apart from the presence of the posterointernal cusp, there is not very huuch to distinguish it from a complex-toothed Ruttus. The molars are very angular; the palate is narrowed.

Chiropodonss, with several named species all of which seem closely allied,
ranging from Burma through Sumatra, Java and Borneo to the Philippine Islands, contains rather small Rats, with complex teeth, the subsidiary outer (third) row of the lower molars being about as Pogonomys, and a "Squirrelformed" skull; the tail is said to be not prehensile (compare Pogonomys), but the hallux is fully opposable, and clawless. Pectoral mammac are suppressed.

Vandilelria is very closely allied to Chiropodomys, but the skull is a little less extreme, and the lower molars appear rather simpler; the feet are more specialized than Chiropodomys, in that D. 5 of both manus and pes has lost its claw. The hallux appears to be fully opposable, also lacking a claw. This genus comprises a few species of small Tree-Mice, ranging through Peninsular India, north to Kumaon, south to Ceylon, and in Nepal, Tongking, and Siam.

It las been suggested to me that the Palaearctic genus Nicromys is closely allied to Vandeleuria. It differs by the normally clawed fifth digit, the normal hallux, which is not fully opposable, and the prehensile tail. The genus contains one species of Pygmy Mouse ranging with its many races through most of Europe (including England), south of the Baltic, not including Spain, also Russia, parts of China, Japan, and Assam. The rostrum is much shortened.

Closely allied to Micromys is Apodemus, a very large genus of Palaearctic Field-Mice, containing five well-marked specific groups; it differs from Vicro$m y$ s in the non-prehensile tail and the less-shortened rostrum. It is a generalized genus possessing no special peculiarity other than its well-marked posterointernal cusp, and complex teeth. It ranges across the Palaearctic region from Iceland and 1reland to Japan, and from Northern Europe and Asia south to Morocco, Persia, Kashmir, Nepal, and China south of the Vangtsekiang. Dentally the most primitive species group is the mystacinus group, from Asia Minor, M.i and M1.2, as in certain other complex-toothed genera, having four outer cusps. The speciosus group, from Eastern Siberia, China, Nepal, and Japan, tend to be about as complex dentally as a rule, but specialized in that the skull develops supraorbital ridges. The sylzaticus group, with a very wide range in Europe and Asia, has the molars normally a little less complex, usually with only three outer cusps in M.ı and M.2, but lacks supraorbital ridges. The agrarius group (Germany to China) has a somewhat more reduced M. 3 than the last, rather simpler teeth than is usual in the genus, supraorbital ridges present on the skull, and often a mid-dorsal stripe present on the back, recalling some of the African striped genera, as Lemniscomys or Rhabdomys.

The African genus Thamnomys contains two groups of complex-toothed species, retaining a strong posterointernal cusp in the upper molars. The genus is more or less modified for arboreal life (though very much less highly so, as regards foot structure, than such types as Hapalomys, Chiropodomys, I"andeleuria, Pithecheir, and Chiromyscus). T. rutilans and allies have a more normal dentition; but in the remustus group, the cusps are much raised up, as in Oenomys. The skull is without special peculiarities. The range is chiefly Central African (Congo, Cameroons, Ruwenzori). Grammoxrys, which has a wide range in Africa south of the Sahara, contains a number of forms of more or less arboreal Rats, with very long tails; the posterointernal cusp is at the point of becoming suppressed, but is present and traccable in the young at
least as a low comecting ridge. It is the only genus of the subfamily in which the cusp is constantly neither strongly developed nor suppressed. The fect appearless specialized than in Thammomys, and certainly the elentition appears quite different, though some authors consider the genus should be referred to Thamnomys. The two genera are here considered as not of necessity very closely allied.
several genera remain to be discussed in which the posterointernal cusp is retained in $\mathrm{M.}_{1}$ and MI .2 , but which possess either great external specialization in the form of their unusually large size, of in which the molars are relatively simple, and nearly laminate in the adult, with the cusps hecoming suppressed, or in which the molars appear to be developing in a different way both from the generalized types just discussed, and from the majority of the group.

Carponys from Luzon Dlountains, Philippines, with two little-known species melunurus and phucurus differing rather strikingly from each other in their development of incisors and molars, differs from other members of the section in that the posterior lamina of $\backslash .1$ and $, \mathrm{I}, 2$ and the anterior lamina of $\backslash \mathrm{I} .1$ lower appear to be completely double. The cusps of the molars are obsolete in the adult. The external form is rather heavy, more or less arboreal, with a relatively wellhaired tail; the hallux is not fully opposable ; pectoral mammac are suppressed.

Batonis: from the same area is essentially like Carpomys, but without the peculiar doubling of the laminae as just described. In hoth these forms, the zygomatic plate is strengthened in a manner reminiseent of that of the Microtinae.

Pithecherr, with one species from Java, sumatra, and selangor, appears to present dental characters which differ from the majority of the Murinae in that the whole of the outer row of cusps of the upper molars is disappearing, but the inner row, including the postervinternal cusp, is rery strong, and there is a deep valley separating the centre and inner rows of cusps. The bullae are much enlarged. The hindfeet are much specialized for arboreal life, with hallux probably opposable, though evidently retaining a small tlaw in some cases.

Cratrroniss, with ome specics from Luzon Jountains, Philippines, appears to be developing dentally in rery much the same way: 'The molars are strongly cuspidate and angular. $\$ 1.3$ is very little reduecd. Apart from similarity in general dental arrangement, the genus differs very sharply from Pithecheir, and indeed from all known genera in a number of characters. The tail is thickly bushy, like that of a Squirrel, a most unusual if not unique character for a Rat. The size is tery large indeed, it being une of the largest members of the whole group. 'The fict suggest modification for arboreal life, though they are not highly specialized. The fur is thick and long.

The skull has unusually narrowed and constricted frontals; the bullace are much reduced, the palate rather narrow. The zygomatic plate approaches the Microtine aspect of that of Carpomys.

Quite unrelated to the abowe is another form almost as large, llyonys, with one species from New Guinea. The fect are more or less like these of Crateromys: but the tail is almost completely naked, and very sharply scaled; 'Thomas suggested that the large pointed scale's of the tail were used to help the animal in climbing, like the caudal scales of Anomalurus. Pectoral mammat are suppressed. 'The molars are strongly hypsodont, but entirely different from

Crateromys; they are completely without cusps in the adult. The incisors are unusually broad and powerful. The bullae are very small, and the incisive foramina are much reduced. 'The skull is powerfully ridged, without excessive interorbital constriction. The genus appears quite isolated.

Remote from both of the last two, but paralleling them in its unusually large size, and very similar to the last in general external appearance is MalloMys, with one species from New Guinea, and perhaps another from Flores (which I have not seen). The molars are broad, strongly cuspidate and complex, in general pattern not unlike those of Crateromy's, but stronger; only there is no posterointernal cusp in M. 1 and M. 2 in this genus. Oddly enough, this cusp is unusually prominent in M.3, to a degree which I have not seen in any other Rat which has the cusp reduced in M.1 and M.2 (in fact, when this cusp is suppressed in the first two molars, it seems always to he untraceable in M.3, excepting Dasymys). There is, however, little reduction in the outer row of the upper molars, which differs from Crateromys. The skull is extremely heavy, and the anterior part of the frontals is much inflated, as a consequence of which the infraorbital foramen appears narrowed. The bullae are reduced, the palate is narrowed, and the incisive foramina are somewhat short, though broad posteriorly, and specialized in shape. The tail is naked, and heavily scaly.

These three Giant Rats seem quite remote from each other and from all other genera of Murinae.

There remain to be discussed a few Australian genera in which the dentition is never strongly cuspidate in the adult, but in which a well-developed posterointernal cusp is present.

Conilurus contains apparently two species groups from Australia with laminate molars (in the adult), a rather specialized skull, with the superior border of the zygomatic plate very strongly ridged, a vestigial coronoid process to the mandible, and a tendency for the outer row of the upper molars to become reduced and merge into the central row in adult. The tail is nearly uniformly haired, the size moderate.

Laomys appears to be very nearly allied, but the tail is uniformly haired and thickened at the base, the fur is crisp, and the molars of the few specimens in London, perhaps owing to age, appear almost plain laminate; this type of tooth was compared by Thomas to that of Phloeomys, but seems rather to suggest a much worn Conilurus-type of dentition.

Zyzomys contains one small species in which the outer row of cusps of the upper molars is strongly reduced, and the skull is a little less specialized than in Conilurus.

Mesembriomys contains two well-marked species of large Rats from Northern Australia; the molars show strong signs often of many small subsidiary cusps, which may also be present in other Australian genera; the frontals are more or less inflated, and the incisors are rather thicker than in Conilurus; but the zygorna appears more normal; the coronoid process is much reduced; the outer row of cusps in the upper molars tend to merge into the centre row. Pectoral mammae, so far as known, are suppressed.

The tail is relatively well haired, and very long. The four last genera are
but little differentiated from each other, and also are prohably nearly allied to a few. Lustralian genera which will be dealt with in the neighbourhood of Rattus, but which have lost the posterointernal cusp, such as Leporillus and Psemdomy's.
'This concludes the list of the genera which normally have a posterointernal cusp present, except for Beamys and Saccostomus, which are so aberrant that I have placed them in the section of genera which are regarded as aberrant offshoots and are dealt with at the end of the subfamily; in these genera, cusp reduction has started, hut it is the anterointernal cusp in M.i that has become suppressed.

Turning to the more normal remaining Rats, it will be shown that a very large number of genera group themselves round Rattus, and their characters are overlapped by one section or other of that genus in many cases so that many of them are barely distinguishahle from it.

The first three, Oenomys, Mylomys, and Dasymys, and the last four, Colomys, Nesuromys, Crmomys, and Macrumoms (the latter two not welf known), appear, however, to be very distinct from Rattus.

Oenomys, with a few closely allied named species from Central and Eastern Africa (Kenya through Congo to the (jold Coast and Angola), has much more powerful and exaggerated molars than any Rattus; all the cusps are raised up, and deep valleys separate the rows of cusps; the outer row of M.3 has become almost obliterated. The digestive organs are, accorting to Tullberg, more complicated than is normal. Esternally the form is generalized. The group might be an offshoot of something like Thammemys venustus.

Thloniys, from Eastern Afica, recently discovered also from the Gold Coast, and parts of the Congo, is another genus with extremely exaggerated dental pattern; M.3 has very much the same peculiarities as in Oenomys as regards the reduction of the outer row, and the whole of the centre row of cusps of the upper molars is unusually broadened and raised up. The upper incisors are grooved, and the external characters are much more specialized than Oenomys in that the fifth finger is almost suppressed, and the fifth hindtoe is very strongly shortened. The relationships of this genus are probably with Pelomys and Arcicanthis; also the Indian genus Golmbla is in many characters similar, hut appears to me to be much more abnormal in dentition, so that I have referred it to the section containing the genera which 1 think are very "idely separated from normal Murinae, where it will be discussed later.

DAsyMys, with a wide range in Africa south of the Sahara, hut probably with only one valid species, is a rather isolated genus which appears to me to he most elosely allied to the Arricumthis series of Rats. The molars are quite different from Ratlus in that there is an unusually targe M.3, which tends to he very generally larger than Al .2 to a slight degree, this character most noticeable in worn teeth, and in which the pesterointernal cusp is originatly present. The cusps of the molars are indeed unusually heavy in the young, but the molars appear to wear down almost immediately to a laminate pattern in which they are not or scarcely apparent. The anterior border of the zygomatic plate is concave, then sharply cut back above. 'The incisors are very broad, the palate is narrowed, the jugal is longer than is normal, and the frontals are extremely
constricted, more so than is normal in the section. The external form is not much specialized.

Arvicantiiis, which ranges over a large part of Africa from coast to coast, except in the extreme south, and occurs in Arabia, and as far north as Egypt, contains a large number of closely allied forms, presenting the following characters. The rostrum tends to be rather short, the frontals are strongly ridged, the incisors relatively thick, the zygoma powerful, the bullae rather large. The dentition is heavy, with broad molars, M. 3 tending most often to be about as large as M .2 , or very little smaller; the cusps originally powerful, but the molars tending to become laminate in age. The fifth digit of the hindfoot is strongly reduced, and scarecly longer than the hallux. The fifth finger is short, but not vestigial. The tail as a general rule is quite well haired. The fur is rough. This genus is connected very closely indeed with Rattus by the genus Aethomys.

Hadromys, based on a little-known species from Manipur, appears to stand very near Arvicanthis; the anterior border of the zygomatic plate differs in being concave (though this character may vary in other genera); apart from this, in our present knowledge of the genus, I can find no characters of importance to differentiate between the genera, though the details of dentition of Hadromys are not known, and all skulls examined lack the bullae.

Pelomys, from East, Central, and Southern Africa, is essentiaily like Arvicanthis in all respects except that the upper incisors are grooved, and the fifth finger is vestigial. In this I include, as a subgenus, the group referred by Thomas to Desmomys, which connects typical Pelomy's with Arvicanthis very closely by having the incisors scarcely grooved, but has a more specialized M. 3 than either apparently, and Komemys, containing small one-striped Rats from Lake Victoria and Congo.

Leminiscomys is a large genus containing three well-marked species groups based on colour pattern, which ranges over most of Africa, north to Morocco, and which is like Arvicanthis, but M. 3 is more reduced, the fifth finger has lost the claw and appears functionless, and the zygomatic plate is relatively lower. A specialized striped or spotted colour pattern may occur.

Rhabdonys, containing the little Four-striped Rats of Kenya and South Africa, was formerly included in Arvicanthis, but has a lighter dentition than in that genus, and a smaller M.3; from Rattus it is not very' clearly distinguishable, but the molars are more complex than is normal in that genus, and the outer digits of the hindfoot, and D. 5 of the forefoot, are considerably shortened.

Hybonys is closely allied to the genera just dealt with, and also to Rattus, but differs from the latter in its molars, which are as a rule more angular than in that genus, and from the former in the shape of its skull, with unusually wide frontals, slender zygoma, etc. Two species groups, typified by H. trizirgatus and H. unizittatus, occur in Central and West Africa; the former is a little more extreme in cranial and dental characters than the latter. The outer digits of the hindfoot are strongly shortened.

Millardia, from Ceylon and Peninsular India, north to Sind and the Punjab, contains three well-marked species each of which has received a generic name. It is one of the many genera which stand just outside Rattus, so to
speak, and is not separable very satisfactorily from cither that genus or those just dealt with. But the molars are strongly euspidate, and not those of a Rettus; the fifth digit of the hindfoot is strongly shortened, and the plantar pads are retuced to 5 or 4 . In.$W$. glecudaci, the posterior nares are much narrowed, but this character may be present or absent elsewhere within a genus, as for instance African Wus. In . $H$. melfada, the pectoral mammae are present, and the posterior palate is normal. In M. kathlecha, from Burma, the pectoral mammae are suppressed, but otherwise it is much like meltader.

Proomss, known by one specimen (?) from hind, is a genus which 1 am doubtful ahout retaining. 'The external characters differ from Millardia in the six plantar pads, the much shorter car, and the much shorter hindfoot, with fifth digit not shortened. On the wither hand, the skull is so like that of Aillardin gleadenei that one might suggest that the skin got mixed up with a skull of W. gleadozi. The hindfoot is too shortened for the genus Ratius; but the mammary formula strongly suggests certain Indian Wus, from which the tecth, if the skuil really belongs to the skin, are totally different.
D.ucnomys is a genus from Sikkim, Assam, and Laos, containing probably one species of rather large Rat with beavy, angular molars, a longer toothrow than is known in Rettus, and very small bullae.

Eropfplus, with one species from Celches, is doubtfully distinguishable from Rattus, but also seems to have a longer toothrow than is normal in Rattus; the bullace are less reduced than Dacnomy's; I have seen only two specimens, which have been reeently acquired by the Nuseum.

Stenocephaleays with one species from Abyssinia differs from Rattus by its unusually constricted frontals. It is a soft-furred high mountain species. The molars are rather angular in arrangement of cusps.

Arthumys stands very near Rattus, and very near Araicanthis. M. 3 is relatively large; occasionally it may be as large as M1.2, as in Aricanthis; the molars are heavy and complex as a rule; the bullac are large. Sometimes the anterior border of the zygomatic plate may be concave, but apparently this specialization is not yet fully developed, as it is not a constant character. The rostrum appears to be a little less shortened than is usual in Arricanthis. Pectoral mammate may be suppressed. The outer digits of the hindfoot are strongly shortened. In this genus 1 include chrysophilus, rcalambae, kaiseri, and their allies, which have a wide range in Africa south of the Sahara, but not the namaquensis group, which is referred to 'Thalloaiys, a genus originally given generic rank mainly on character of the pattern of the lower molars, which I think may not divide it sufficiently from Rattus for the genus to be retainable; the external form is more or less modified for arboreal life, but not more so than in some species of Ratlus; the molars are more complex than is usual in Rattus. 'The bullae are large. 'The range is . Dfican, southern and eastern.

Rattus, containing thirty-five specific groups, at least, and about five hundred named forms, is an exceedingly difficult genus to define; as here understood it contains Rats without any extreme external spectalization, and generally speaking with moderately simple molars, the cusps in the adult in a large seetion of the Indo-ifalayan part of the genus being almost completely
suppressed so that the animals become more or less simple-toothed, the type species and allies being moderately so, the molars in adult not showing great angularity of cusps.
'I'he few relatively complex-toothed forms retained in the genus differ from the complex-toothed genera just dealt with in the structure of the feet, the outer digits being generalized, not shortened; among these may be mentioned macleari of Christmas Island, in which pectoral mammae are suppressed, a vestigial posterointernal cusp may be traced, and with a very naked tail; nativittutus from the same island, with an even more naked tail, no pectoral mammae, and the posterointernal cusp not visible in any seen; the cutchicus and blanfordi groups from Peninsular India, and the camus group from Sumatra, Java, Malacca, and Liukiu; also perhaps andersoni (Szechuan), and some members of the vant/hurus group.

The rattus and norzegicus groups, which range owing to unintentional human introduction in almost all parts of the world, have moderately cusped molars, the cusps neither angular nor obliterated. The concolor group must be noted as very small for the genus, in size. Some mountain forms of Rattus develop unusually thick soit fur, among which may be noted the chrysocomus and coelestis groups from Celebes, in which the hindfoot is narrow, the rostrum is lengthened, and there are no pectoral mammae, and some Australian species. The fur may, on the other hand, be more or less densely spiny, as in many members of the New Guinea leucopus group. The smaller Rats of the IndoMalayan area, such as the confucianus, whiteheadi, and cremorizenter groups, have generally nearly completely simple molars, and as a rule M. 3 is more reduced, and the bullae are more reduced than in the type species and allies; cremorizenter group is considerably modified for arboreal life. Java possesses two rather aberrant small species in lepturus, which has a longer M. 1 than is normal, very soft fur, and enlarged ears, and bartelsi, which has a much narrowed hindfoot, and rather less simple molars than in lepturus. The rajah group, containing relatively large Indo-Malayan Rats with small bullae, usually spiny fur, and rather specialized skulls, also as far as seen a three-rooted M. 1. possess moderately simple Rattus-like molars, but differ from the majority of the species in that in most cases the outer digits of the hindfoot are shortened to a degree. 'The edwardsi group contains the largest species of the genus; also Indo-Malayan; with very small bullae, and relatively simple molars, N. 3 being reduced to a certain extent. Sometimes the teeth may become within the genus strongly hypsodont, as in the Philippine species luzonicus and bagopus, and the Australian lutreolus; the latter belongs to a group of Australian Rats which have often rather unusually heavy molars, in some cases indeed being almost comparable to those of Arricanthis, though on the whole with the cusps less angular than is usual in the African Rats allied to Arvicanthis. $R$. verecundus from New Guinea and allies parallels the Celebes coelestis group in eranial characters, though maybe a little more extreme, as in the narrowing of the zygomatic plate, and in the narrowed hindfoot. The Burmese $R$. berdmorei may be noted as a form with pro-odont incisors; apart from its immediate allies this character does not occur elsewhere in Rattus. The Australian tumeyi group possess unusually
large bullate, in extreme development largest for the genus. All the African groups of Rattus have reccived generic names. R. longicaudatus appears nearest to typical Rattus, with laminate molars in the adult (though quite normally cusped in the young), and has a very naked tail. Nost of the other African Rattus are small generalized forms, less specialized than the Indo- Mahayan small Rats; tullbergi and the aeto group are most simple in dentition, the small Rats belonging to the cerreanwi group are more complex-toothed. Some forms of the latter secm rather transitionary towards the genus . 17 us. 'The concha group possess the feature that the mammace are as rule variable in number, not separated into sets, and may be as many as twenty-four. $R$. defua is a West African type, slightly modified for arhoreal life. By far the most aberrant form in dental structure is the South Arrican R. gronti, which has such unusually hroad relatively complex molars, with a pattern which I have not seen elsewhere, that I think it should probably be relerred to a genus distinct from Ratlus. Finally, $K$. acoosnami is a curious species with cranial, dental, and esternal characters all not typical of the genus Ratfus, but which apart from its white tail seems to have no characters which will diferentiate it clearly from all other groups. It comes from Gouth-west Africa.

In Australia are a few genera which are probably quite distinct from Rattus, but which show very few characters to prove it. Least differentiated is Gyomys, a genus containing few species of small Wice, with normal dentition. Leporilles, of which few specimens have been seen, with two species, appears to be near Comilurus, but without the posterointernal cusp; the coronoid process of the mandible is vestigial, and the interorbital constriction is often more extreme than is the case usually in Rattus. l'sectomres, containing two subgenera P'semdomys and Thetom's, is another allied type; the anterior border of the zygomatic plate is concave; the interorbital constriction is in some cases extreme; the dentition is peculiar, and often the anteroexternal cusp in . X.s is vestigial, or in one form examined appears to be suppressed; in some forms, there is an extra front lamina on M. i, traces of which are not uncommon in many Justralian genera.

Very douhtfully differentiated from Rettus are the mosaic-tailed Rats of North Australia and New Guinea, Lromys and Melomys, together with Aponns from the Philippines, which appears to be essentially like Melomys, but with a Rattus-tail. Nelomys, containing many named forms, recently revised by Rümmler, and in which three subgenera Paramelomys, Welomys, and Solomys appear retainable, consist of generalized relatively small (as a ruke) Rats with strictly simple teeth, no pectoral mammac, and tail more or less naked in the majority, though not always so. This type of tail may occur in Rattus, but so far as seen only in complex-toothed forms. Lromys is closely allied to Melomys, but with a greater number of palate ridges, so far as known, and with a longer palate. 'This genus, though connected closely by Melomys, appears distinct from Rattus. The teeth are always strictly simple, the bullae are minute. The palatal foramina are shortened, and the supraorbital ridges relatively weak. 'l'he size is large, and the tail always nearly completely naked. I follow 'Tate and Rummler in referring the species rex and imperator from the solomon Islands
to the genus. The species neobritannieus, not seen, appears to difer from more typical Cromys in the presence of postorbital processes. In the Lromys- Melomys Rats, M.3 is usually strongly reduced.
()ther genera closely allied to Rattus include Coelomys, from Cevlon, differing apparently in having M. 3 vestigial; Malacomys, from Central Africa, like a simple-toothed Rattus with small bullae and rather short toothrow, but the metatarsals said to be loosely joined, an adaptation to life in swampland; and Ilafromys, with two species of Pygmy Mice from Borneo and Celebes with a proportionately long hindfoot, in which the hallux is said to be opposable, but retains its claw and does not look highly specialized.

Cimmonyscus, with one species from Burma and Annam, has, however, a fully opposable and clawless hallux, and is in this respect as fully specialized for arboreal life as IIapalomys, I andeleuria, Chiropodomys, and Pithecheir.
/flotomys, containing a few closely allied named species from Eastern and (entral Africa (extending to Angola), has rather complex molars, which appear broadened to a degree, and strongly pro-odont powerful incisors. M. 3 is rather strongly reduced; the lower incisor root shows more on the mandible than is ustal.

Osgood has suggested that this genus may be nearly allied to Hylevomys from the Congo, and Mericults from Abyssinia, two little-known genera with a Mus-type of dentition, but with pro-odont incisors.

Mlus has been restricted by Miller to those forms in which M. r is lengthened, with considerable or excessive distortion backwards of the anterointernal cusp, and $\$ 1.3$ strongly reduced often almost to vanishing-point. Although this type of dentition is in some of the less-specialized species rather little developed, so that an approach to some forms of Rattus is made, it is on the whole convenient and possible to retain the group distinct from Rattus. In Mus may be included the Palacarctic musculus group (musculus now ranging throughout the world as the result of artificial human distribution), the Indian booduga group, the Indian platythrix group (subgenus Leggadilla), with the " Mus-toothrow" less developed than in all others, and with supraorbital ridges developing on the skull; the African bufo-triton group, with the toothrow less specialized than the Pygmy: African minutoides group, which are the most specialized dentally of the whole genus, and some forms of which, as tenelhus, have unusually narrowed posterior nares. Often in the genus traces appear of what might be taken to be an extra lamina in front of M.1, this being most developed in some forms of the subgenus Leggadilla. The molars are in most cases in Wus quite heavily cuspidate. The genus does not seem to range naturally east of Siam, except that there is said to be a form in the Philippines (not seen). It appears to be represented in Java and Sumatra by Mycteromys, containing one species which has a specialized Mus-type of dentition but differs in cranial characters, notably the narrowed zygomatic plate.
'I'he Australian genus LegGadina, containing at least two groups of species, is interesting in that it seems to parallel Wus in dental characters as regards essential arrangement, but, as is often the case in Australian types, the molars are much simpler, less strongly cuspidate, and the whole of the outer row of
cusps of the upper molars appears about to hecome sbliterated. The species are very small as a rule. There is usually an extra lamina in front of M.i, or traces of it, and the inward distortion of the anterointernal cusp of 习. 1 is extreme (so far as seen).
foour other genera are more clearly distinct from Rattus than any of the above, and may be clealt with before we pass to the extremely aberrant and distinct genera; hut three of these are very little known.

Colonils, from Kenya and Central Africa, is said to possess the character of Whacomys, in that the metatarsals are loosely joined as an adaptation to swamp-life. But unlike M/alacoms, the hindfoot in this genus has become, so far ats seen, much lengthened, being considerably longer than any Rattus or any member of the genera held above to be very closely allied to Rattus. The skull is specialized, "th heavy braincase, enlarged infraorbital foramen, and narrow zygoma. 'l'he teeth are not unlike those of Zelotomys. The tail is peorly haired.

Nisoronys, from C'eram, is not a well-known genus, but differs very sharply from all others of the section in the great broadening of the posterior palate, which is carried backwards far behind the toothrow: The infraorbital foramen is more enlarged than is usual. The palatal foramina are shortened. The external characters are normal.

Crcwomss, with two very little-known species from the Philippines, was referred to the Mydromyinae by Thomas, but there is too much doubt on this classification for it to be retaincd; the molars in the one skull availahle which is not worn out show a more Jurine though simple-toothed pattern; the zygematic plate is straight anteriorls, and much narrowed, as in Ilydromyinae, and there appears to be scarcely any interorbital constriction present in the skull. The size is small; the fur may be spiny:

Macrereniss, a recently diseovered genus with two species from New Guinea, also has a zygomatic plate very like that of the flydromyinae; the toothron is more strongly reduced than is normal in Rattus, and the pattern of the molars is, 1 helicie, not ỵuite normal, though 1 have only seen one specimen, which is tow worm for cletail notes; the bullae are very small; the tail is much longer tham head and body, and ahmost completcly naked (11. major). Tate evidently regards the genus as not far remosed from Rattus.

Thirteen genera remain to be discussed, which appear to mee to be very remote from all others in the subfamily, and, with certain exeeptions (as Vesokia and Ijandicota), are also very distinct from each other.

Lophtroarys, with several species from West, Central, and East Africa, appears to be an isolated type, and I can form no idea of its exact relationships. The interorbital region of the skull shows no constriction; the zygomatic plate is unusually low, being individually sometmes almost completely below the infraorbital foramen, and therefore little removed from the aberrant genus Deomys, though this is a rare feature; the molars, which are strongly cuspidate, appear to vary in essential pattern from specimen to specimen, so that some tpuite distinct dental patterns appear to me to be present even within a given species from the same area; even occasionally a small posterointernal cusp can
be present; the incisors may or may not be slightly pro-odont ; the jugal is usually relatively long. 11.3 appears always to be considerably reduced. 'Typically the tail is strongly shortened, but in the woosnami group may be as long as the head and body. The fur is thick and of a peculiar quality; the outer digits of the hindfoot and D. 5 of the forefoot are strongly shortened. The genus has in the past been referred to the Dendromyinae, but its molars are typically Murine.

Notomys from Australia, containing two or three specific groups, is a highly specialized genus which is very likely an offshoot from something like Pseudomys or perhaps Leporillus; the hindfoot is extremely lengthened, usually more than a third of head and body length, much narrowed, and apparently fully specialized for saltatorial life. The plantar pads are reduced. The ears are rather large, the tail is long, and as a rule well haired, and the general form suggests that of a Jerboa or Kangaroo-Rat. The hallux is nearly vestigial, and D. 5 is considerably shortened. The molars are not abnormal, and are rather simple; the anterior border of the zygomatic plate is concave, and the anterior zygomatic root is broadened. The bullae are large; the zygoma is narrow and rises rather abruptly anteriorly. A gular pouch on the throat may or may not be present.

Another highly aberrant Australian genus is Mastacomys, only known living from Tasmania. The skull strongly suggests that it has been derived from something like Pseudomys, but the molars are without parallel in the whole subfamily. The toothrows are extraordinarily broadened, so that the palate has almost ceased to separate them; the inner cusps of the upper molars are raised up and point sharply inwards; the centre ones are also thickened and raised up; the outer row is reduced. Considerable numerical cusp reduction has taken place here; the anteroexternal cusp is absent in M.r (unique in the subfamily except one specimen seen of Pseudomys); this tooth has only six cusps (in the majority of Rats, there are eight); M. 2 appears to have only five functional cusps; 11.3 has no outer row, as in Golunda and Mylomy's, but the tooth is rather less modified than in Golunda. In a young skull, the molars appear to be cutting in the same pattern as the adult. The frontals, as in Psendomys, are extremely constricted, the anterior border of the zygomatic plate is concave. The fur is thickened, the tail short; externally the genus is reminiscent of some of the Cricetines of Patagonia.

Golunda, containing one species the races of which range through a large part of India from the North-west Frontier, Nepal and Bhutan south to Ceylon, is another genus which has developed unusual enlargement of the cusps of the molars. It does not seem to have any near relatives, unless the African Mylomys is considered as one, but it appears to me to be much more extreme dentally than in Mylomys. The inner row of cusps has in this genus become unusually enlarged, as well as the centre row, particularly in $\mathbf{\lambda . 2}$ and M .3 ; all traces of the outer row of M. 3 are lost; with wear, M.I actually seems to become the smallest tooth, and M. 3 the largest. The upper incisors are grooved. The tail is relatively well haired; the outer digits of the hindfoot are reduced. The general form of the skull suggests the Areicanthis or Mylomys type, to which branch of the subfamily it probably is most closely allied.

Aconirs, containing many named forms from the plains and desert regions of Africa, south to the Cape, north to Moroceo and Egypt, also from Crete, Cyprus, Syria, and Sind, is an isolated type, the chief character of which is the abnormal posterior palate, in which the mesopterygoid fossa is completely roofed in by bone; this formation is, however, suggested in Pyromys, Wus tenellus, and Millardia gleadoze, though much less developed in these forms. The fur in Acomys is always spiny. The jugal is long; the coronoid process of the mandible low. M.r suggests the Mus-type to a certain extent; but M. 3 is as a rule not very strongly reduced. In the South African species subspinosus, the molars appear much narrowed. The hindfoot is proportionately very short.

Nore than one author has considered the African genus Uravourss as a near ally of Acomys. The posterior palate is with the same abnormal specialization; but the genus differs from Acomss in the non-spiny fur, the pro-odont incisors, with the lower incisor root forming quite a prominent process on the mandible, and the strongly reduced outer digits of the hindfoot. The tail is rather short. M. 3 is reduced. The genus ranges from Cambia to Uganda and Nyasaland; a few species are named.

Echothrix from Celebes, with one or two species, is a highly aberrant and differentiated genus, possessing an abnormally elongated rostrum, very much like the Philippine genus Rhynchomss, but differing from that genus in having quite normal Wurine molars, and strong incisors, instead of having all teeth restigial. The lower incisors in the few skulls seen are widely separated from each other, so that it is difficult to see how they can function against the upper incisors. The external pterygoids are suppressed. The infraorbital foramen is large, the zygomatic plate narrow; the coronoid process vestigial. The lower incisor root forms a sharply defined process on the mandible. The skull is in fact specialized out of recognition when compared with any ordinary Rat. The tail is poorly haired, the fur nearly spiny, the size moderate.

The Pandicoot-Rats (Vesokia and Bandicota) appear to be very distinct from the above genera. Bandicota is the more primitive of the two. The incisors are broadened, and powerful; the lower incisor root forms a very prominent process on the outside of the mandible, which may tend in some cases to be nearly as high as the condylar process, and may he almost comparable to that present in Rlizomys. The cusps of the molars, though present in the young (and including a small posterointernal cusp), are quickly suppressed, and in the adult the pattern of the molars is more or less a series of straight transterse plates. 'The size may become large. The range is Indo- Malayan, from Fashmir south to Ceylon, east to Iunnan, Formosa, the Malay Peninsula, Sumatra, and Java. Four species groups are recognizable apparently, the most widely distributed of which are the "multimammate" bengalensis group, and the indica group, which are as a rule larger animals than the last.

Nesokia, with one species, races of which are chicfly Palacarctic in distribution (Lob Nor and kashmir through Persia, South Russian Turkestan, to Syria and Egypt; in India south to Sind and Delhi), is like Bandicota, but a little nore sprecialized; the molars scarcely show any traces of cusps; the lower
incisor root as a rule is more promisent on the mandible; the remnants of the original front lamina of M. 2 appear to be suppressed; and the palatal foramina are shortencd. The external characters of these two genera are without extreme abnormalities. The molars of this genus are approaching the highly specialized condition found in Phlooomys, which will be dealt with below.

Threc unrelated African genera are noteworthy as possessing cheekpouches, together with the fact that the anterointernal cusp of M.I is either suppressed or so vestigial that it is pushed backwards on to the second lamina. Beamys, with two little-known species from East Africa, is the most primitive. The cusps of the adult molars are strong and angular, so far as seen; there is a well-developed posterointernal cusp in M.I and M. 2 present and retained; but the anterointernal cusp is suppressed. The genus has been transferred to the Dendromyinae, but appears merely to be an aberrant genus of Murinae; for instance, M. 3 is little reduced in Beamys, vestigial in Dendromyinae; the posterointernal cusp is strong in Beamys, suppressed in Dendromyinae, etc. The jugal is relatively long; the palatal foramina are strongly shortened. The tail is naked and long. The anterointernal cusp may have been suppressed as a result of the cheekpouches.

Saccostonics, with perhaps one species only, or perhaps a few closely allied ones, from Southern and East Africa, has evolved a similar dentition in essential arrangement to that of Beamys, there being no anterointernal cusp, but originally a posterointernal cusp retained, and M. 3 is not strongly reduced. On account of the loss of the front cusp, this genus has also been referred to Dendromyinae, but scems to belong more in the present subfamily. Unlike Beamys, however, this is a simple-toothed Rat, as in the adult nearly all traces of cusps disappear, and the molars become more or less laminate. Well-developed cheekpouches are present. 'The jugal is relatively long. The tail is as a rule strongly shortened, which is an unusual character in the Murinae, though present in some species of Lophuromys. The hindfoot is proportionately very short.

Cricetomis, with probably one valid species only, races of which have a wide range in Africa south of the Sahara, shares with the two genera just dealt with the possession of large cheekpouches; here the molars have evolved in quite a different way from all other Murinae. 'There is no posterointernal cusp; the anterointernal cusp is also apparently modified by the cheekpouches but, instead of being suppressed, is vestigial, and pushed backwards, so that it never joins its neighbour on the centre row, but is immediately next to the centre cusp of the lamina behind, and in old age actually becomes merged into that lamina. All the inner cusps are correspondingly reduced and pushed backwards. M. 2 is not much smaller than M.i, and M. 3 is little reduced; various complexitics can be traced in the molars of this genus. The bullae are much reduccd; the skull is long and narrow; the incisive foramina are much shortened; the jugal is broad and long; the infraorbital foramen is larger than usual. As already noticed, Tullberg states that the tongue of this form possesses three papillae circumvallatae, differing from all other Muridae examined by him except forms from Madagascar. Externally, the size is very large indced, at full development comparable to that of any of the Indo--Ilalayan and Australian Giant

Rats except Phloemm's. The tail is wery long, not well haired, and is used by the animal as a sort of balancing organ when walking. According to Tullberg the stomach is complex. This appears to be a very isolated genus, totally different from all other members of the Murinae in many characters.
lastly, Phlofonys, with two species from the Philippine Islands, which is often referred to a distinct subfamily, is an unusually large type with well-haired tail, and feet of more or less arboreal type, with powerful claws; it is easily the largest member of the subfamily. The molars are a series of perfectly plain straight transverse plates, without the slightest traces of cusps in any examined (though I have seen no young specimens). The skull is powerfully ridged, and has large postorbital-like processes developed. 'The interorbital constriction is little marked; the braincase is reduced, the bullae are unusually small. 'The incisors are broad and powerful, and the infraorbital foramen is narrow. It is undoubtedly a very distinct type, hut laminate molars are not unknown within the subfamily (cf. Mesokia), and 1 do not fecl justified in referring it to a distinct sulbfamily. It secms to me to be, in fact, more allied to the majority of Mlurinae than is, for instance, Anisomys.

It must be stated that a few genera umrepresented at the British Museum, which will be noted helow, cannot be included in the present discussion.

Key to the Genera of Mlurinae
(not including Lorentaimys, Melasmothrix, and a few other named genera not represented in london)
In the key which follows, it will be noted that in several cases there are exceptions to some of the characters given; or it is necessary to give alternative characters. This makes it appear that the key can be broken down many times. I would thercfore remark that in a group like the Murinae, containing seventyone genera, nearly a hundred and fifty specific groups, and just over fourteen hundred named forms, it is not possible at all times to define characters which will distinguish each genus from every other one. 'This is particularly apparent in the neighbourhood of the genus Rattus, the largest genus, which contains thirty-eight specific groups, and of which genus alone over three hundred forms have been examined. For every species which fails to conform to a given character and is marked as an exception in the key, there are very many indeed which will not be an exception to the given character.
M. 2 not reduced, its front lamina complete, so that it is essentially like M. i in clements.

Lower incisors deepened and so compressed that the width of the pair is equal to that of one of the upper incisors only; toothrow shortened; M. 3 smaller than M.2. Lower incisor root forms prominent process on hinder part of mandible. (Group Anisonyes) 1. ANisonys
Lower incisors normal. 'Toothrow not specially reduced. M. 3 at least as large as M.2, usually slightly larger. Lower incisor root not forming prominent process on hinder part of mandihle.
(Group Eliari) 2. Eliurus
M. 2 reduced, its front lamina never complete, so that it is essentially different from M. 1 in elements.
(Group Mures. The remainder of the subfamily)
Rostrum abnormally clongated. (Tips of lower incisors, in the specimens seen, widely divergent, and evidently not functioning against the upper incisors. External pterygoids suppressed.) 3. Echiothrix
Rostrum not abnormally elongated. (Usually, lower incisors without extreme peculiarities.)
(All remaining genera)
(heektecth have lost or are losing all traces of cusps in the adult, the pattern a series of straight transverse plates. Incisors powerful, and skull considerably specialized.
Skull with supraorbital ridges forming a prominent postorbital process. Bullae extremely reduced. Lower incisor root forming no process on mandible. (No signs of eusps in molars of any specimen examined.)
4. Phloeomys

Skull without postorbital process, but more or less modified for fossorial habits. Bullae relatively large. Lower incisor root forming extremely powerful process on mandible, this process often tending to be nearly as high as condylar process.
Cheekteeth usually or always without traces of cusps. Incisive foramina much shortened. Traces of original front lamina of M .2 normally suppressed.
5. Nesokia

Cheekteeth usually with traces of cusps, at least in the young. Incisive foramina not much shortened. Original front lamina of M. 2 not entirely suppressed.
6. Bandicota

Checkteeth rarely losing all traces of cusps except in extreme old age, their laminae very generally curved (or if not, skull without the specializations described above). Process on mandible formed by lower incisor root moderate, weak or absent, but never tending to become as high as condylar process, and less developed than in Nesokia and Bandicota. Skull without conspicuous postorbital process (except in one species of C'ronys, $U$. neobrittanicus (not seen)).
(All remaining genera)
M.1 with its front lamina with anterointernal cusp (T.1) either suppressed or so vestigial that it is pushed backwards on to the lamina behind it, not joining the centre front cusp, but with age becoming merged in the second lamina. (Cheekpouches present.)
Posterointernal cusp present and well developed in M.1 and M. 2 in the young animal. Anterointernal cusp of M.1 entirely suppressed.
Cusps of adult cheekteeth strong and angular, the pattern
cvidently remaining complex. Palatal foramina shortened. Tail not reduced.
7. Beariys

Cusps of adult cheektecth weak or ohsolcte, the pattern tending to become simpler and laminate. Palatal foramina normal. Fail strongly reduced.
8. Saccostomus

Posterointernal cusp of $\mathrm{M.1}$ and M .2 absent. Anterointernal cusp of MI. r not suppressed, hut vestigial, never joined to the central anterior cusp, and with wear becoming merged into the second lamina. (Incisive foramina shortened; jugal long; inlraorbital foramen larger than is normal; giant form.)
9. Cricetomys
M.I with anterointernal cusp always retained. All three cusps are present on front lamina of M.i in all remaining, except Mastacomys and one specimen seen of Pseudomys, in which the anteroexternal cusp is suppressed. Anterointernal cusp never so vestigial that it is separated from the front lamina of M.1, and never becoming merged with wear into the second lamina. (All remaining genera)
First and second upper molars with a clear posterointernal cusp present and traceable until old age. (Genera numbers 10-26)
Lower first and second molars with three functional rows of approximately equal-sized cusps. (1lallux clawless and fully opposable.)
10. Hapalomys

Lower first and second molars never with three functional rows of approximately cqual-sized cusps.
'Tail thickly bushy, Sciurine. Frontals extremely constricted hetween orbits, this constriction carried far backwards, so that braincase appears shortened. (Giant form.)
ii. Crateromys
'Tail never thickly buslỵ. Frontals with interorbital constriction less extreme in appearance.
Posterior lamina of first and second upper molars, and anterior lamina of first lower molar doubled.
12. Carpomys

Posterior lamina of first and second upper molars and anterior lamina of first lower molar single (normal), or with traces of extra lamina much less developed.
llindfont extremely specialized for arborcal life, with the hallux fully upposable, and clawless in adult (once specimen of Pithecheir seen, not adule, retains a minute claw on the hallux).

Outer row of cusps of first and second upper molars becoming reduced. Bullae strongly inflated.
13. Pithecheir

Outer row of cusps of first and second upper molars well developed. Bullae not noticeably inflated.
Lower molars with more conspicuous development of the subsidiary outer row of cusps. D. 5 of manus and pes with claw (normal).
14. Chiropodomys

Lower molars with less conspicuous development of the subsidiary outer row of cusps. D. 5 of manus and pes without claw. 15. Vandeleurla
IJindfoot less extremely specialized for arboreal life, the hallux clawed and apparently not fully opposable.
Upper molars strongly cuspidate, the outer row with the main cusps well developed, and usually forming a strong angle with their neighbours of the centre row; not tending to become fused with them.
'lail prehensile.
Tail naked. Palatal foramina considerably shortened (compare also Thamnomys). Bullae relatively smaller (compare Micromys). Palate not specially narrowed (compare Lenomys), and feet specialized for arboreal life (compare Apodemus). 16. Pogonomys
Tail moderately well haired. Palatal foramina not shortened. Bullae relatively larger (compare Pogonomys). Rostrum strongly shortened (compare Apodemus, Lenomy's, Thamnomys). (Pygmy form.) 17. Micromis
'Tail, so far as known, not prehensile. (Rostrum not specially shortened (compare Micromy's).)
Palate much narrowed, particularly anteriorly. Tail more naked. (Feet not specially modified for arboreal life (compare Thamnomys).)
18. Levomys

Palate not specially narrowed. Tail relatively well haired.
Feet noticeably broad, modified for arboreal life, and relatively shorter (about is per cent of head and body length on average).

Feet noticcably narrow, not modified for arhoreal life, and relatively longer (over 20 per cent of head and body length on average in about 300 specimens).
20. Apodemus

Lpper molars not or less strongly cuspidate, the outer row tending in most cases to become strongly reduced, and fused with the centre row (or if not, as Myomys, all cusps more or less olsolete).
N. 3 nearly as large as M.2. Coronoid process of mandible normal. Zygomatic plate straight anteriorly. Dolars scarcely cuspidate in any seen.

Incisors very broad and heary; palatal foramina strongly shortoned; rostrum less pointed; tail naked; zyemomatic plate lower. (Giant form.) 21. Hyoniys

Incisors not enlarged; palatal foramina long; rostrum more pointed; tail relatively well haired; zygomatic plate higher. 22. Bateniys
M. 3 clearly smaller than M.z. Coronoid process of mandihle much reduced, low. Nolars in most cases cuspidate at least originally (or if not, as perhaps Laomys, incisors moderate and tail fully haired, compare 11 yomys, and zygomatic plate less specialized than in Batomys); zygomatic plate not straight anteriorly.
'rail thickened at hase.
23. LaOMYS

Tail not thickened at base.
Frontal region of skull raised and inflated to a greater or lesser degree; zygoma not rising ahruptly anteriorly, and relatively low.
24. Mesfaibriomys

Frontal region of skull not raised and inflated.
Zygoma rising abruptly anteriorly to considerable height. 'Tail nearly uniformly haired.
25. Conilitrus
\%agoma without special peculiarities; tail less well haired. 26. Zyzonirs

No well-developed posterointernal cusp present and traceable through life in M1.1 and \$1.2. (Remainder of subfamily.)

A much reduccd posterointernal cusp in M. I and M. 2 appearing as a low connecting ridge, normally a feature of the dentition. (External form modified to a degree for arboreal life.)
27. Grammomys

A much reduced posterointernal cusp in M. I and M. 2 normally not a feature of the dentition. (This cusp is suppressed, so far as seen, except in a few individual cases in Lophuromys, in 5 out of 8 skulls of Rattus macleari, and in the only two skulls available of Rattus baluensis; these species not showing modification towards arboreal life, compare Grammomys.)
M. 3 with well-developed posterointernal cusp. Frontal region of skull strongly inflated. (Cheekteeth angular, complex; giant form.)

2S. Mallomys
M. 3 with no well-developed posterointernal cusp (it may be traced in this tooth in Dasymys, cheekteeth losing cusps carly, and frontals not inflated, compare Mallomys). Frontal region of skull not strongly inflated.
(All remaining genera)
Mesopterygoid fossa roofed in by bone anteriorly.
Fur densely spiny; upper incisors not pro-odont; lower incisor root not showing on mandible; outer digits of hindfoot not shortened.
29. ACOMYS

Fur not spiny; upper incisors usually pro-odont; lower incisor root showing clearly on mandible; outer digits of hindfoot reduced.
30. Uranomys

Mesopterygoid fossa not completely roofed in by bone anteriorly. (All remaining genera)
Cheekteeth much broadened, excessively heavy, the main cusps of the upper molars much raised up and thickened; so far as known, this peculiarity of dentition retained through life; the inner row of $\mathrm{NI.2}$ and M .3 becoming extremely enlarged, as is the centre row. Outer row of M .3 obliterated.

Upper incisors grooved. Braincase not shortened, and interorbital constriction less extreme. Palate relatively broader. (Outer digits of hindfoot and D. 5 of forefoot strongly shortened. In old age, M. 3 tends to become the dominant tooth.)

Upper incisors plain. Frontals extremely constricted, this constriction carried far back, so that braincase appears shortened. Palate much narrowed. The anteroexternal cusp of M.I is suppressed.
32. Mastacomys

Cheekteeth, in the majority, never approaching the above-described extreme type of heavy dentition; but if so (as Mylomys, Oenomys only), the anteroexternal cusp of M.i is retained (compare Mastacomys), and the inner row of cusps in M. 2 is not specially enlarged; and evidently in old age, M. 3 does not tend to become the dominant tooth (compare Golunda).
Interorbital region of skull unusually broad, so that in superior aspect of skull there is scarcely any constriction apparent. (Toothrows set far forward in skull; zygomatic plate narrowed.)
Zygomatic plate tilted strongly upwards, its appearance about as in Hydromyinae. Cheektecth, as far as ascertainable, with very weak cusps, the pattern nearly laminate. Outer digits of hindfoot not reduced. 33. Crenomiys

Zygomatic plate unusually low, sometimes scarcely tilted upwards at all. Cheekteeth with strong well-developed cusps, retained more or less through life. Outer digits of hindfoot shortened, D. 5 scarcely longer than hallux.
34. Lophuromys

Interorbital region of skull in superior aspect always with some constriction apparent.
(All remaining genera)
Posterior palate greatly broadened, and continued far backwards behind the toothrows. (Infraorbital foramen more enlarged than is normal.)
35. Nesoromys

Posterior palate not greatly broadened, and not continued far backwards behind the toothrows.

Toothrows strongly reduced ( 13.7 per cent or less of condylobasal length). (Zygomatic plate narrowed, strongly tilted upwards, in appearance like that of Hydromyinae.)
36. Macrurumys
'Toothrows normally not extremely reduced. (An exception to this is Rattus bacodon, a littleknown form which approaches Macruromys in this character; the zygomatic plate, though narrow, is not of Hydromyine type; but as Macruromys is represented in London only by one specimen with much worn teeth, I am unable to give further characters. Another species which might overlap Macruromys in toothrow length is Malacomy's edwardsi.)

Upper toothrow becoming specialized by enlargement of M.I, combined with considerable or excessive backward distortion of the anterointernal cusp, combined with progressive reduction (in some cases almost to vanishing point) of M.3.

The outer row of cusps of the upper molars practically obsolete. 37. LegGadina

The outer row of cusps of the upper molars strongly developed.

Upper incisors not pro-odont.
Zygomatic plate narrowed; lower incisors lengthened, narrowed.
38. Mycteroniys

Zygomatic plate not specially narrowed.
Lower incisors as a rule without peculiarity. 39. Mus
Upper incisors strongly pro-odont.
Mandible thin and weak, with ascending portion low; infraorbital foramen scarcely wider above than below; M. 3 vestigial. (One specimen seen only.) fo. Hylenomys

Mandible normal, with ascending portion moderate; infraorbital foramen, as far as ascertainable, without special peculiarities; M. 3 less vestigial. (One specimen seen only.) 41. Nuricultes

Upper toothrow not becoming specialized exactly in the manner described ahove.
(All remaining genera)
Hindfoot extremely lengthened, usually more than 30 per cent of head and body length, and averaging, so far as ascertainable, over 34 per cent of head and body length; apparently fully specialized for saltatorial life. (Plantar pads reduced. Anterior border of zygomatic plate concave.)
42. Notomys

Hindfoot less extremely lengthened, not averaging over 30 per cent of head and body length. (In only one genus, Colomys, does the foot length approach that of Notomys; anterior border of zygomatic plate not concave, and foot relatively shorter.)
Dentition heavier than is normal; cusps of all rows of upper molars enlarged and raised up to a considerable degree. Outer row of M. 3 more or less obliterated.
Upper incisors grooved. Fifth digit of manus so shortened that there appear to be three functional digits only.
43. Mylonys

Upper incisors plain. Manus with four functional digits.
44. Oenomys

Dentition less heavy, the cusps not or less exaggerated and enlarged.
(All remaining genera)
Hindfoot much specialized for arboreal life, with the hallux clawless and fully opposable. 45. Chromyscus
Hindfoot less specialized for arboreal life, the hallux so far as known not fully opposable, and always retaining claw.
Upper incisors grooved. t6. Pelonys Upper incisors plain.

Upper incisors strongly pro-odont. The chcekteeth strongly cuspidate, complex, broad in appearance ; toothrow about 18 or 19 per cent of condylobasal length. 47. Zelotomys
Upper incisors normally not proodont. If so (Rattus berdmorei group only), cheekteeth simple, relatively narrow, not strongly cuspidate; and toothrow shorter, about 14 to 16 per cent of condylobasal length.

Manus with fifth finger clawless and so shortened that there appear to be three functional digits only.
48. Lemniscomys

Manus with four functional digits.
Hindfoot elongated to a greater or lesser degree, the limbs slender, "the metatarsals loosely knit, to splay out on soft ground" (St. Leger).
Braincase rounded, heary, much wider than rostrum; zygoma narrow; zygomatic plate narrowed ; infraorbital foramen larger than is normal; upper cheekteeth broad, strongly cuspidate; hindfoot much lengthened, on average about 29 per cent of head and body length.

Braincase less rounded, little wider than rostrum; zygomatic plate not narrowed; infraorbital foramen less enlarged;

> upper molars narrow, with cusps obsolete; hindfoot averages about 24 per cent of head and hody length. (TTothrows relatively short.)
> 50. Malaconiys

Ilindfoot as a rule not or less elongated, the metatarsals so far as known without the above described character. Hindfoot considerably less than 29 per cent of head and body (compare Colomys).
MI. 3 not or scarcely smaller than M.2, and with wear tending to become rather larger than that tooth (details of dentition of Hadromys are not known). Molars broad, and dentition heavy.
Zygomatic plate with anterior border not concave. ( M .3 has originally no posterointernal cusp, and its posterior lamina is narrower than its anterior one. Outer digits of hindfoot strongly shortened (compare Dasymys). Rostrum short, and palate narrower (compare Aethomys).

5i. Arvicanthis
Zygomatic plate with anterior border concave.

Skull with extreme interorbital constriction. Outer digits of hindfoot not reduced. ( N .3 originally has posterointernal cusp present, and its posterior lamina is as a rule about as large as its anterior lamina (compare Arcicanthis). M. 3 is most often larger than M.2.)
52. D.hsymys

Skull without extreme interorbital constriction. Outer digits of hindfoot strongly reduced. D. 5 of manus much shortened. 53. Hadromys
M. 3 is normally clearly smaller than M.2, with very rare individual exceptions, as
in some specimens of Aethomys (no extreme interorbital constriction (compare Dasymys), D. 5 of manus usually less vestigial (compare Hadromys), and palate normally less narrowed, and rostrum usually relatively longer (compare Arvicanthis)).
(The remaining gencra are distinguishable on average rather than absolute characters.)

Skull with extreme interorbital constriction (on average about 12 per cent of occipitonasal length), this constriction placed far back, so that braincase appears shortened. Anterior border of zygomatic plate not concave; zygoma relatively low anteriorly, not rising to considerable height.
54. Stenocephalemys

Skull in the majority without extreme interorbital constriction, only very occasionally less than 13 per cent of occipitonasal length; but if with this character, as sometimes in Leporillus and Pseudomys, either the zygoma rises abruptly anteriorly to considerable height (Leporillus), or the anterior border of zygomatic plate is concave (Pseudomys).
Molars always strictly simple (all cusps of each lamina merging into each other), and the cusps are never clearly marked (so far as seen, even when cutting); M1.3 is strongly reduced. Pectoral mammae, so far as known, suppressed. Typically, the tail is almost devoid of hairs, the scales arranged in mosaic pattern, and typically not overlapping each other.
Posterior palate ending about on level with last molars, or slightly in front of that level. (Tail naked or poorly haired, as in Uromys normally); (incisive foramina as a rule less shortened; lower incisors less deep in proportion to their breadth; "palate ridges as far as known five or six" (Thomas).)
55. Мelomys

Posterior palate ending slightly behind the last molars.
Tail naked. Bullae extremely reduced. ("Palate ridges where known twelve or more" (Thomas); incisive foramina always shortened; lower incisors deep in proportion to their breadth (compare Melomys).)
56. Uromys

Tail moderately haired, not mosaic, but structure as in Rattus. Bullae less extremely reduced. 57 . Apomys
Molars not always strictly simple, but when so, tail relatively well haired, and pectoral mammae present so far as known. In forms without pectoral mammae, teeth not strictlv simple;
tail most often not mosaic pattern, hut with the scales overlapping to a greater or lesser degree, and usually moderately haired. (If the tail is mosaic pattern, the dentition is relatively complex.)
Pygmy Nlice, with hindfoot on average more than 25 per cent of head and body length, so far as ascertainable. Head and body under so mm. (llallux said to be opposable, but clawed.)
58. Haeromys

Head and body very rarely under So mm. in fully adult, but if so, hindfoot relatively shorter.
Toothrow relatively long, on average more than 21 per cent of condylobasal length.

Bullae ahout 16 per cent of occipitonasal length. Toothrow ahout $21 \cdot 3-22 \cdot 7$ per cent of condylobasal length.
59. Eropeplus

Bullate about it to 12 per cent of occipitonasal length. Toothrow 2x.6-23.3 per cent of condylobasal length.
'Toothrow relatively shorter, very rarely more than 21 per cent of oecipitonasal length. (Only in one case, of the remaining species, of those measured, is this percentage exceeded, in a specimen of Rattus zelutimus ('Jasmanian); which specimen gives a percentage of 25.4 per cent). (If this toothrow measurement is overlapped it will be in the Australian species of Rattus (hullac about 17-22 per cent of occipitonasal length, compare Eropeplus, Dacnomys), or in Rattus lepturus, which differs from these genera in its much larger ear, and in cranial details.) (Eropeplus must be noted as a little-known genus, of which we possess two old examples only.)
In the vast majority, the molars in fully adult are relatively simplified in structure, with the eusps on each lamina tending to fuse into each other to a greater or lesser degree, and not to form a sharp angle with each other (the molars may become completely simple). In species with relatively angular tecth, there is no strong reduction of the outer digits of the hindfoot. The hindfoot is normally not shortened, usually considerably more than 16 per cent of head and body length, always so on average in a group (compare Pyromys). The lower molars of species with angular dentition have
usually the terminal heel of M.1 and M. 2 well marked, and the cusps not specially raised up (compare Thallomys). If the outer digits of the hindfoot are relatively shortened (as in Rattus rajah group), the molars are simpler, and the cusps are not angular in the adult.
Anterior border of zygomatic plate concave.
6i. Pseudomys
Anterior border of zygomatic plate not concave.
M. 3 vestigial, scarcely larger than posterior lamina of M.2.
62. Coflomys
M. 3 not or less vestigial.

Coronoid process of mandible usually well developed.

63 . Rattus
Coronoid process of mandible obsolete.
Frontals usually much constricted; zygoma rising abruptly anteriorly to a considerable height.
64. Leporillus

Frontals not so strongly constricted; zygoma moderate, not much raised up anteriorly.

> 65. Gyomys

Molars not becoming simplified in adult, the cusps well marked, angular, not tending to fuse with each other, and traceable until old age. These dental characters combined (except in Thallomys) with specialization or abnormality of foot structure; either with great reduction of outer digits of hindfoot, or with shortening of hindfoot. (In the case of Thallomy's, the feet are not extremely modified; the genus differs from Rattus and those genera just dealt with on average characters of lower molars.)
D. 5 of the hindfoot strongly shortened, often scarcely longer than the hallux, and scarcely reaching past base of D.4.
Frontals relatively wider, with interorbital constriction less marked; skull short and broad in general appearance; zygoma slender. 66. Hybomys
Frontals relatively narrower, normally constricted; aspect of skull not abnormal.
Rostrum relatively shortened, usually less than 30 per cent of occipitonasal length. Zygoma
robust. (Posterior plantar pads much reduced in size; sometimes there are 5 only; back with four stripes.)
67. Rhabdomys

Rostrum not specially shortened. (Back without stripes.)
Plantar pads of hindfoot reduced to 5 or 4 .
68. Millardia

Plantar pads of hindfoot, so far as ascertainable at present, 6. (This is so in specimens of A. chrysophilus and A. zcalambae, but no spirit specimens available of $A$. kaiseri.) Zygoma robust.
69. Aethomys
D. 5 of hindfoot not shortened.

Hindfoot on average about i $\$$ per cent of head and body length, as in many species of Rattus. Lower molars with terminal heel of M.I and N. 2 much reduced, and the cusps originally heavy and raised up.
70. Thallomys

Hindfoot strongly shortened about 16 per cent of head and hody length.
71. Pyromys
(A little-known form, only one specimen available for examination; its skull is so like that of Millardia gleadozi from the same area that one is tempted to believe that the skin was mixed with a skull of $M$. gleadozi.)

I doubt the validity of Thallomys from Rattus on the above-mentioned character of lower molars. The genus is retained mostly for convenience, though the molars are too angular for the genus Rattus. In Thallomys I include "Aethomys" namaquensis.

For the purpuses of this work I have adopted the cusp notation of Miller (Cat. Jlamm. Wist. Europe, I912), as being the simplest and least likely to cause confusion. In this notation, in the upper molars, the three anterior cusps of X.1 are notated as T.1, T.2, and T.3; T. 1 being the anterointernal and T. 3 the anteroexternal. The second lamina possesses ${ }^{\text {T. }}+$ (internal), T. 5 (central), and 'T.6 (outer). The third lamina ' 1.7 (the posterointernal cusp, on the presence or absence of which many genera are named); T.8 (central) and T. 9 (outer). Rarely, as in genera here held to be primitive, subsidiary cusps are present on the upper molars, particularly in some cases there is an extra cusp, which may be a trace of an extra (fourth) Jamina, in front of N.r; also in complex-toothed genera, there is often an extra cusp at the back of the outer series in M.1. N1.2 and M. 3 are both derivable from the fully cusped pattern given above, though usually there are less cusps present. T. 2 (the anterior
centre cusp) is always absent in M.2, except in the genera Anisomys and Eliurus. Sometimes the whole front lamina of M. 2 may be suppressed.
'1he lower molars are in the subfamily, with very few exceptions, in two rows of main cusps, the laminae in the molars being three in M.I, two in М.2, and two in M1.3. M.I and M.2 usually have a well-marked central posterior cusp at the back of the tooth, here referred to as the terminal heel; in a few cases this may become so broad as to appear as an extra lamina. The two front cusps of M.I are often reduced and close together. The posterior lamina of M. 3 often appears to consist of one cusp only. On the outer side of M. I and M. 2 lower are often some small subsidiary cusps, which may represent the remnants of an earlier complete third row of cusps; in the genus Hapalomys, the lower M.r and M. 2 have all three rows almost fully developed.

It must be noticed that many genera, such as Muriculits, Hylenomys, Pyromys, Mycteromy's, Nesoromy's, Hadromy's, Stenocephalemys, Laomys, Batomys, Pithecheir, Crunomy's, Beamys, and Macruromys, are very incompletely represented at the British Museum, and in some cases very incompletely known.
(The references and type localities to the list of named forms are the work of Mr. R. W. Hayman, except a small section of the genus Rattus and a few African genera, which are by Mr. G. W. C. Holt.)

## The Eliurus Group (Eliuri)

Cheekteeth a series of transverse plates; these close together, as in laminate Nurinae, not separated by inner and outer folds (compare laminate Cricetinae and Gerbillinae). M. 2 as large as M.I, and with its elements not reduced; 11.3 as large as M.2, with the same number of laminae. From Madagascar.

## Genus. 1. ELICRUS, Milne-Edwards

1885. Eliurus, Milne-Edwards, Ann. Sci. Nat. Paris, 63, ser. Zool. XX. no. i bis, p. I

Type Species.-Eliurus myoxints, Milne-Edwards.
Range.-Nladagascar.
Number of Formis.-Five.
Remarks.-It is doubtful whether this genus has any close relationship with the Murinae, but I provisionally include it here as it seems to belong rather in the Murinae than in any other subfamily, and it does not seem to possess sufficient specializations to be referred to a distinct subfamily on its own. Whatever its relationships, I do not think it is a Cricetine, and it seems to me to be absolutely distinct and remote from all other Muridae from Madagascar. The genus has the molar series in transverse plates, as already indicated, but distinct in appearance from those of Phloeomy's, Nesokia, or other Nurinae with similar arrangement. They appear to be much nearer to these Nurine types than to, say, Irenomy's (Cricetinae), which has more or less laminate teeth, but the laminae are separated by conspicuous folds, as is normal for Cricetinae; while the Cerbilline Meriones agrees with the Cricetine type in this respect.

Further Eliurus lacks any modification of skull which is always present in Gerbillinae. I have therefore no alternative but to regard it as an archaic member of the Murinae.

Characters.-Skull with round broad braincase, no supraorbital ridges, rostrum long and pointed. Jugal long. Infraorbital foramen of Alurine type, but relatively large; zygomatic plate nearly straight anteriorly. Incisive foramina sariable in length, not extending to toothrow as a rule; either quite broad or quite narrow. Bullae of medium size. The laminae of each upper molar are three in number: 11.2 essentially like M.r both in size and form; $\mathrm{MI}_{2}$ at least as large as $\mathrm{M1.2}$, often slightly larger, and its posterior lamina may be double. 'Yhird lamina in M.s and N. 2 sometimes bent backwards in the middle, often larger than those in front of them, and may have an isolated island present. Lower teeth a series of transverse plates, three laminae on each tooth; the front lamina of M.r may be double. The teeth appear to be cut in this flaterowned condition, so the unworn crowns throw no light on the relationships of the genus.

Tail long, the end well haired, pencilled, but the portion joining the body more naked. Fur soft. Hindfoot more or less of arboreal type, with D. 5 relatively long.

There seems no extreme difference between the named forms except that minor is constantly smaller than the others in the small series examined.

Forms seen: majori, minor, penicillatus, tanala.

## List of Named Formis

1. JLILRES NYOXINUS, Milne-Edwards

I885. Ann. Sci. Nat. XX, Art. 1 bis, p. 1.
Madagascar, West coast.
2. ELILRLS TANALA, Najor
i \$q6. Ann. Mlag. Nat. Hist. 6. XV11I, p. 462.
Forest of the Independent Tanala of Ikongo, 30 miles south of Fianarantsoa, Mladagascar.
3. ELIIRLS MLAJORI, Thomas
1895. Ann. Mag. Mat. Hist. 6, XVI, p. 164.

Ambolimitombo Forest, Central Madagascar.
4. ELILRL'S IDNICIELATLS, Thomas
1408. Ann. Mag. Nat. Hist. 8, II, p. 454.

Ampitambe, N.-E. Betsileo, Madagascar.
5. EIIL'RLS MINOR, Major

1 S96. Ann. Mag. Nat. Hist. 6, XVIII, p. 462.
Ampitanbè Forrst, N.-E. Betsileo, Madagascar.

## The Anisomys (iroup (Anisomyes)

M. 2 not smaller than M.r, and with elements exactly as in that tooth. Lower incisors so compressed that the width of the pair is equal only to that
of one of the upper incisors, a character which appears unique in the whole Order.

## Genus 2. ANISOMIXS, Thomas

1903. Avisomys, Thomas, Proc. Zool. Soc. London, vol. 2, p. 199.

Type Species.-Anisomys imitator, Thomas.
Ravge.-New Guinea.
Number of Forms.-One.
Characters.-Skull with rather broad long rostrum, little interorbital constriction, weak supraorbital ridges which extend over the braincase; anterior part of zygomatic plate cut back above, not abnormal. Bullae extremely small. Posterior portion of palate square, extending considerably behind the much reduced toothrow. Incisive foramina extremely shortened, far in front of toothrows. Palate hollowed, the anterior part lying between two raised ridges.

Upper incisors of normal breadth; the lower ones extremely deep and as already indicated, abnormally compressed. Nandible with the ascending branch very high, the incisor root forming a conspicuous knob behind the coronoid process and in front of the condylar process. Angular portion with lower border prominently ridged.

In addition to the unique specializations of the incisors, the cheekteeth are widely different from any other member of the subfamily examined. They are laminate in adult (i.e., with cusps suppressed). 11.1 and 11.2 are both of equal size, and equal elements (this character not seen in any other member of the Murinae except Eliurus); there appear to be what might be considered traces of five laminae in both these teeth (though according to Rümmler's figure, 1938, this is not the case). The anterior lamina seems to represent the three original cusps, both in M1.1 and M.2; the second lamina is similar; the third lamina has between it and the second one traces of a large cusp on the inner side; and behind the last lamina is a large terminal cusp or heel on the outer side. M. 3 is smaller than M.2, evidently trilaminate, with the posterior lamina the smallest. The terminal heel is well developed in the first two lower molars, more or less appearing as a fourth lamina in M.ı. M.i and $\mathbf{M} .2$ upper are three-rooted.

Nammae $\mathrm{I}-2=6$. Tail long, with large scales, but with a moderate growth of hair visible, at any rate as compared with such types as Hyomys. Hindfoot more or less of arboreal type; D. 4 appears slightly the longest digit; D. 5 relatively long. The claws are large; the hallux not shortened. Forefoot with D. 4 and D. 3 subequal and longest, D. 2 considerably shorter, D. 5 shortest. Fur rather coarse. Ear short. Size large; head and body up to 279 mm . or perhaps more.

I should be much more ready to separate this genus as type of a subfamily than any other genus I have included in the Murinae, Eliurus excepted.

Forms seen: imitator.


Fig. 1. Anisomys imitator, Thomas. B.M. No. 5.11.28.11, है; • I.


Fig. 2. Anisomys imitator, Thomas. B.NI. No. 5.11.2R.11, 今; - 1.

## List of Named Fornis

1. A.VISOMY'S IMITATOR, Thomas
2. Proc. Zool. Soc. London, II, p. 200.

Aroa River, British New Guinea.


Fig. 3. Anisomys imitator, Thomas. Cheekteeth: B.M. No. 5.11.28.11, ठै; >: 7.

## Group Mures

This includes the remainder of the subfamily. M. 2 is always smaller than M.1, or with its elements reduced and with fewer cusps than in M.1.

The following genera (to Mesembriomys) have the posterointernal cusp present and usually clear in M.ı and M.2, or sometimes in all three upper molars, excepting Mallomys, in which the cusp is suppressed in M.I and M.2, but unusually strong in M. 3 .

## Genus 3. HAPALOMYS, Blyth

1859. Hapalomys, Blyth, Journ. Asiat. Soc. Bengat, XXVill, p. 296.

Type Species.-Hapalomys longicaudatus, Blyth.
Range.-Indo-Malayan: Tenasserim, Annam, Laos, and Ihainan.
Number of Forms.-Three.

Characters.-. Skull of "arboreal type" in general formation; braincase very broad; interparietal much enlarged in the few skulls seen; rostrum short. Supraorbital ridges upstanding and prominent. Interior border of zygomatic plate straight; zygomatic plate high and strong. Infraorhital foramen narrow: Zygoma robust. Palate relatively narrow: Bullae large. Incisive foramina of medium length, without special peculiarities.

Incisors considerably broadened, powerful.
Cheekteeth abnormal; upper molars with the cusps raised, of the Oenomys type, but the inner and outer row with the cusps nearly as large as those of the contre row, the rows of cusps reqular and straight, the valleys between them deep. X.i with nine well-developed cusps (including the posterointernal). W. 2 with only ' $\mathrm{T} .4,5,6$ and $\mathrm{T} .7,8,9$, the front lamina being suppressed altogether except for minute vestiges, which is an uncommon feature in the subfamily: \I. 3 reduced, with T.t and 5 representing the original second lamina, and one central cusp behind them; these being the sole main elements of the teeth. N. i apparently five-routed.

Lower molars: M.r and M. 2 each with three rows of nearly equal-sized cusps, this feature so far as I have seen unique in the subfamily, though Chiropodomys and Pogonomys approach it to a certain extent. N. i has the first lamina with two main cusps only; the second and third lamina of this tooth, and both laminae of M.2, each with three weHt-developed cusps; \1.3 with two laminae, each with two cusps only.

Fur thick and soft. Tail longer than head and body, moderately haired, sometimes pencitled terminally. Hindfeet much specialized for arboreal life; digit pads large; D. f with longest digit in the few seen; D. 5 nearly as long as D.2; hallux extremely wide, without claw, and fully opposable.

Nammax 2-2-8 (Wroughton).
The presence of three equally developed rows of cusps on the lower molars may be an archaic character. It is interesting to note that, as is often the case in primitive, relict genera, considerable specializations are present, as the general form of the skull, and the opposahic hallux.

Forms seen: delacouri, longicamdutus, pasquieri.
The latter, hased on a very yonng specimen with all the molars not fulty cut yet, is best regarded as a synonym of delacouri. I do not think there is more than a racial difference between any of the forms examined; I have not seen the Itainan form.

List of Named Forms

1. HAPAI.BNYS LONGICALD.ATLS LONGICAUDATLS, Blyth
${ }_{1} 859$. Journ. Asiat. Soc. Bengal, XXVIII, p. 296. Sitang River, Tenasserim.
2. HAPAIAMIYS LONGICALDATLS DFLACOLRI, Thomas
3. Proc. Zool. Soc. London, p. 55. Dak-to, Annam. Synonym: (?) pasquieri, Thomas, 1927, Proc. Zool. Soc. London, p. 57. Zieng Khouang, Laos.
4. HAPAI,OMY'S MARMOSA, G. M. Allen
5. Amer. Mus. Nov. 270, p. 12.

Near Nodoa, Ilainan.

## Genus 4. POGONOMIS, Milne-Edwards

1877. Pogonomys, Milne-Edwards, Comptes Rendus, Paris, LXXXV, p. 108 r. 1888. Chiruromys, Thomas, Proc. Zool. Soc. London, p. 237. Chiruromys forbesi, Thomas. Valid as a subgenus.
Type Species.-Mus (Pogonomy's) macrourus, Milne-Edwards.
Range.-New Guinea and adjacent islands, Japan, New Britain, Ferguson Island, Goodenough Island.
Number of Forms.-As revised by Rümmler, 1938, only six are recognized.
Characters.-Skull with interorbital constriction apparent, and with rounded braincase; supraorbital ridges as a rule well developed. Rostrum long ( $P$. sylzestris) to short ( $P$.forbesi and others). Zygomatic plate and infraorbital foramen nearly of the specialized type found in Crateromys, but infraorbital foramen less narrowed than in that genus. Zygomata widely spreading. Bullae very small. Palate broad; incisive foramina shortened, and considerably in front of toothrow. Incisors usually broad and rather powerful.

Upper molars complex; the centre row of cusps the largest, but neither the inner nor the outer rows showing much sign of reduction. M.1 with ten cusps, including a strong 'T.7, and an extra outer posterior cusp; M. 2 with nine cusps (only T. 2 is suppressed); M. 3 not much smaller than M.2, mostly trilaminate, and with no clear outer row. The pattern is evidently traceable even in old age, and wears down slowly. A small extra front cusp in front of foremost lamina of M.I may be present. Lower teeth like Chiropodomys, the outer subsidiary row of cusps yery clear, nearly developing as an extra row, though not comparable to Hapalomys.

Mammae $1-2=6$. Tail long, nearly naked, the hairs more or less vestigial; the tail of Chiruromys was described by Thomas as with the "terminal portion above without scales, quite naked, transversely wrinkled, and obviously prehensile. The scales of the rest of the tail not, as is usual, square or arranged in distinct rings, but more or less pentagonal or lozenge-shaped, and set in diagonal slanting series, somewhat like the dorsal scales of a snake." Hindfoot broad, of arboreal type, with the fifth digit elongated, but the hallux not opposable, or not fully so and bearing claw. Manus with D. 2 rather shortened sometimes. Fur soft.

Forms seen: dryas, forbesi, lepidus, lamia, loriae, mambatus, macrourus, pulcher, silvestris, vates, vulturmus.

Both Tate and Rünmler have recently offered a classification of this genus. I find that British Nuseum material agrees in nearly every character with that of Rümmler, while I have not been able to agree in every case with the arrangement of Tate. Rümmler's classification is therefore here adopted. Nany nominal forms have been reduced to synonym, which perhaps in some cases may stand for local races.

Rummler gives roughly the following characters for the subgenera:
Subgenus Pogovomys: Scales on the tail mosaic-formed, the apical edges not free and not jutting over the scales of the next row. Premaxillar region of skull lower and longer (i.e., not "Squirrel-formed" as discussed and figured by Tate, Bull. Amer. Mus. Nat. Hist. LANII, VI, p. 6It, 1936). Palatal frimana wider posteriorly than anteriorly. Molars as a rule simpler, and M. 3 more reduced posteriorly, the fourth transverse row merged with the third.

With species macrourus, sylzestris and mollipilosus. (Rümmler synonymizes lepidus with macrourus, the genotype; but according to Tate there is some doubt as to the status of the name macrourus. Rummler further regards the names loriae and dryas as synonyms of mollipilosus.)

Subgenus Chircromys: Scales of the tail with apical edges mostly formed into a rounded point, which juts over the scales of the next row (and terminal purtion more developed, as described by Thomas (noted above)). Premaxillar region of skul! shorter (i.e., "Squirrel-formed" as figured by Tate, rostrum shortened, and zygomata more spreading); palatal foramina not narrowed in front; molars tending to be more complex, and fourth transverse row of M. 3 usually not merged into third row.

With species forbesi, lamia, and čates.
For further characters of species see Rümmler, 1938, Dic Systematik und Yerbreitung der Muriden Neuguineas (Mitt. Zool. Mus. Berlin, 23, p. 57).

## List of Named Forms

Subgenus Pogonomys, Tilne-Edwards

```
    1. POGONONIYS MACROUTEC, Milne-Edwards
1877. C. R. Acad. Sci. Paris, LXXXV, p. Io$1.
            Arfak, New Guinea.
            Synonym: lepidus, Thomas, 1897, Ann. Mus. Genova, 2, XVVIII, p.
                                    614. Haveri, Astrolabe Range, New Guinea (status frde
                                    Rümmler).
                                    lepidus huon, Tate & Archbold, 1935, Amer. Mus. Nuv.
                                    8o3, p. 6. Huon Peninsula, Dutch New Guinea (status
                                    fide Rünmler).
                                    lepidus derimapa, Tate & Archbold, 1935, Amer. Mus. Nov.
                                    So3, p. 6. Mount Derimapa, Dutch New Guinea (status
                                    fide Rümmler).
```

```
    Pogovoaty molliflenclic, Peters \& Dorm
188x. Ann. Mus. Genova, XVI, p. 698.
    Katou, Oriomo River, Daru, S. New Guinea.
    Synonym: loriae, Thomas, 1897, Ann. Nus. Genova, 2, XVIII, p.
                                    613. Haveri, Astrolabe Range, Central British New
                                    Guinea (status fide Rümmler).
                            dryas, Thomas, r904, Nov. Zool. X1, p. 600. Dinawa,
                            Owen Stanley Range, New Guinea (status fide Rummler).
```

    P()GONOMIYS SVLVESTRIS, Themes
    1920. Ann. Mas. Nat. Hist. 9. VT, p. 534.
Rawlinson Mountains, New Gumea.

## Subgenus Chiruromys, 'Thomas

4. POGONOMYS FORBESI, Thomas 1888. Proc. Zool. Soc. London, p. 239.

Sogere, S.-E. New Guinca.
Synonym: forbesi vulturnus, Thomas, 1920, Ann. Mag. Nat. Hist. 9. VI, p. 535. Milne Bay, S.-E. Papua.
forbesi mambatus, Thomas, 1920, Ann. Mag. Nat. Hist. 9, VI, p. 536. Kokoda, Mambare River, N.-E. New Guinea.
forbesi satisfactus, Tate \& Archbold, 1935, Amer. Mus. Nov. 803, p. 7. Goodenough Island, D'Entrecasteaux group. pulcher, Thomas, 1895, Nov. Zool. II, p. 164. Fergusson Island, D'Entrecasteaux group (status fide Rümmler).
pulcher major, Tate \& Archbold, 1935, Amer. Mus, Nov. 8o3, p. 8. Goodenough Island, D'Entrecasteaux group (status fide Rümmler).
5. POGONOMI'S LAMIIA, Thomas
1897. Ann. Mus. Genova, 2, XVIII, p. 615.

Ighibeiri, Upper Kemp Welch River, Central British New Guinea.
6. POGONOMYS VATES, Thomas
1908. Ann. Mag. Nat. Hist. 8, II, p. 495.

Madeu, Upper St. Joseph's River, Central district, British New Guinea,

Genus 5. LENOMIYS, Thomas
1898. Lenomys, Thomas, Trans. Zool. Soc. London, XIV, p. 409.

Type Species.-Mus meyeri, Jentink.
Range.-Celebes.
Number of Forms.-Three.
Characters.-Skull like that of a specialized Rattus; supraorbital ridges very prominent, forming small postorbital-like projections. Anterior part of zygomatic plate more or less straight; infraorbital foramen rather narrow. Incisive foramina short. Bullae large and inflated, though less so than in some Rattus. Palate much narrowed, particularly anteriorly.

Molars complex, the centre row of cusps large, the inner and outer rows also strong, well developed. Nine main cusps in M.1; eight in M. 2 (T. 2 only suppressed); M. 3 trilaminate, nearly as large as M.2, the cusps in the few skulls seen not clear. Teeth heavy; the rows of cusps forming sharp angles with each other. Lower molars with outer subsidiary cusps developed, the main cusps forming sharp angles with each other, the terminal heel of M.1 and M. 2 well developed.

Fur thick and soft. \lammae "apparently $0-2=4$ " (Tate). Tail relatively long, very poorly haired.

In this genus Tate includes, provisionally, the species callitrichus. 'The few skulls bearing this name in London may be wrongly identified; they certainly agree with Rattus in all respects, and do not belong to the present genus.

The type of tooth found in this genus would lead into the more complextoothed species of Ratlus (as legatus, macleari, ctc.), if the posterointernal cusp were suppressed.

The type is a large Rat, measuring up to 290 mm . in adult.
Forms scen: meyori.
List of Named Formis

1. BE XoAIYS MEYT:RI MEYERI, Jentmk
2. Notes Leyden Museum, i, p. 12.
\Ienado, North Celebes.
3. LENOMISS MIEYER1 JAMPO, Tate \& Archbold
4. Amer. Mus. Nov. So3. p. 5.

Mit. Lampobatang, S. Celebes.
3. LENONIY LON(FICALDL'S, Miller \& Hollister 1921. Proc. Biol. Soc. Washington, XXXIV, p. 95. Gimpoe, Middle Celebes.

## Genus 6. CIIlROPODOAIYS, Peters

1868. Chiropodomys, Peters, Monatsber. K. Preuss, Akad. Wiss, Berlin, p. 448.

193+. Instlaemus, Taylor, Philippine Land MammaIs, p. 469. Insulaemus calamianensis, Taylor. Not seen. For lack of distincuishing characters from Chiropodomys see Tate, Bull. Amer. Mus. Nat. IIist. Ľ̌XII, VI, p. 63z, and fig. p. 63 r.

Type Species.-Chiropodomys penicillatus, Peters.
Rasige.-Indo-Nalayan: from Assam, Burma, Siam, Annam, to Sumatra, Java, Borneo and Calamianes 1sland, Philippines. Vunnan.
Number of Foras.- About nine.
Characters.-(This genus is very closely allied to Vandeleuria, and appears also to present some relationship towards Pogonomys.) Skull with extremely heary broad rounded braincase, and relatively short rostrum, of the arboreal type of Chiruromys. Some interorbital constriction noticeable. Supraorbital ridges traceahle, sometimes strong. Interparietal broad and large. Anterior part of zygomatic plate straight. Zygoma rather narrow. Skull slanting downwards posteriorly to a degree, behind posterior zygomatic root. Palate broad. Incisive foramina wide, short, not extending to toothrows. Bullae relatively small. ${ }^{\dagger}$ pper molars rather narrow, the pattern complex. Nine main cusps are present in M. i, the centre cusps larger than the inner and outer rows. M. 2 may have seven or cight main cusps according to the development of T.3, which apparently varics; 'I'. 2 as usual is suppressed. M. 3 noticeably narrow and considerably reduced, with the outer row suppressed. In M.I and M.2, however, the outcr row is strong. N.I and M.z originally have four outer cusps. A specimen examined has a three-rooted M.i. Lower teeth complex; the usual elements present, but the outer subsidiary row normally unusually well developed, the young animal almost has the appearance of having three rows. The usual "outer row," which represents probably the original or archaic
centre row, appears to be nearer the middle of the tooth than is usual. In this character the genus is not much less primitive than IIapalomys.

Mammae $0-2=4$. Hallux opposable, but tail not prehensile, so far as known. 'I'he tail is considerably longer than the head and body, relatively well haired, and more or less pencilled terminally. Jindfoot much modified for arboreal life, with enlarged digit pads; D. 5 clawed, nearly as long as D.2; hallux short, without claw, fully opposable. D. 5 of manus with claw, pollex appearing as a widish knob, less reduced than is usual.

Forms seen: anna, gliroides, legatus, major, pictor, pusillus, "peguensis."
The status of these forms is not clear. For the most part they stand now as distinct species; but I think that if a representative number were collected, all would be referable to gliroides as races. The differences are mostly in size, varying from legatus (head and body 133) to pusillus (head and body 76). 'The type of anna is 87 head and body, and of major 100, and pictor 120.

For the status of the Philippines form, not seen, see Tate, p. 632.
There remains to be discussed Chiropodomys fulvus of G. M. Allen, which according to Tate differs so widely from gliroides that it probably should be excluded from the genus. The differences are pointed out by Tate, p. 630 (hallux with claw, mammae $2-2=8$, etc.). Tate suggests it is allied to Mus; but if the dentition, as I believe is the case, is complex, with the posterointernal present, this can scarcely be the case. And in the original description, G. M. Allen definitely states that the hallux is clawless and opposable, and the first upper molar has three transverse rows with three cusps each, so that the hallux and molars are as in Chiropodomys according to the original describer. As it is not represented in London I can offer no remarks on it; but from description it certainly seems to be a Chiropodomys, even to the pattern of the lower molars. The mammary formula, $2-2=8$, suggests Vandeleuria or Micromy's; but this is not a character of importance when dealing with genera.

## List of Named Forms

1. CHIROPODOMIS GLIROIDES, Blyth
2. Journ. Asiat. Soc. Bengal, XXIV, p. 721. Cherrapunjee, Assam.
Synonym: penicillatus, Peters, 1868, Monatsber. K. Akad. Wiss. Berlin, p. $44^{8 .}$
peguensis, Blyth, Journ. Asiat. Soc. Bengal, XXVIII, p. 295, 1859.
3. CIIlROPODOMI'S NIADIS, Millet
4. Smiths. Misc. Coll. NLV, p. 40.

Lafau, Nias Island, Sumatra.
3. CHROPODOMYS ANNA, Thomas \& Wroughton
1909. Abstr. Proc. Zool. Soc., London, LXVIII, p. 19, Proc. Zool. Soc. London, 1909, p. 390.

Tjilatjap, Java. Regarded as a subspecies of gliroides by Tate.
4. CHIROPODOMIS PICTOR, Thomas
1911. Ann. Mag. Nat. Hist. \&, V1I, p. 207.

Mt. Kina Balu, N. Borneo.
5. CHIROPODOXIYS MLAJOR, Thomas
1893. Ann. Nag. Nat. Hist. 6, NT, p. 344

Sadong, Sarawak, Borneo.
6. CHIROPODOMIS LEGATL $S$, Thomas
1911. Ann. Mag. Nat. Hist. S, VIl. p. 206.

At. Kina Balu, N. Borneo.
7. CHIROPODONIIS PUSILLUS, Thomas.

ISo3. Ann. Nae, Nat. Hist. 6, XI, p. 345.
At. Kina Balu, N. Borneo.
8. CIIIROPODONIYS CALAMIANENSIS, Tavar
1934. Philippine Land Nammals, p, 470.

Busanga Island, Calamianes, Philippines.
incertae sedis (see discussion above)
9. (IHIROPODONY's (?) FLLVLS, G. M. Allen
1927. Amer. Mus. Nor. 270, p. I1.

Yunnan, S. China, Yinpankai, Mekong River.

## Genus 7. VANDELELRLA, Gray

IS42. Vandeleuris, Gray, Ann. Mag. Nat. Hist. X, p. 265.
Type Species.-, Mus oleraceus, Bennett.
Range.-Indian: from Ceylon and southern Peninsular India to Gujerat, Kumaon, Nepal; also Tongking and Siam.
Number of Forms.-'Ten.
Characters.-Closely related to Chiropodomys, but the feet more specialized, and the skull rather less so. Thus the frontals appear more sharply constricted, and the braincase a little less heavy. Supraorbital ridges usually absent. Rostrum perhaps less shortened. Zygomatic plate straight anteriorly. Palatal foramina rather less shortened usually than in Chiropodomys. Upper cheekteeth much as in Chiropodomys; the posterointernal cusp well developed; the outer row of M.I and M. 2 well marked; M. 3 considerably reduced. Lower teeth less complex than in Chiropodrmys normally, the outer subsidiary row of cusps not strongly marked.

The size is small, usually or always under 100 head and body. D. 5 manus much reduced, the claw suppressed (a nail in its place). D.2 is also reduced, noticeably shorter than the two central digits. D. 5 hindfoot also without claw; hallux (apparently) fully opposable, in form like that of Chiropodomys and other Rats with this specialization.

Nlammae 2-z-8. Tail, so far as known, not prehensile; moderately well haired.

Remarks.-'The specialized digits distinguish this genus sufficiently both from ('hiropodomys and from the Palaearctic Micromys. Wroughton in his key places the genus in the section in which the posterointernal cusp is absent, which is incorrect.

Forms seen: dumeticola, modesta, marica, nilagirica, nolthenii, oleracea, rubida, spadicea, sibylla, wronghtoni.

Wroughton has keyed the species admitted in the Indian Mammal Survey: All appear so closely related that I think it would be quite reasonable to regard them as races of the type species.

## List of Named Forms

1. VANDELELRIA RUBIDA, Thomas
2. Journ. Bombay Nat. Hist. Soc. XXIII, p. 202. Bageswar, Kumaon, N. India.
3. VANDELELRIA OLERACEA OLERACEA, Bennett 1832. Proc. Zool. Soc. London, p. 121. India; Dukhun.
Synonym: dumecolus, Hodgson, 1841, Journ. Asiat. Soc. Bengal, X, p. 915 :
zuroughtoni, Ryley, 1914, Journ. Bombay Nat. Hist. Soc. XXII, p. 658. Patal, Surat district.
pozensis, Hodgson, 1845, Ann. Mag. Nat. Hist. XVV, p. 269. badius, Blyth, 1859 , Journ. Asiat. Soc. Bengal, XXVIII, p. 295 .
4. VANDELEURIA OLERACEA SPADICEA, Ryley 1914. Journ. Bombay Nat. Hist. Soc. XXII, p. 659. Lunwa, Palanpur, Gujerat, W. India.
5. VANDELELRIA OLERACEA MARICA, Thomas 1915. Journ. Bombay Nat. Hist. Soc. XXIV', p. 54. Chaibassa, Orissa, India.
6. VANDELEURIA OLERACEA MODESTA, Thomas 1914. Journ. Bombay Nat. Hist. Soc. XXIII, p. 202. Ramnagar, Kumaon, N. India.
7. V'ANDELEL゙RIA NILAGIRICA NILAGIRICA, Jerdon 1867. Mamm. India, p. 203. Ootacamund, S. India.
8. Vandeleuria Nilagirica Nolthexil, Phillips 1929. Cevlon Journ. Sci. Sec. B. XV, p. 165. West Haputale, Ohiya, Ceylon.
9. VANDELELRIA DUMIETICOLA DUMETICOLA, Hodgson 1845. Ann. Mag. Nat. Hist. XV, p. 268. Nepal.
10. V゙ANDELEURIA DUMETICOLA SCANDENS, Osgood 1932. IField Mus. Publ. Zool. Ser. XVIII, p. 320.

Muong Boum, Tongking.
10. V.ANDELELRIA SIBYLLLA, Thomas 1914. Journ. Bombay Nat. Hist. Soc. XXIII, p. 202. Chantahonn, Southern Siam.


Fig. 4. Micromys minutus, Pallas.
B.\I. No. $+3 \cdot 3 \cdot 7 \cdot 2$; 5 .


Fig. 5. Micromiys minutes, Pallas.
B.M No. +3.3.7.2; 5.

## Genus 8. MICROMIS, Dehne

1841. Micromys, Dehne, Micromys agilis, ein neues Säugthier der Fauna von Dresden, p. 1.
'1'ype Spectes,-Micromys agilis, Dehne =Mus soricinus, Hermann.
Range.-Principally Palaearctic: Europe, from England and the French side of the Pyrenees, south of the Baltic, east into Finland and European Russia, "northwards approximately to latitude of Leningrad and upper reaches of R. Konda in former Tobolsk subdistrict" (Vinogradov); south in Europe to Italy, and from France, Belgium, Germany, Switzerland, Hungary,


Fig. 6. Microniys minutus.
Cheekteeth: $\times 13$.

Roumania, Serbia. Parts of southern Siberia; and northern Siberia (Yakutsk, Transbaikal district, former Ussuri and Amur districts quoted by Vinogradov). In China known from Moupin, Szechuan, Shensi, Forea, Fukien; and known from Japan. In the Indo-Malayan, occurs in Assam and North Tongking.

Number of Formis.-About seventeen.
Characters.-Size very small. Skull with strongly shortened rostrum, "distance from gnathion to lower edge of infraorbital foramen less than depth through lachrymal region" (Miller); supraorbital ridges not present; braincase large and broad. Zygomatic spread relatively narrow owing to breadth of braincase. Anterior border of zygomatic plate straight.

Incisive foramina long, approaching the toothrows. Palate relatively broad. Bullae large. Upper tecth with a well-developed posterointernal cusp in M.x and $\lambda 1.2$; in M.I there are nine main cusps present; T. 6 is rather enlarged; M. 2 with T.i, a small 'T.3, and all the other eusps present; M. 3 of moderate size (though clearly smaller than M. 2), with 'T.s and two posterior laminae present. '1'.3 in M.ı may become reduced. T.y is small in M.i and M.2; the centre row of cusps is the largest, but neither the inner nor the outer row show much signs of reduction. Lower teeth without special peeuliarity, the outer subsidiary cusps small or moderate.

Ear "with triangular valve capable of completely closing the meatus" (Miller). Tail subequal in length to head and body as a rule, rather well haired, prehensile, bare above at tip. Hindfoot with the three eentral digits relatively long, and also D.5; hallux clawed, and not fully opposable; short. Forefoot with normal digits, " the two posterior palmar tubercles united in median line -and so enlarged that they are confluent along median line behind, forming with the thumb a single tubercular mass opposed to the balls of the fingers" (Niller). D. 5 may be shortened to a certain degree. Fur soft.

Nammae $2-2=8$. These Mice are so small that they might almost be described as specialized for arboreal life in high grass. Their nest-building habits are well known. The head and body normally is probably always less than So mm.

Forms seen: bataroai, erythrotis, minutus, "minimus," japonicus, pratensis, pygmaeus, soricimus, ussuricus.

## List of Named Forms

1. MIC'ROMY'S MIINLTLS MINUTLS, Pallas
2. Reise Russ. Reichs, 1, p. 454.

Banks of the Volga, Russia.
$=$ MICROMY'S MINUTLSi SORICINLA゙, Hermata
1780. Schreber Säugt. 1V, p. 66r,

Strassburg, Germany.
Synonym: meridionalis, Costa, 1S39, Fauna Regno Napoli, p. I3. Vicinity of Naples, Italy.
agilis, Dehne, 1841 , Micromys agilis, ein neues Säugthier der Fauna von Dresden, p. I. Dresden, Gemmany.
messorius, Kerr, 1792, Anim. Kingd., p. 230. Hampshire, England. (For status sce Miller. Cat. Mamm. W. Europe, Pp. S44, 845. 1912.)
triticeus, Buddactt, 1785 , Elenchus Anim. I, p. III. Hampshire, lingland.
minimus, White, 1789 , Nat. Hist \& Antiq. Selborne, p. 43. Selborne, Hampshire. England.
pemdulimus, Hermann, r8o4, Observ. Zonl. p. 61. Strassburt, Germany.
purwlus, Hermann, isot, same reference (p. 02) and locality. cumpestris, Désmarest, Manmalogie, pt. 2, p. 543. France. minatus, Schinz, IS.40, Europ. Fauna, I, p. 70.
orvairorus, de Selys-Longchamps, Atti della sec. Riunione degli Sei. Ital. Torino, iS40, p. 247. Lombardy, Italy.
(Micromys minutus soricinus) pumilus, Cuvier, 1842, Hist. Nat. Mamm. p. 4. Paris, France.
campestris, Barrett-Hamifton, 1900, Ann. Mag. Nat. Hist. 7, V, p. 529. Waremme, Liége, Belgium.
3. MICROMIS MINUTUS SUBOBSCURLS, Fritsche
1934. Zeitschr. für Säugetierk. 9, p. 431.

Umgebung von Wesermünde, Germany.
4. MICROMYS MINUTUS PRATENSIS, Ockshay

183 r. Nov. Act. Acad. Caes. Nat. Cur. XV, pt. II, p. 243.
Western Hungary.
Synonym: arundinaceus, Petenyi, 1882, 'Termeszetrajzi Fuzetek, V, p. 142.
5. MICROMYS MINUTUS BRAUNERI, Martino
1930. Proc. Zapiski Russ. Sci. Inst. Belgrade, 2, p. 60. Kraljevo, Serbia, Yugoslavia.
6. MICROMYS MINUTUS MEHELY'I, Bolkay
1925. Nov. Mus. Sarajevoensis, 1, p. 12.

Northern part of Balkan Peninsula.
7. MICROMYS MINUTUS FENNIAE, Hizheimer 1911. Acta Soc. Fauna et Flora Fenn. 34, p. 15. Mantsala, Finland.
8. MICROMYS MINUTUS SAREPTAE, Hilzheimer
1911. Acta Soc. Fauna et Flora Fenn. 34, p. 18.

Sarepta, Lower Volga.
(9. MICROMIYS MINUTUS USSURICU'S, Barrett-Hamilton
1899. Ann. Mag. Nat. Hist. 7, I11, p. 344.

Ussuri, E. Siberia.
10. MICRONIYS MINUTUS BATAROVI, Kastschenko 1910. St. Petersbourg Ann. Mus. Zool. Ac. Sci. 15, p. 284.

Transbaikalia, E. Siberia.
11. MUCROMYS MINUTUS KYTMANOV1, Kastschenko 1910. St. Petersbourg Ann. Mus. Zool. Ac. Sci. 15, p. 284.

Transbaikalia, E. Siberia.
12. MICROMYS MinUTUS PYGMAEUS, Milne-Edwards 1874. Rech. Mamm. p. 291.

Szechuan, China.
13. MICROMYS MINUTUS BEREZOWSkiI, Argyropulo 1929. C.R. Acad. Sci. Leningrad, 1929A, p. 253.

Mountain defile Ho-tzsi-how, vicinity of town Lun-ngan-fu, North Szechuan.
14. MICROMY'S MINUTUS JAPONICUS, Thomas 1906. Proc. Zool. Soc. London, 1905, p. 35 I.

Tosa, Kochi Ken, Shikoku, Japan.
15. MICROMES MINUTL'S AOKIl, Kuroda 1922. Journ. Mamm. Baltimore, 3, p. 43.
'T'sushima, Japan.
16. \HCLRONYS MINLTLS IIONDONIS, Kuroda
1933. Journ. Mamm, Baltimore, i 4, p. 2 2 . Hondo, Japan.
17. NIICROMIS NIDLTENERITHROTIS, Blyth

1855 Joum. Asiat. Soc. Bengal, XXIV, p. 721. Cherrapunji, Assam, India.

## Genus 9. APODEXILS, Kaup

I 829. Apodemes, Kaup, Entw: Gesch. und Naturl. Syst. Europ. Thierwelt, 1, p. 154 . 1924. Sylvaemis, Ognex, Faun. Vert. Gouv: Voronesh, p. it3. (Mus sylvaticus, Linnaeus.)
1924. Nemomys, Thomas, Journ. Bombay Nat. Hist. Soc. NXIX, p. 889. (Mus sylzaticus, Linnaeus.)
1928. Alsonys, Dukelski, Zool. Anz. 77, p. 42. (1Hus sylzaticus major, Radde.)
1935. Petromys, Martino, Zap. Russk. 10, p. 85. Subgenus for "Sylzaemus mystacinus epimelas," Nehring. (Not of Smith.)
Type Species.-Mus agrarius, Pallas.
Ravge.-Principally Palaearctic: Europe, from Iceland, Ireland, and Shetland Islands eastwards across Russia; from Scandinavia to the Mediterranean coast, Sicily and Crete; Asia Ninor, Turkestan, and across Siberia to the Pacific; Nanchuria, Korea, Kansu, Szechuan, Shantung; Sakhalin, Mongolia, and throughout the greater part of China north of the Iangtse; Japan; Kashmir, Punjab; Persia; Syria; Morocco, Algeria. In Indo-Malayan region occurs in Nepal, Burma (specimen in B.入.., speciosus), Viunnan, Fukien, Riukiu Islands, and Formosa.

Nember of Forms.- Approximately eighty-five.
Remarks.- This genus has been djvjed, as indicated in the synonymy, into three or four genera or subgenera. Ognev erected Sylzaemus for the sylaticus group, hut gives no list of species to be referred to it or to Apodemuis s.s. Thomas in the same year erected Vemomys for the same group, and listed the species; but his division does not agree with that of Vinogradov's classification; in the former, speciosus is referred to "Nemomys," but in the latter to Apodemus s.s. The genus is best regarded as with no subgenera, but with a number of fairly well-marked specific groups; the characters of these groups intergrade to a certain degree, as 1 shall endeavour to show. Either each specific group must receive a generic name, which is as unnecessary as it is inconvenient, or all must he referred to Apodemus.

Characters.- Skull with rather broad braincase, and moderate or relatively long rostrum (this not strongly shortened, compare Micromys) the nasals usually projecting slightly forwards over incisors. Incisive foramina well open, and reaching the anterior molars as a rule. Palate relatively broad. Bullae medium. Zygoma narrow; zygomatic plate may be straight anteriorly, or nearly so, or slightly cut back, this being a variable character within different races of the same species. In the majority, supraorbital ridges are not developed, but they are present in the agrarius group, and in the speciosus group. In old specimens of fluzicullis, the skull tends to become angular, and faintly ridged.

Upper tecth complex, the posterointernal cusp present ; the centre row of cusps larger than the outer and inner rows, neither of which are much reduced as a rule. N.i with T. 3 well developed in primitive forms, more reduced, or shortened (i.c., nearer T.2), in agrarius group; and with nine cusps present. There are traces often of a small extra posterior cusp on outer side of M.ı in sylzaticus group; in mystacinus and in speciosus sometimes, this cusp is well developed, so that like Chiropodomys and others there are four outer cusps in M.1. M. 2 with T. 3 present, vestigial, or absent; T. 1 present; and the three cusps of the second and third laminae all present, though T. 9 may become much reduced. In agrarius, T. 3 is usually suppressed in this tooth. 11.3 smaller than M.2, trilaminate as a rule, most reduced in agrarius group. In geisha, the front lamina of $\lambda 1.1$ often appears intermediate to a degree between the agrarius and the more normal types.

Lower cheekteeth with the usual Murine elements; the terminal heel of M. 1 and M. 2 well developed; the outer subsidiary cusps variable in development, sometimes very strong, as in the type of gurkha. Mandible without extreme peculiarity; the coronoid may be reduced. In the type of hirtensis, the posterointernal cusp is more reduced than is normal for this section.

Fur usually soft, though sometimes, as in speciosus, it may become bristly. Forefoot normal. Hindfoot usually noticeably narrow, the three centre digits moderately long, the outer digits not reduced (the toes not shortened, and the foot not broadened for climbing, and hindfoot in a series of specimens of all species always averaging more than 20 per cent head and body length, often 23 per cent or more, compare Thamnomys (measurements have been noted of over three hundred specimens in this respect)).

Tail moderately haired, usually subequal to head and body length, or not much longer or shorter. In agrarius, a black middorsal stripe is present. M.I is usually four-rooted. The mammary formula may be $2-2=8$ or $1-2=6$.

The following characters of some of the main species should indicate that no subgenera may be recognized, though it must be borne in mind that dental characters such as these are apt to be variable to a degree individually.

|  | stPraoreital Ridges | MID- DORSAL STRIPE | MammaE | T. 3 IN SECOND tPPER MOLAR | T. 3 in M. 1 | M.3, LPPER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mystacinus | Absent | Absent | $1-26$ | Present | Normal | Vot reduced |
| sylvaticus | Absent | Absent | $1-2-6$ | Present | Normal | Not reduced |
| flavicollis | Braincase ridged in old age | Absent | 1 -2. 6 | Present | Normal | Not reduced |
| speciosus | Present | Absent | $2-28$ | Present, or may be vestigial | Normal | Usually not reduced |
| geisha | Absent | Absent | $2-2=8$ | Often much reduced | In many specimens intermediate between the two types | Sort reduced |
| agrarius | Present | Present | $2-28$ | Usually absent | Placed nearer to T.z, or front lamina of M. $i$ narrowed | More reduced |
| chervieri | Present | Absent | () | Usually absent | As agrarzius | More reduced |



Fig. 7. Apodemus sylvaticus, Linnaeus.
B.M1. No. 6.5.1.46, $0^{+7}$; $3 \frac{1}{2}$.


Fig. S. Apodeme's sylvaticus, Linnacu.
B.M. No. 6.5.I.46, ${ }^{*}$;

3t.

Forms seen: agrarius, ainu, arianus, brauneri, butci, callipedes, celatus, ciscaucasicus, chevrieri, creticus, coreac, cumbrac, dichrurus, draco, epimclas, fergussoni, frolagan, flavicollis, fridariensis, geisha, ghia, giliacus, granti, gurkha, hamiltoni, harti, hayi, hebridensis, hirtensis, hokkaidi, ilex, larus, latrontm, maclcan, major, manchuricus, mosquensis, mystacinus, navigator, ningpocnsis, orestes, pallidior, peninsulae, pentax, princeps, sagax, semotus, smyrnensis, speciosus, sylvaticus, tanei, thulco, tural, tscherga, wardi, witherbyi, wintomi, y akui, stankovici (A. sylvaticus stankozici, Martino, 1937, from Yugoslavia).


Fig. 9. Apodemus sylvaticus, Linnaeus. Cheekteeth: $a$, slightly worn; $b$, much worn: $\times$ io.

The following groups are recognized:
agrarius group. Dental characters including simplified front lamina of M. 1 and reduced M. 3 indicated above; supraorbital ridges present; typically a middorsal stripe present; head and body averaging approximately 95 (up to II8). Mammae 8. With chevrieri, similar, but without middorsal stripe.
speciosus group. Dental characters in many specimens seen tending towards the complex type found in mystacimus, though there is some variation individually. Supraorbital ridges present.

With (?) gurkha, from Nepal (Thomas suggested that it was nearest speciosus; lower molars typically complex, with strong outer subsidiary row).

Ilead and body averaging about 108 (97-133), in speciosus; gurkha is smaller (about 91 average).

Mammae usually 8, but $1-2=6$ in semotus from Formosa.
sylvaticus group. Dental characters without extreme peculiarity, i.e., M. 3 not tending to be reduced, outer row of first upper molar usually less
complex than mastacimus, and its front lamina not compressed as in agrarius. No supraorhital ridges, or these faint (old flavicollis). Nammae 6 , head and body averaging about 95 ( $81-112$ ), in eighty-three specimens from Europe, Asia, and Africa; with hebridensis, hirtensis (posterointernal cusp evidently tending to be reduced), fridariensis (the last-named three forms rather larger, averaging slightly over 100 ), and flavicollis (head and body averaging about 105 (up to 130 according to Vinogradov), and skull more angular in adult than is usual for the group.
geisha group. Near the last, but averaging smaller (about So head and body $(70-90))$; tail in all measurements noted rather longer than head and body; mammae $\delta$; a group confined to Japan, and nearly allied to sylzaticus group.
mistacimus group. Normally with more complex teeth than in sylaaticus group (usually four outer cusps in M.1, etc.); at extreme development largest of genus (head and body averaging roughly 120 (100-150)), and hindfoot relatively shorter than in sylvoticus group, in this character agreeing with agrarius. No supraorbital ridges. Nammae 6.

list of Named Forms<br>mystacinus Group

 1877. Proc. Zool. Soc. London, p. 279.

Zebil, Bulgar Dagh, Asıa Minor.

Smyrna, Asia Mhnor.
3. APODEAIS MIYSTACINLS ELXINLE, G. M. Allen
1915. Bull. Mus. Comp. Zool. Harvard Coll. LIX, p. if.

Scalita, Asia Minor.
4. APODLALS MISTACNL'S RHODIUS, Festa
1914. Boll. Mus. Zool. Anat. Comp. Torino, 29, p. 10.

Aghios 1 sidoros, Rhodes.
5. APODEMLLS EPIAIELAS, Nehrmg
1902. Sitz. Ber. Ges. Nat. Fr. Berlin, p. 2.

Agoriana, Parnassus, Greece.
sykaticus Group
6. APODEMLS SYLVATICL'S SYLVATJCL'S, Linnaeus
1758. Syst. Nat. I, 1oth ed., p. 62.

Upsala, Sweden.
Synonym: sylzaticus celticus, Barrett-Hamilton, 1900, Proc, Zool. Soc. p. for. Ireland.
parzus, Bechston, 1793. Getreue Abbild. Naturhist.
Gegenstände, 1, p. 100. Thüringen, Germany.
candidus, Bechstem, same reference, p. ror.
zarius, Bechstein, same reference, p. ior.
miger. Bechstein, same reference.
(Apodemus sylvaticus albus, Bechstein, 180 x , Gemeinn. Naturgesch. Deutschsy (vaticus)
lands, 1,2, p. 965 . Thüringen, Germany.
leucocephalus, Bechstein, same reference, p. 966. intermedius, Bellamy, r839, Nat. Hist. of South Devon, p. 330. Devonshire, England.
7. APODEMUS SYLVATICUS BUTEI, Hinton
1914. Ann. Mag. Nat. Hist. 8, XIV, p. 123.

Bute, Hebrides.
8. APODEMUS Sl'LVATICUS CALLIPIDES, Cabrera
1907. Bol. Real. Soc. Esp. Hist. Nat. Madrid, VII, p. 228.

Villarutis, Ia Coruña, Spain.
9. APODIANUS SVLVATICUS DICHRLRUS, Rafinesque
1814. Précis des Découvertes Somiologiques, p. 13.

Sicily.
Synonym: pecchioli, Pecchioli, 1844. Atti della quinta Unione degli Sci. Ital. Torino, 1843, p. 426. Tuscany, probably vicinity of Siena, Italy.
10. APODEMUS SILVATICUS CRETICUS, Miller
1910. Ann. Mag. Nat. Hist. 8, VI, p. 460.

Katharo, Crete.

1. APODEMUS SYLYATICUS FLAVOBRUNNEUS, Hilzheimer
2. Acta Soc. Fauna et Flora Fenn. 34, 1911, p. 7.
N. Germany.
3. APODEMUS SYLVATICUS DISCOLOR, Noack
4. Z. Forst. u. Jagdwesen Berlin, 50, p. 466.

Eberswalde, near Berlin, Germany.
13. APODEMUS SIIVATICUS SPADIX, Fritsche
1934. Zeitschr. für Säugetierk. 9, p. 435.

Weidhausen bei Sonneberg, Thuringia, Germany.
14. APODEML'S SYi.VATICL'S ISLANDICUS, Theinemann

1\$27. Reise im Nord. Europ. II, p. 153.
Iceland.
15. APODENUC'S SYLVATICUS FENNICL'S, Hizhcimer 1912. Acta Soc. Fauna et Flora Fenn. 34, 1911, p. 9.

Kirchspiel Saaksmaki (nordl. v. Tavastehus), Finland.
16. ApODIEMUS SYLVATICUS BERGENSIS, Krausse 1921. Arch. Naturg. Berlin, 87, 6, p. 41.

Bergen, Norway.
17. APODEMUS SYLVATICUS BAESSLERI. Dahl
1931. Bull. Soc. Nat. Crimée, 11, p. 159.

Crimea, S. Russia.
18. APODEMUS SYLVATICUS CISCALCASICUS, Ognev
1924. Rodentia of N. Caucasus, Rostov-on-Don, p. 48.
N. Caucasus, Russia.
19. APODEMLS SY'LVATICUS FULVIPECTUS, Ognev
1924. Rodentia of N. Caucasus, Rostov-on-Don, p. 47.
N. Caucasus, Russia.

4 Living Rorlents-II

## APODENIUS

20. APODEMUS SYUVATICUS MOSQUENSIS, Ognev
21. Fauna Mosquensis, Bpl. 1, Teil i, p. 204.

Gouv. Moskow, Amolensk, Russia.
21. APODFVIL'S SVLYATICUS TSCHERGA, Kastschenko
1899. Res. Zool. Exp. to Altai, 1898, p. 46.

Cherga Village, Altai, Siberia.
22. APODEALCS SYINATICLS BALCHISCIFVSIS, Kashkarov
1922. Trudy Sredne-Asiatskago Gosudarstv. Universitet. No type locality, (Shores Lake Balkash, according to Vinogradov.)
23. APODEMITS SV1VVATICLS TOK.HAK, severtzow
1873. Isvestia Obshchestva lubitelei estestvodnania, vol. XXVII, 3, Moscow. Semirechie distriet, N. Turkestan; Aleksandror mountain ridge.
27. APODFMLUS SYLVATICLS MAJUSCLLLЯ, Turov
1924. C. R. Acad. Sci. Leningrad, p. 110. Lake Baikal, Siberia.
25. APODEMIUS SILVATICLS MICROT1S, Milder 1912. Proc. Biol. Soc. Washington, XXV, p. 60. Vicinity of Dzharkent, Russian Turkestan.

25a. APODEML'S S\LVATICLS PALLIDL'S, Kaschkaroff 1926. Key to Rodents of Turkestan, p. 22. Usbekistan Exp. Plant. Prot. Station, Tashkent, Mountains of 'Turkestan.
26. APODEMLS SYLVATICUS PALIIPES, Barrett-1 lamilton 1noo. Proc. Zool. Soe. London, p. 417. Surhad Wahkan, Turkestan (prohably Chinese Turkestan).
27. APODEMC: AYLVATICUS CHORASSANICUS, Ognev \& Heptner 1928. Zool. Anz. 75, p. 263.

Makhtum-Ǩala, Askabad, Kopet-Dag, Turkestan.
28. AP()DEMLS sivLVATICLis TALRICLS, Barrett-Hamilton 1900. Proc. Zool. Soc. London, p. 412. Zebil, Bulgar Dagh, Asia MIinor.
20. APODEAILS SYLVATICLis ARIANLS, Blanford t881. Ann. Mag. Nat. Hist, 5, V11, P. 162. Kohrud, N. Persia.
30. APODEAIES SYLYATICLS LRYTHRONOTLS, Blanford 1875. Ann. Mag. Nat. Mist. 4, NVI, p. 311. Kohrud, Persia.
35. APODEMLS SYLSATLLE WITHERBYI, Thomas 1902. Ann. Mag. Nat. Hist. 7, K, p, 490. Sheoul, Fars, Persia.
32. APODFXILS SVBYATLCLS WARD1. Wrouqhton 1908. Journ. Bombay Nat. IIst. Soc, SVIII, p. 28z. Saspul, Ladak.
33 WP()HEXICS SYLVATICLİ PENTAN, Wioughton 1908. Journ. Bombay Nat. Hist. Soc. XVIII, p. $2 \mathrm{~S}_{3}$. Thandiana, Punjab, I. Indıa.
34. APODEMU's SYLVATICU'S HAYI, Watcrhouse
1837. Proc. Zool. Soc. London, p. 76.

Morocco.
35. APODEMUS HEBRIDENSIS HERRIDENSIS, de Winton 1895. Zoologist, 3rd ser. XIX, p. 369.

Lewis, Outer Hebrides.
36. APODEMUS HEBRIDENSIS HAMILTONI, Hinton
1914. Ann. Mag. Nat. Hist. 8, XlV, p. 126.

Rum, Inner Hebrides.
37. APODEMUS HEBRIDENSIS TIRAE, Montagu
1923. Proc. Zool. Soc. London, 1922, p. 934.

Tiree, Inner Hebrides.
38. APODEMIUS HEBRIDENSIS GHIA, Montagu
1923. Proc. Zool. Soc. London, 1922, p. 935.

Gigha, Inner Hebrides.
39. APODEMIUS HEBIRIDENSIS TURAL, Montagu 1923. Proc. Zool. Soc. London, 1922, p. 935.

Islay, Inner Hebrides.
40. APODEMUS HEBRIDENSIS LARUS, Montagu 1923. Proc. Zool. Soc. London, 1922, p. 936. Jura, Inner Hebrides.
41. APODEMUS HEBRIDENSIS CUMBRAE, Hinton 1914. Ann. Mag. Nat. Hist. 8, XIV, p. 128.

Great Cumbrae Island, Inner Hebrides.
42. APODENIUS HEBRIDENSIS MACLEAN, Hinton
1914. Ann. Mag. Nat. Hist. 8, XIV, p. 129.

Mull, Inner Hebrides.
43. APODEMIUS HEBRIDENSIS FIOLAGAN, Hinton 1914. Ann. Mag. Nat. Hist. 8, XIV, p. I3I.

Arran Island, Inner Hebrides.
44. APODEMUS HIRTENSIS, Barrett-Hamilton
1899. Proc. Zool. Soc. London, p. 8ı.

St. Kilda, Outer Hebrides.
45. APODENIUS FRIDARIENSIS FRIDARIENSIS, Kinnear 1go6. Ann. Scottish Nat. Hist. XV, p. 48. Fair Isle, Shetlands.
46. APODEMIUS FRIDARIENSIS GRANTI, Hinton 1914. Ann. Mag. Nat. Hist. 8, XIV, p. 132.

Mid Yell, Shetlands.
47. APODEMUU FRIDARIENSIS THLLEO, Hinton 1919. Scot. Nat. p. 178.

Foula, Shetlands.
48. APODEMICS FLAVICOILIS I'LAVICOLIIS, Melchior
1834. Danske Staats og Norges Pattedyr, p. 99.

Sielland, Denmark.
Synonym: sylvaticus princeps, Barrett-Hamilton, 1900, Proc, Zool. Soc. London, P. 408. Rumania.

## APODEMUS

(Apodemus flaztoolls flaricollis)
cellarius. Fischer, 1866, Zool. Gart. V1I, p. 153. Near Luga, Russia. typicus, Hamilton, 1900, Proc. Zool. Soc. London, P. 404.
49. APODEMIL'S FLAVICOLIS WINTUNI, Bartett-Hamiton
1900. Proc. Zool. Soc. London, p. 406.

Graftonbury, Herefordshire, England.
50. APODEMIC' FLAVICOLLIS BRALNERI, Martino
1927. Ann. Mus. Budapest. 23, p. 166.

Topcider, near Belgrade, Nerbia.
51. APODEMLS FLATICOLLIS SAMARIENSIS, () ener
1923. Biol. Mhtt. Timiriazeff, 1, p. 107.

Samara, S.-E. Russia.
Synonym: samaricus, Ognev, 1923, Fauna Voronesh, p. s44.
52. APODEMICH FLAVICOLIS PONTICCS, Sviridenko
1936. Abs. Works Zool. Inst. Moscow State Unit, 3, p. 103.

Olgino Village, Chernomorski district (Black Sea), Russia.
53. APODEMLS FLAVICOH,IS RLSIGES, Maller
1913. Proc, Biol. Soc. Washington, XXVI, p. 81.

Central Kashmir.
Synonym: griseus, True, i894, Proc. U.S. Nat. Mus. XV11, p. 8, name preoccupied.
54. APODEMI'S FLAVIC(OLLIS POHLEI, Aharoni
1933. Zeitschr. für Säugetierk. 7, p. 183.

Syria, Kafrun im Nussarijeh Mountain, north-east of Lebanon.
55. APODEXIU'S HEX, Thomas
1922. Ann. Mag. Nat. Hist. 9, X, p. fof.

Salween-Mekong Divide, Iunnan, China.
geisha Group
5h. APGDEMIL'S GEISHA GEISHA, Thomas
1905. Ann. Mag. Nat. Hist. 7, XV, p. 49 J.

Hondo, Japan.
57. APODEALL'S GEISHA JAKLJ, Thomas 1906. Proc. Zool. Soc, London, 1905, P. 362.

Mountains of Central Yakushima, south of Japan.
58. APODEMILS GEISHA CELATLS, Thomas
1906. Proc. Zool. Soc. London, 1905. 2, p. 359.

Oki Islands (Dogo Islands), Japan.
59. APODENILS GEISHA HOKKAIDI, Thomas
1906. Proc. Zool. Soc. London, 1905, 2, p. 350.

Noboribetsu, Hokkaido, Japan.
60. APGDEAJL's GEISHA TANIEI, Kuroda
1924. New Nammals from Riukiu Islands, p. 9. Tokyo. Riukiu Islands, Nishino-omote, Tanegashima.
60a. APODEMIIS GEISHA SAGAX, Thomas
1908. Proc. Zool. Soc. London, p. 54.

Izuhara, South Island of Tsushima, Japan.

## speciosus Group

62. APODENI'S APP:CIOSL'S APRCIOSL'S, Temminck
63. Fauna Japonica, p. 52.

Japan.
Synonym: argenteus, Temminck, 1845 , Fauna Japonica, p. 51. Japan.
62. APODEMI'S SPPCIOSLS ALNT ${ }^{*}$, Thomas
1906. Proc. Zool. Soc. London, 1905, 2, p. 349.

Aoyama, Hokkaido, Japan.
63. APODEMLS SPECIOSL'A NAVIGATOR, Thomas
1906. Proc. Zool. Soc. London, 1905, 2, p. 358.

Oki Islands, Japan.
64. APODEML'S SPECIOSLS PENINSLLAE, Thomas 1906. Proc. Zool. Soc. London, p. 862.

Min-gyong, iro miles S.E. of Seoul, Korea.
65. APODEMI'S SPECIOSC'S GILIACLS, Thomas 1907. Proc. Zool. Soc. London, p. 411.

Darine, Saghalien.
66. APODEML'S SPECIOSL'S DORSALIS, Kuroda 1924. New Nammals from Riukiu Islands, p. 9, Tokyo. Riukiu Islands, Miyanoura, Yakushima.
67. APODEML'S SPECIOSUS RL'FULUS, Dukelski 1928. Zool. Anz. 77, p. 44.

75 versts south-west of Vladivostok, Ussuri, E. Siberia.
68. APODEMLS SPECIOSt'S MAJOR, Radde
1862. Reise Sib. I, p. iSo.

Bureja Mountains, Province of Amur, E. Siberia.
6y. APODEMLS SPECIOSU'S NIGRITALUS, Hollister
1913. Smiths. Misc. Coll. 6o, XXIV, p. 1.

Tapucha, Altai Mountains, Siberia.
70. APODEMUS SPECIOSL'S ORESTES, Thomas
1911. Abstr. Proc. Zool. Soc. London, p. 49. Proc. Zool. Soc. London, 1912, p. 136. Mount Omi, W. Szechuan, China.
71. APODEMILS SPECIOSL'S LATRONUM, Thomas
1911. Abstr. Proc. Zool. Soc. London, p. 49. Proc. Zool. Soc. London, 1912, p. 137. Ta-tsien-lu, W. Szechuan.
72. APODEML'S SPECIOSL'S PRAETOR, Miller
1914. Proc. Biol. Soc. Washington, XXVII, p. 89.

On Sungaree River, 60 miles south-west of Kirin, Kirin Province, Manchuria.
73. APODEML'S DRACO, Barrett-Hamilton
1900. Proc. Zool. Soc. London, p. 418.

Kuatun, N.W. Fo-kien, S. China.
74. APODEML'S SEMOTLS, Thomas
1908. Ann. Mag. Nat. Hist. S, I, p. 447.

Formosa.
75. APODEMHS (;LRKHA, Thomas
1924. Journ. Bombay Nat. Hist. Soc. NXIX, p. 888. Laprak, Gorkha, Nepal.

## agrarius Group

76. APODEMICS CEIEVRIER1 CHEVRIFR1, MInc-f:dward 1868. Rech. Jamm. p. 288.

Moupin, Szechuan, China.
77. ADODEXIC ('HEVRIERI FERGUSSONI, Thomas 1911. Abstr. Proc. Zool. Soc. London, p. 4 . Proc. Zool. Soc. London, p. 172. Wen-hsien, S. Kansu, China.
78. APODIMLLS AGRARICS AGRARIL'S, Pallas 1778. Nor: Sp. Quad. Glir. Ord. p. 95.

Berlin, Germany.
Synonym: mubens, Oken, Lehrb. d. Natur. III, pt. II, p. So8, i8i6. N. Germany.
pratensis, Ockskay, Nov: Acta. Leop. 1831, XV, 2, p. 243. East parts of Hungary. maculatus, Bechstein, i RoI, Gemeinn. Naturgesch. Deutschlands, 1, 2, p. 975. 'Thüringen, Germany.
albostriatus, Bechstein, same reference.

```
    7y AP()DI&MLS AGRARILS N1KOLSKII, Mggouline
1927. Trav. Soc. Nat. Charkov, 50, no. 2, p. +1.
    Ukraine, S. Russia.
    So. APODE\IL's AGRARIUS SEPTENTRIONALIS, Ognev
1024. Rodentia of North Caucasus, Rostov-on-Don, p. 45.
    Dmitrovsk, sub-district Uesd of the Noscow Gost.
    51. APODENLL'S AGRARLE'S OGNEVI, Johansen
1923. Trans. Tomsk Univ, vol. 72, p. 59.
    Novo-Kuskos: W. . Siberia.
    &z. APODENLLS AGRARIL& MIANTCIULRICCS, Thomas
I K98. Proc. Soc. Zool. Londun, p. 774, footnote.
            Mlanchuria.
    *3. APOLDLMILS AGRARILS (OOREAR, Thomas
1gos. Proc. Zesol. Soc. London, p. S.
                            \Im-grong, 110 miles south-east of Seoul, Korea.
    $4. APODLNILS AGRARILS PAILIIIIOR, Thomas
1gos. Proc. Zool, Soc, London, p. S.
                            Shantune Peninsula, E. China.
    85. AP(IDI:AC& AGRARILS NINGPOENSIS, Swmhore
sifo. Proc. Zool. Sose. London, p. 637.
    Ningpo, S. China.
    Synenym: harti, Thomas, tsiss, Prok. /oool. Soc. lundon, p. 774,
                                    K゙uatun, Fukien, South China.
```

Vinogradov (Rodents of U.S.S.R.) quoted a form A. sylzaticus uralensis, Pallas, from Southern Ural. 'The reference to this has not been traced.

Genus 10. THAMNOMYS, Thomas
1907. Thanonys, Thomas, Ann. Mag. Nat. Hist. 7, XIX, p. 121.
'Type Species.-Thamnomys q'enustus, Thomas.
Range.-African: chiefly Cameroons and Congo, extending east to Ruwenzori, west to Gold Coast.

Number of Formis.-Seven.
Characters.-Skull with relatively long rostrum, and usually broad braincase; supraorbital ridges powerful, except in kuru. Incisive foramina very well open, approaching toothrows, particularly long in the zenustus group. Bullae medium. Zygomatic plate more or less straight anteriorly. Infraorbital foramen relatively large, not much narrowed below. Two very distinct types of dentition occur. In zenustus and kempi the teeth are very much as in Oenomys, which according to Tullberg shows modification towards vegetarian diet; but a well-developed posterointernal cusp is present in M.1 and M.2. M.ı has nine cusps (and a small extra posteroexternal one); M. 2 has a small T.3, also 'T.1, and all other cusps present except 'T.2. N. 3 has three well-marked inner cusps, and two centre cusps apparently; just as in Oenomys, the tooth is distorted, so that most traces of the outer row are suppressed.
T. rutilans and kuru have not such an extreme dentition; the rows of cusps appear to be less raised up, and the valleys separating them are less deep. N. 3 is trilaminate, relatively large, and complex; the outer row is less vestigial than in the renustus group. The lower teeth have the usual elements, in this genus; the type species has the pattern like that of Oenomys; supplementary cusps are well developed, and the general effect is complex; the terminal heel of M.i and M. 2 well developed. M.i 5 -rooted.

The hindfoot is shortened and broadened for arboreal life; D. 5 is nearly as long as D.2. Toes short; hallux relatively long, clawed, probably not opposable. Tail longer than head and body, relatively well haired, tufted faintly at end. Nammac of type species, $0-2=4$.
T. kempi is perhaps not more than a race of renustus; the molars are larger, and the size rather larger. T. kuru differs apparently from rutilans in the shape of the skull.

Measurements of types:
kuru: head and body, 145 ; tail, 200; hindfoot, 35 .
rutilans centralis: head and body, 135 ; tail, 180 ; hindfoot, 24.
renustus: head and body, 125 ; tail, 181; hindfoot, 25 .
kempi: head and body, 141 ; tail, 189 ; hindfoot, 25.5 .
Average and extremes of fifteen specimens of rutilans: head and body, $13,-6$ ${ }_{1} 79 \cdot 8(162-200)$; hindfoot, $24.4(23-25)$.

The hindfoot averages $18 \cdot$ i per cent of head and body length in thirty-three specimens available (including all species).

Forms seen: centralis, kempi, kuru, rutilans, vemustus.

# List of Naned Forms <br> rutilans Group 

1. THANIN(MIYS KLRE', Thomas \& Wroughton
2. Ann. Mag. Nat. Hist. 7, XIX, p. 38 ı.

Angu, Welle River, Congo.
2. THADINONIY RLTTILANS RLTIL. 1 NS, Peters 1876. MLonatsber. k. Akad. Wiss. Berlin, p. 478.

Limbareni, Cameroons.
3. THANNOMIY RLTHANS CENTRALIS, Dollman

1914 . Extr. Rev. Zool. Afr. IV, fasc. I, p. $8_{3}$.
Mambaka, Fundi, Pilipili, Upper Congo.
tenustus Group
4. THAMNONIS VENUSTUS VENUSTUS, Thomas
1907. Ann. Mag. Nat. Hist. 7, XIX. p. 122.

Uganda, E. Ruwenzori.

1934. Amer. Nus. Nov. 708, p. 9.

Medje, Ituri, Belgian Congo.
6. THAMXOMIY KEMPI KEXIPI, Dollman
1911. Ann. Mag. Nat. Hist. 8, VIII, p. 658.

Buhamba, near Lake Kivu, Belgian Congo.
7. THAXNOMIY KEMPI MAJOR, Hatt
1934. Amer. Jus, Nov. 708, p. 10.

L,ukumi, North slope Mt. Karisimbi, Kisu volcanoes, Congo.

Genus ir. GRAMMOMIYS, Thomas
1915. Grammonis, 'Thomas, Ann. Mag. Nat. Hist. 8, XVI, p. 150.

Type Species.-Mus dolichurns, Smuts.
Range.-African: Sudan, Kenya, Lganda. Timhuktu. Liberia; Congo; Nyasaland, Mozambique, 'Transvaal, and South Africa. Angola.

Nlaber of Forms.-Tiwenty-three.
Characters.- The posterointernal cusp becoming much reduced, sometimes barely traceable, never large and inwardly projecting (compare Thamomys), reduced to a low connecting ridge between T.4 and T.s. Skull with broad braincase. Supraorbital ridges relatively weak or can be absent; bullae variable, often rather small; other essential cranial characters as in Thamnomys. Jugal relatively long.

Pattern of cheekteeth: T'.9 strong in M.1, as are all other cusps except 'T.7,
which is vestigial. M. 2 with the centre cusps large; T. 3 vestigial; 'T. 7 very small. M. 3 with a moderate 'T.3, the three cusps on the second lamina, and a small posterior portion. The centre row of cusps is strongly enlarged in this genus. M.i five-rooted. Lower teeth rather less complex as a rule than in Thamnomys, but the subsidiary outer cusps as a rule quite well developed.

External characters near Thamomys, but feet as a rule less obviously specialized for arboreal life than in either Thamomys or Thallomys. Mammae $0-2=4$ or $1-2=6$ (Thomas). The tail is much longer than the head and body, often half as long again. The hindfoot percentage of head and body averages 20.4 in forty-one specimens (including all species represented), which is longer than the percentage in Thamnomys.

Forms seen: aridulus, baliolus, buntingi, cometes, dolichurus, discolor, dryas, elgonis, gaזellae, gigas, ibeamus, insignis, lutosus, macmillani, ruddi, surdaster, tuareg, usambarae.

All forms seem very closely allied to each other, so that several of the forms now standing as species could probably be reduced to subspecific rank. G. ruddi is a distinct species based on a skull which has the teeth so worn that there is some doubt as to its generic position on this character alone, but it differs also from the others in its (for the genus) unusually large bullae; other specimens may be seen to have a vestigial posterointernal cusp, though it seems that this cusp is in this species about to become suppressed. In the characters of the bullae G. ruddi makes an approach towards Thallomys.

Remiarks.-Hollister, 1919, remarked that the characters proposed by Thomas for this genus were too vague even for subgeneric recognition, and synonymized it with Thamnomys, from which it was split. But there is an unquestionable difference in the dentitions of the two genera, particularly the development of T.7; and also apparently in the feet. Taking this into account, and also the great distinctness dentally between the two groups of species referred to Thamnomys, I would not feel justified in reducing this genus to a subgenus. In old age, for instance, the posterointernal may in this genus become almost untraceable, which is not the case in other genera with this cusp, until the entire pattern wears right out, so far as I have seen.

Like several other arboreal Muridae (including Cricetines as Nyctomys), these Rats carry their young attached to the nipples, or so I am told.

## List of Named Formis

## dolichurus Section

1. GRAMAIOMIS MACMILLANI MACMILLANI, Wroughton
2. Ann. Mag. Nat. Hist. 7, XX, p. 504.

Wouida, north of Lake Rudolf, Abyssinia.

[^1]3. (;RAMIM()X[YS MACNHILANI GAZELLAE, Thomas 1010. Ann. Mag. Nat. Mist. S, V, p. 282. Chak-Chak, Bahr-el-Ghazal, Sudan.
4. GRAMMIOMIL: MA(MILIANI OBIITLS, ()sgood 1910. Field Mus. Nat. Hist. Publ. Zool. ser. X, 3, p. 16. Voi, Kienya.
5. GRAMMOMIS MAC MILLLANI TLAREG, Braestrup 1935. Vidensk. Medd. Dansk. Nat. Foren. Bd. 99, p. 113. Timbuktu, French W. Africa.
6. GRANIMONIIS MACMILLANI OCHRACELS, G, M. Allen
1912. Bull. Mus. Comp, Zool. Harvard Coll. LIV, p. 422.

Meru River, north of Mount kenya.
7. GRANAIOMIYS IBEANLS IBEANT $S$, Osgood
1010. Field Mus. Nat. Hist. Zool. X, 2, p. 8. Molo, Keny'a.
8. GRAMIMOMIS IBEANLS LLTOSLS, Dollman 191:. Ann. Mag. Nat. Hist. 8, VIII, p. 657.

Mount Nyiro, Kenya.
9. GRAMLMOMIS SLRDASTER SLRDASTER, Thomas \& Wroughton 1908. Proc. Zool. Soc. London, p. 550.

Zomba, Nyasaland.
Synonym: usambarae, Matschie, 1915, Sitz. Ber. Ges. Nat. Fr. Berhn, p. 99. Amani, Tanganyika.
io. GRAMONLIYS SLRDASTER [N゙SIGNIS, Dolman 1911. Ann. Mag, Nat. Hist. 8, VII, p. 528.

Mt. Elgon, Kenya.
11. GRAMMLOMIY' SLRDASTER POI.IONOPS, Osgood 1910. Field Mus. Nat. Hist. Publ. Zool. ser. X, 2, p. 8.

Lukenya Hills, Kenya.
12. GRAMMONIS SLRDASTER LITIORALIs, Heller 1912, Smiths. Misc. Coll. L.IX, p. 10.

Mazeras, Kenya.
13. GRAMIMIOMYS SLRDASTER ELGONIS, Thomas 1410. Ann. Mag. Nat. Hist. 8, V, p. 282.

Malakisi, Mount Elgon.
14. GRAMMIOMISA SL RD.ASITIR C.AI.LITHRLX, Itatt 1934. Amer. Mus. Nov. 70S, p. 11.

Garamba, Lpper Lelle, Congo.
15. GRAMAIOAJY SL RDASTLR DISC(HLOR, Thomas 19to. Ann. Mag. Nat. Hist, S, V, p. 283.

Kakumega Forest, Ienya.
16. GRAMIDOMIY DRIAS, Themes
1907. Ann. Nag, Nat. Hist. 7, ХLХ, p. 123.
l. Ruwenzori, Uganda.
17. GRAMIMOMIX ! ! \II (il, Thomas
1911. Ann. Mag. Nat. Hist, 8, VII, p. 381.

Bassa, Liberia.
18. GRAMMOMIS COMETES, Thomas \& Wroughton 1908. Proc. Zool. Soc. London, p. 549.

Inhambane, Portuguese E. Africa.

```
    19. GIRAMMOMYS DOL,ACHURL'S DOLICIILRL'S, Smuts
IS32. Enum, Namm, Cap, p. 38, pl, ii.
    Cape Town district.
    20. (jRANIMOMIY'S DOLICHERL & TONGINSLS, Roberts
1931. Ann. Transv: Mus. 14, p. 234.
        Manaba, N. Zululand.
    21. GiRAMMOMVS BALIOLLS, Osgood
1910. Ann. Mag. Nat. Hist. 8, V, p. }278
    Woodbush Hills, north-east of Pietersburg, Transvaal.
    22. (IRAMMOMYS GIGAS, Dollman
```

19If. Ann. Mag. Nat. Hist. 8, Vll, p. 527.
Solai, Mt. Kenya.
ruddi Section
23. GRAMMOMIS RUDDI, Thomas \& Wroughton
1908. Proc. Zool. Soc. London, p. 549.
Tette, Mozambique.

## Genus 12. CARPOMIYS, Thomas

1895. Carpomys, Thomas, Ann. Mag. Nat. Hist. 6, XV1, p. 161.

Type Species.-Carpomys melanurus, Thomas.
Range.-Luzon, Philippine Islands.
Number of Forms.--'Two.
Characters.-Zygomatic plate and infraorbital foramen with the same elements as Batomys (next to be described). Frontals much constricted; supraorbital ridges feeble or absent; braincase round and heary. Rostrum shorter than in Batomys. Bullae of moderate size, appearing rather flat. Palate broad, not extending back to posterior part of toothrow. Incisors thick in the type species, less so in phaeurus, in which species the toothrow is reduced, and the teeth much less heavy than in the type. Upper teeth abnormal; posterointernal cusp present in M.1 and M.2; in all skulls seen the cusps obsolete, and the pattern more or less laminate; M.i appears to have a front lamina with three cusps, a second lamina with the same elements, a third lamina with T. 7 and then divided into two by a deep re-entrant fold from the outer side, so that in all there are four laminae. M. 2 with the same elements except that the front lamina is represented by T.r only. MI. 3 with T.r, the second lamina, and a posterior lamina doubled as in the other molars in some skulls; in others it appears to consist of T.i followed by two transverse plates. In the lower molars, the terminal heel of M.1 and M.2 is large; M.I with foremost lamina with outer fold present, this lamina consequently doubled. This peculiar doubling of the laminae seens to be quite without parallel in the
subfamily, though it maỵ represent in the upper molars an extreme development of the elements corresponding to the fourth (posteroexternal) cusp often met with in complex-toothed genera.

Nammae $0-2=4$. Hindfoot broad, of arboreal type, but hallux clawed and not opposable. D. 5 lengthened. Fur thick; form rather heavy; tail well haired, almost completely so in the type species. Size moderate (roughly 200 mm . head and body).

Forms seen: melanurus, phacmus.
'l'he differences between these species in dental characters are indicated above. Thomas gives measurement of 36 mm . basal length and $6 \cdot 1$ toothrow for phaeurus; and 39.3 hasal length, 8.8 upper molars for melanurus.

## List of Named loorvis

melamurus Group

1. CARPOMIS MELANLRLS, Thomas
iS95. Ann. Mag. Nat. Hist. 6, XVI, p. 162.
Monte Data, N. Luzon, Philippine Islands.
phaeurns Group
2. CARPONIS PHAEURE 4 , Thomas
3. Ann. Mag. Nat. Ilist. 6, XVI, p. 162.

Monte Data, N. Luzon, Philippine Islands.

Genus 13. BATOAlY'S, Thomas
iS95. Batomis, Thomas, Ann. Mag. Nat. Hist. 6, XVI, p. 162.
Type Species.-Batomys granti, 'Thomas.
Range.-Luzon, Philippine Islands.
Number of Foras - 'Two.
Characters.-Skull with considerable interorbital constriction, and broad short braincase; rostrum lengthened to a degree; supraorbital ridges present. Infraorbital foramen extremely narrowed both above and below; zygomatic plate straight anteriorly, broad, slanting sharply upwards, so that its upper border is nearly on level with maxillary root of zygoma instead of (as usual) considerably below it, the general effect much like that of a Microtine. Bullae relatively small. Palate broad, extending only to $\mathbf{X . 2}$ in those seen. Incisive foramina broad, of moderate length, tending to be narrowed anteriorly. Cheekteeth rather hypsodont, not essentially different from a simplified Rattus type, but M.I and $\mathrm{Nl.2}$ with a well-developed posterointernal cusp; M. 3 moderate in size. The cusps not well marked, wearing right down in age so that the pattern becomes laminate, but in those seen it is not obliterated. Lower molars $\mathrm{M.1}$ and M.2 with a relatively very large terminal heel, which in one skull appears almost as an extra lamina; otherwise the lower teeth are without peculiarities. Incisors thin.

Essential external characters as in Carpomys.
Forms scen: granti.
List of Named Forms
t. BA'TOMY'S GRANT1, Thomas
1895. Ann. Mag. Nat. Hist. 6, XVI, p. 162. Luzon, Philippine Islands.
2. BATOMYS DENTATES, Miller
1911. Proc. U.S. Nat. Mus. XXXVIII, p. 400.

Benguet, Luzon, Philippine Islands.

## Genus 14. PITILECHEIR, Cuvier

1838. Pithecheir, Cuvier, Hist. Nat. Mamm. vii., livr. 66, two pp. text.

Type Species.-Pithecheir melamurus, Cuvier.
Range.-Malacca (Selangor), Sumatra, and Java.
Number of Fornis.- Two.
Characters.-(Two skulls only available for examination.) Infraorbital foramen and zygomatic plate approaching the type found in Carpomy's and Crateromys. Rostrum and braincase medium; supraorbital ridges well developed in adult. Bullae very large, and strongly inflated; though perhaps not more so than in some Australian species of Rattus. Incisive foramina in front of toothrow, very broad, quite long. Palate broad.

Upper molars like those of Crateromys (next to be described); the outer row of cusps almost disappearing, the inner row and particularly the centre row large. M.I with nine cusps, including a large posterointernal; 'T. 9 vestigial. M. 2 with T.1, three cusps in second lamina, and a third lamina composed of T. 7 and T.8. M. 3 with T.3, T. 4 and T.5, and one main posterior cusp; evidently the posterointernal is absent in this tooth. Lower teeth without special peculiarity. Incisors moderate.

The reduction of the outer row is most marked in M.2 and M.3; least in M.1, in which T. 3 is quite strong.

Tail very poorly haired in the two specimens seen, more or less reminiscent of the Uromy's type. Hindfoot arboreal; hallux with small claw, but evidently fully opposable; D. 5 long; plantar pads broad. Pollex less reduced than is usual, appearing as a wide knob. Jentink has noted several characters of this rare genus, such as "four well-developed inguinal nipples," "the clitoris is very large," and apparently the palate ridges are abnormal.

Forms seen: melanurus, parvus.

## List of Named Formis

1. PITHECHEIR MELANLRU'S MELANURUS, Cuvier
2. Lesson's Compl. Oeuvres de Buffon, r, p. 447.
(?) W. Sumatra.

I have seen two skins belonging to this genus, an adult (in spirit) from Java, and the type of parzus, from Selangor. The latter is not adult, and the claw on the hallux is more developed than in the Javanese specimen, which has it flattened and vestigial, and in which the hallux is obviously very widely opposable from the rest of the foot. Other than in this genus, it appears that when the hallux is widely opposable, the claw is suppressed (e.g., Hapalomys, Chiromysas, (hiropodomys, etc.).

## Genus s5. CRATEROMIS, 'Thomas

1895. Crateromys, Thomas, Ann. Mag. Nat. Hist. 6, XVi, p. 163.

Type Species.-Phlocomys schadenbergi, Neyer.
Range--Luzon, Philippine Islands.
Number of Forms.-One.
Characters.- Very large, one of the largest members of the subfamily. Skull with excessive constriction in the frontal region, this carried far backwards, so that the braincase is shortened. Zygomatic width considerable. Anterior zygomatic plate and infraorbital foramen with the Nicrotine aspect of Carpomys and Butomys. Occipital region of skull prominent. Palate relatively narrow: Bullate flattened, small. Palatal foramina well open and moderately long, but not reaching the toothrows. Upper cheektceth with the centre and inner rows of cusps enlarged, the outer row small, usually tending to become fused with the cusps of the centre row. The cusps of the centre row form very sharp angles with their neighbours of the inner row. Posterointernal cusp strong in all three molars. The valley between the imner and central cusps well marked, and nearer the centre of the tooth than is usual. No reduction of $\lambda .3$ has taken place in this genus; it is like $M .2$ in elements and size. M. 2 and M. 3 with the front lamina composed of T. r only. Lower teeth with the terminal heel of M.s and M. 2 strong; the cusps of each lamina forming a sharp angle on their junction in the middle, strongly bent hackwards from cach other. M.3 large, the posterior lamina not reduced, but with two cusps. The molars are heavy, and quite hypsodont. Ineisors moderate, not specially enlarged. External form much specialized; size very large; fur excessively thick and long. 'lail long, extremely heavily haired and thickly bushs, as bushy as that of any Squirrel. Apart from the cranial and dental pecuiarities, this feature alone is quite sufficient to distinguish Crateromys from any other member of the Murinae. Hindfoot broad, of arhoreal type, D. 5 nearly as long as the three central digits; hallux long, but not opposable evidently; claws powerful. Forefoot normal, with large, powerful claws. (Taylor, r934, quotes 345 mm . as head and body length for this genus. I should imagine this measurement could not be exceeded.)

Forms seen: schadenbergi.

## List of Named Forms

1. CRATEROMYS SCIIADENBERG1, Neyer
2. Abh. Mus. Dresden, 6, p. I.

Mount Data, N. Luzon, Philippine Islands.

Genus 16. HYOMYS, Thomas
1903. Hyomys, Thomas, Proc. Zool. Soc. London, 11, p. ig8.

Type Species.-Hyomys meeki, Thomas.
Range.-New Guinea.
Number of Forms.-'Three.
Characters,-Very large. Rostrum broad, heavy. Some interorbital constriction apparent between the powerful supraorbital ridges, which extend backwards over the braincase, though on the posterior part of the skull they are more faint. Braincase relatively narrow. Patoccipital process long. Small squamosal crests present in the type skull. Anterior part of the zygomatic plate nearly straight. Incisive foramina very short indeed, narrow, much reduced. Palate narrow and short. Bullae extremely reduced. Incisors extremely broad and powerful in all seen. Upper molars hypsodont, quite different from either Crateromys or Mallomys, the cusps obsolete and the pattern laminate in all skulls examined; posterointernal cusp present; traces of nine cusps in M.1, and seven in M.2; M. 3 about as large as M.2, probably also with seven cusps originally. Lower teeth with terminal heel of M.1 and M. 2 unusually large, appearing as an extra lamina on the inner side of the teeth. Essential external characters as in Mallomys. Size very large, head and body to 355 (Rümmler), or perhaps more; feet heavy; tail more or less completely naked, the scales appearing even rougher and more naked than in Mallomys; Thomas suggested that the "large pointed scales served a purpose analogous to that of the caudal climbing irons of Anomalurus." Mammae $0-2=4$.

Hyomys is probably an isolated genus not nearly allied to any living form.
Forms seen: meeki.

## List of Named Foras

[^2]Genus 17. MALLOMIYS, Thomas
i898. Mallomys, Thomas, Nov. Zool. V, p. 1.
1907. Dendrosminthu's, de Vis, Ann. Queensland Mus. 7, p. 10.

Type Species.- Mallomys rothschildi, Thomas.
Range. - New Guinea; and if the species armandaillet is correctly referred to the genus, Flores.

Number of Formis.-Five.
Charactrrs.- Very large. Skull extremely heavy, the anterior portion of the frontals much inflated. Supraorbital ridges strong; interorbital constriction moderate, the frontals depressed between the ridges. A small squamosal ridge present; between this and the inflation of the frontals is placed a deep concavity, on the internal wall of the orbit. Rostrum heavy. Incisors moderately broad. Paroccipital process well developed. Zxgomatic plate broad, straight anteriorly; the infraorbital foramen of a peculiar shape, only slightly narrower below than above, due apparently to the swellings of the frontals. Incisive foramina in front of toothrow, very broad, and narrowed abruptly anteriorly. Palate much narrowed. Bullae very small. Molars much broadened, the cusps heavy, and angular; in this genus, the posterointernal cusp is suppressed in M.ı and M.2, thus differing from Croteromys and $I$ Iyomys; but is very strong in M.3. The centre row of cusps is large; the inner row also large, and forming in each case a sharp angle with the main cusps of the centre row; the outer row is little reduced. M.1 has eight cusps, and M. 2 has T.I, 'T.4. 5, 6, and 'T. 8 and 9 present, 'T. 9 being joined to T. 8 , and little developed; $\mathrm{N}$.3 with all the inner cusps ( 1,4 , and 7) present and strong, also T. 5 and 6 on the second lamina, and T. 8 on the third. The lower teeth are like those of Crateromys; indeed, the whole pattern is not far removed from this genus, except for the suppression of the posterointernal cusp; but the cusps are stronger, and the pattern probably more nearly resembles that of of Lenomy's.

Size large; head and body up to 416 mm . (Rümmler); fur thick; foreclaws considerahly enlarged; hindfoot with large claws, moderate fifth digit; the foot large, heavy, more or less of arboreal type. Tail long, extremely coarsely scaled, almost devoid of hair.

Forms seen: licrcules, argentata.
Wus armandeillei, Jentink, from Flores (head and body 420 ), is not represented in the British Museum, but has been referred to this genus. 'The molars figured by Jentink are unfortunately not sufficiently clear to say whether they agree exactly with the races of rothschildi described above. Tate states: "Mus armandzillei . . appears from its short muzzle, palatal openings and molar series to be a thoroughly distinct species. Its complex molar crowns, though differing somewhat in pattern from those of Mallomys, indicate its general relationship to that genus." Both Tate and Rümmler refer all named forms from New Guinea to rothschildi.

## List of Named Forms

1. MALLOMIYS ROTISCHILDI ROTHSCHILDI, 'Thomas

189§. Nov. Zool. V, p. 2.
Mount Murray, Wharton Range, New Guinea.
Synonym: aroaensis, de Vis, 1907, Ann, Queensland . Mus, 7, p. 10. Aroa River, New Guinea.
goliath, M1ilne-Edwards, 1900, Bull. Mus. Paris, VI, p. 165. Aroa River, New Guinea.
2. MALILONIS ROTHSCHILDI HERCULES, Thomas
1912. Nov. Zool. N1X, p. 92.

Rawlinson Mountains, S.-E. Gcrman New Guinea.
3. MALLOMIY ROTHSCHILDI WEYLANDI, Rothschild \& Dolman 1933. Proc. Zool. Soc. London, p. 212.

Weyland Range, New Guinea.
4. MALLOMI'S ROTHSCHILDI ARGENTATA, Rothschild \& Dollman 1933. Proc. Zool. Soc. London, p. 212.

Weyland Range, New Guinea
Regarded by Rümmler as a synonym of $r$. wevlandi.
5. MALLOMI'S (?)ARMANDVILLEI, Jentink
1892. Weber's Zool. Ergebn. Reis. Nied. Ost. Ind. iii, p. 79. Flores.

## Genus 18. CONILURUS, Ogilby

1829. Hapalotis, Lichtenstein, Darst. neuer oder wenig bekannter Säugeth. Heft VI. Hapalotis albipes, Lichtenstein. (Not of Hübner.)
1830. Conilurus, Ogilby, Trans. Linn. Soc. London, XVIII, p. 124.

Type Species.-Conilurus constructor, Ogilby =Hapalotis albipes, Lichtenstein.

Range.-Australia: New South Wales and Northern Territory, also Melville Island.

Number of Forms.-Four.
Characters.-Skull considerably but not extremely constricted in the interorbital region; supraorbital ridges extremely weak or absent. Zygoma rising abruptly anteriorly to a considerable height, zygomatic plate sharply projecting forwards; rostrum moderately long. Incisive foramina long, extending to M.I, and in the type species much broadened. Palate broad. Bullae medium. Coronoid process of mandible vestigial. Incisors without peculiarities. M.ı with nine cusps, all quite well marked originally, except T.9, which is vestigial; the centre and outer row of cusps tend to become fused together to a degree; in old age all the cusps join, and the teeth become more or less laminate. M.ı evidently three-rooted. M. 2 with T.ı and all cusps present on second and third lamina. M. 3 with T.r, a full second lamina, and two cusps posteriorly, one of which probably represents 'T.7. In old age, 'T. 3
in X.1 (the anteroexternal cusp) becomes vestigial. N. 2 is relatively large, N. 3 moderately so. Lower teeth mostly plain transverse plates in those examined. 'Terminal heel small but present in M.i and M.z.

Tail usually nearly uniformly haired, the end always in those seen heavily tufted. Sometimes scales may be traced in the upper portion. Hindfoot moderately long; proportions of digits normal; plantar pads not reduced; fur soft; ear rather large.

The forms seen appear to divide into two groups, the type, a larger, heavier animal, with bi-coloured tail (dark above, white below), hindfoot 51 (few seen), and palatal foramina broadened; and the pencillatus group, tail not dark above and white below; but either wholly black or black with white terminal tuft; palatal foramina not specially broadened apparently; hindfoot not exceeding 45 in our specimens. Average measurements of ten members of penicillatus group: head and body, 1797 (165-200); tail, 195 (180-215); hindfoot, 42.3 (40-45); ear, 27 (25-30).

Forms seen: albipes, hemileucurus, melibius, penicillatus.

List of Named Forms<br>albipes Group

1. (UNHLURL \& ALBIPLE, Lachtenstein
2. Darst. neuer oder wenig bekannter Säugeth. Heft V1, pl. xxix.

New South Wales.
Synonym: constructor, Ogilby, 1837 , Trans. Linn. Soc. London, स्VIII, p. 126. New South Wales.
penicillatus Group
2. CONJLCRUS PENJCIJLATLS, Gould
1842. Proc. Zool. Soc. London, p. 12.

Port Essington, N. Australia.
3. CON1LURUS MELIBlUS, Thomas
1921. Ann. Mag. Nat. Hist. 9, VIII, p. 431.

Melville Island, N. Australia.
4. CONILLRU\& HENIHEL(CLRU心, Gray
1858. Proc. Zool. Soc. London, 1857, p. 243.
N. Australia.

From the genus Conilurns Thomas has separated closely allied species under the names Zyzomys, Laomys, and Mesembriomys. One cannot escape the conviction that the characters separating these forms are trivial, and that perhaps a more correct idea of their relationships would be arrived at if all, or especially the first two named, were united in the one genus Comilurus. Ultimately it is likely that this may be done.

Genus 19. ZY゙ZOMIS, Thomas
1909. Zyzomys, Thomas, Ann. Mag. Nat. Hist. 8, III, p. 372.

Type Species.-Mus argurus, Thomas.

Range.-Australia: South and North-west.
Number of Forms.-Two.
Characters.-Skull small, with no extreme peculiarities; much like that of a small Rattus; no supraorbital ridges; rostrum rather long; braincase broad. Zygomatic plate slightly cut back above. Incisive foramina reaching toothrows. Bullae moderately small. Zygoma apparently a little less specialized than in Conilurus.

Upper teeth narrow, the posterointernal cusp well developed in Mi.r and M.2; the outer row of cusps strongly reduced, tending to become fused with the centre row. M1. 3 rather small. An extra cusp is present in front of the foremost lamina of M.I in the six skulls examined. Lower teeth without special peculiarities. Form slender, size small (head and body 93-109 in those seen). Tail well haired, though less so than in Mesembriomys and Conilurus; fect and digits normal. The tail is usually about equal to head and body, though it may be longer. (Average of four skins bearing measurements, head and body, 100.5 (93-109); hindfoot, 20.5 (20-21); ear, 16.75 (16-18).

Forms seen: argurus, indutus.

## List of Named Forms

1. ZYZOMYS ARGURUS ARGURUS, Thomas
2. Ann. Mag. Nat. Hist. 6, III, p. 433.
S. Australia.
3. ZYZOMIS ARGURU'S INDUTUS, Thomas
4. Ann. Mag. Nat. Hist. 8, 1II, p. 151.

Wyndham, N.-W. Australia.

## Genus 20. LAOMIS, Thomas

1909. Laonys, Thomas, Ann. Mag. Nat. Hist. 8, III, p. 373.

Type Species.-Laomys woodwardi, Thomas.
Range.-Northern Australia (West and Northern Territory).
Number of Forms.-Three.
Characters.-Skull (two seen only) with considerable interorbital constriction; zygomatic plate with anterior border cut back above; rostrum and braincase of Conilurus type; palate broad; bullae smallmedium; incisive foramina relatively long. Upper teeth in the type skull of the type species (much worn), in rows of plain transverse laminae, three in \.1, two in M.2, the foremost of which has an inner fold evidently representing the original space between T.ı and T.4; M. 3 worn down, with elements untraceable. This type of tooth was compared by Thomas to those of Phloeomys and Otomys, but it seems much more likcly that it merely represents a more or less normal or slightly modified Conilurus dentition much worn down. The type of $L$. pedunculatus has all the cusps of the Conilurus type present, including
the posterointernal cusp; but N. 3 in this skull has also the elements more or less obliterated. The lower molars are a series of transverse plates in both skulls. Zygoma near the C'omilurus type. Coronoid process of mandible very low.

Fur crisp. Liar not enlarged. Form heayy; feet hroad, the digits not abnormal. Tail completely haired, relatively short, thickened at base and tapering at tip.

Forms seen: zoondüardi, pedunculatus.

## List of Named Forms

1. LAOMIY PEDUNCULATLS PEDUNCLLATLS, Wate
2. Rep. Horn Sci. Exped. Centr. Austr. Zool. ii, p. 395.

Alice Springs, Central Australia.
2. LAOMIY' PEDUXCLLATLS BRACHIYOTIS. Warte
1896. Rep. Horn Sci. Exped. Centr. Austr. Zool. ii, p. 397.

Illamurta, Central Australia.
3. LAONIYS WOODWARDI, Thomas
1909. Ann. Mlag. Nat. Hist. S, III, p. 373.

Parry's Creek, Wyndham, N.-W. Australia.
In woodzardi, the tail is considerably shortened, about 68 per cent of head and hody length; but in pedunculatus, no skins of which have been examined, it is from descriptions apparently not specially reduced.

## Genus 2r. MFESEMBRIOMIS, Palmer

1906. Ammomys, Thomas, Ann. Mag. Nat. Hist. 7, XVII, p. S4. Not of Bonaparte. 1906. Mesembriomys, Palmer, Proc. Biol. Soc. Washington, XIX, p. 97.

Type Species.-Mus tirisutus, Gould.
Range.-Northern Australia, from west to Queensland; Melville Island.
Number of Forms.-Four.
Characters.-Skull large, heavy, at extreme development larger than any member of Rattus. Rostrum thick; frontals markedly inflated just behind their junction with the nasals, behind which the skull slants downwards gradually. Braincase not large. Frontals depressed between the very weak supraorbital ridges. Anterior zygomatic plate cut back above, the zygoma nore normal than in Conilurus, not rising so high anteriorly. Incisors considerably thickened from before backwards. Incisive loramina large, but not reaching toothrows, which are relatively short. Palate broad. Bullae rather large. Mandible with low coronoid process.

Nolars much as in Comilums, but rather more complex. The cusps tend to wear down in adult so that the patters is more or less laminate. Nine cusps present in M.i; ' 1.9 is small. Seven cusps in M.2, and six in M.3, as in Comilums. 'The extra front cusp (in lront of foremost lamina of M.1), characteristic of several of these Australian genera of Rats, is here usually present though very small, in some specimens two such cusps or even more are visible.
M. 3 is considerably reduced. The outer row of cusps tends to merge into the central row; the inner row is strong, and each cusp tends to be situated rather behind its neighbour on the centre row. M.i is three-rooted. The posterointernal cusp of M.1 and M.2 is well developed. Lower teeth not abnormal; terminal heel of M.I and M. 2 large.

Externally large; head and body up to 350 mm . Fur rather rough; ear moderate; foreclaws rather large. Hindfoot relatively broad, with large claws; D. 5 and the hallux proportionately large. Tail considerably longer than head and body (in macrurus extremely so); the tail is well haired comparatively, the end heavily tufted. Near the body it is less well haired and the scales may be traced. Nammae $0-2=4$. Plantar pads 6.

These Rats evidently have a good length of life, at any rate in captivity; the first ones to be represented in the London Zoological Gardens are mostly still alive, nearly four years after their arrival.

Two well-marked species occur: macrurus, smaller, back lighter-coloured, tail much longer (only two specimens seen: head and body, 260, 240; tail, 350,370 ; hindfoot, 60,60 ; ear, 30,30 ), and the type species (average and extremes of eight skins bearing measurements: head and body, $303.7(240-350)$; tail, 347 ( $270-390$ ); hindfoot, $64.5(60-70)$; ear, 39.3 (35-40)). Colour darker. Forms seen: "hirsutus" (-gouldi), melvillensis, macrurus, rattoides.

List of Named Forms
gouldi Group
> 1. MESEMIBRIOMYS GOLLDI GOULDI, Gray
> 1843. List. Spec. Mamm. Brit. Mus. p. 116.

> Port Essington, N. Australia.
> Synonym: hirsutus, Gould, 1842 , Proc. Zool. Soc. London, p. 12; not of Elliot.
2. MESEMBRIOAIVS GOULDI RATTOIDES, Thomas 1924. Ann. Mag. Nat. Hist. 9, NIII, p. 296.

Cooktown, N. Queensland.
3. MESEMIBRIOMY'S GOLILDI MELVILLEVSIS, Hayman
1936. Ann. Mag. Nat. Hist. 10, XV'H, p. 366.

Melville 1sland, N. Australia.

## macrurus Group

4. MESEMBRIOMIYS MACRURUS, Peters
5. Monatsber. K. Preuss. Akad. Wiss. Berlin, p. 355.

Mcrmaid Strait, near Roeburne, W. Australia.
Synonym: bozeri, Ramsay, 1887, Proc. Linn. Soc. N.S.W. 2, i, p. 1153. N.-W. Australia.

In the remaining genera, excepting the aberrant Beamys and Saccostomus, there is no posterointernal cusp in the first and scond upper molars in the adult.
1904. Oenomys, Thomas, Ann, Mag. Nat, Hist. 7, N111, p. 716 .

Type Species-Mus hypoxanthus, Pucheran.
Range--African: Kenya, Uganda; Gold Coast, Cahoon, Conge; Angola.
Number of Furms.-Ten.
Cinaracters.-Skull with moderate or little interorbital constriction, strong supraorbital ridges, large interparietal, and long heavy rostrum. Anturior border of zygomatic plate cut back above. Palate relatively narrow; bullae rather large. Incisive foramina well open, large and long.

Upper checktecth broad, complex, originally with very high cusps, and deep longitudinal valleys separating the three rows. M.. with T.g vestigial, and wearing out; 'T. 7 absent; all other cusps present ; the centre row the largest, but not excessively enlarged at the cost of the outer row; M.2 with 'T'. I and 'T.3, the three cusps of the second lamina, and only one cusp fully developed of the last lamina (the central, 'T.S). M. 3 relatively very large, with the same abnormal elements as in Golunda or Mylomys, the outer row almost entirely suppressed, though a very small anteroexternal cusp may be traced; otherwise there are four main cusps only. MI. I is five-or six-rooted. The pattern is clearly traceable, even in old age; it is like that of Thamnomys remustus, only less comples, and with the posterointernal cusp suppressed. Terminal heel of lower molars relatively very small; M. 3 with only one cusp fully developed on posterior famina; the outer subsidiary row of cusps can be well developed; the cusps of the two rows large.

Mammae $2-1=6$ (St. Leger). Tail poorly haired, as a rule longer than head and body. D. 5 hindfoot rather long; feet not abnormal.

According to Tullberg, the dentition of this genus may be regarded as specialized for a vegetarian diet, a specialization which is accompanied by complexity of the digestive organs.

Forms secn: bacchante, editus, hypowanthus, mocrens, oris, ornatus, myori.
It is not clear whether there is more than one valid species in this genus or not. (). ornatus appears to be based on a young specimen.

```
    List of Named Forms
```



```
1855. Rev. Zool. VII, p. 206.
    Gaboon, Western Africa.
    Synonym: rufimus, Matschic, Deutsch, Ost. Afr. 3, 1, 52, 1895.
    (N\VOMFYS HYPONANTHL & ('NYORI. Thomas
1003. Ann. Mag. Nat. Hist. 7. XII, P. 3+3.
    Fadjas, Victoria Nile, Unyoro, Uganda.
        OENomFS HYP(NANTHIS ANCHHETAE, Bocape
INgo. Jorn. Sci. Lisb, p. If.
    Cosaza, N. Angola.
```

4. OENOMYS IYPONANTHUS BACCHANIE, Thomas
5. Ann. Mag. Nat. Hist. 7, XII, p. 342.

Nandi, Kenya.
5. OENOMY'S HYPONANTIUS MOERENS, Thomas 1911. Ann. Mag. Nat. Hist. 8, VII, p. 379.

Solai, Mount Kenya.
I'robably a synonym of $h$. bacchante (G. M. Allen).
6. OENOMYS HYPOXANTHUS VALLICOLA, Heller
1914. Smiths. Misc. Coll. LXIII, 7, p. II. Lake Naivasha, Kenya.
7. OENOMYS HYPOKANTHUS EDITUS, Thomas \& Wroughton 1910. 'Trans. Zool. Soc. London, XIX, p. 509.

Mubuku Valley, E. Ruwenzori, Uganda.
8. OENOMY'S HYPONANTHUS MARUNGENSIS, Noack
1887. Zool. Jahrb. p. 23 r.

Qua Mpala, Marungu, S.-E. Congo.
9. OENONYS HYPOXANTHUS ORIS, Thomas 1911. Ann. Mag. Nat. Hist. 8, VII, p. 380.

Kinangop, Aberdare Mountains, Kenya. Probably a synonym of $h$. bacchante (G. M. Allen).
10. OENOMYS ORNATLS, Thomas 1911. Ann. Mag. Nat. Hist. 8, VII, p. 378.

Bibianaha, Gold Coast.

Genus 23. MYLOMYS, Thomas
1906. Mylomys, Thomas, Ann. Mag. Nat. Hist. 7, XVIII, p. 224.

Type Species.-Mylomys cuninghamei, Thomas.
Range.-African: Sudan, Kenya, Uganda, Congo (Leopoldville and Uelle region), Gold Coast.
Number of Forms.-Seven.
Characters.-Molars of the Golunda type, if less extreme, but M.i remaining the dominant tooth in old age, and the inner row of cusps of upper molars not specially enlarged. Cusps of molars very prominent ; "in each lamina of the upper series the centre cusp is raised in the middle to a point and curved backwards, its grinding surface pointed backwards and deeply concave, its enamel walls sharp and angular." M. 1 with all cusps present except T.7, but T. 9 is strongly reduced; M. 2 with T.I, the three cusps of the second lamina, and T.S; 11.3 with four cusps in all, as in Golunda, a large centre one, which has 'T.I in front of it, a small cusp behind it, and a moderatesized cusp on the inner side of it. M.I evidently seven-rooted. Lower molars like those of Golunda, but the cusps even more raised up.

Upper incisors onc-grooved; lower incisors plain. All rows of upper molars closely crowded together.

Skull with heavy rostrum, strong supraorbital ridges, inoderate interorbital
constriction, large interparietal; zygomatic plate low anteriorly, but very sharply cut baek ahove; palate narrow; bullae rather large; palatal foramina narrowed posteriorly, long, reaching front molars; zygoma thick.

Fifth digit of forefoot so reduced that there appear to be three functional digits only on manus. Hindfoot with three centre digits rather long in appearance, D. 5 much shortened, ahout as long as the hallux. Form thickset; tail moderately haired.

The unusually heavily cuspidate dentition will distinguish this genus sufficiently from Pelomys or any of the more Rattus or Arricanthis-like Rats of Africa, while Irom the Indian Golunda it is distinguished by the inner row of the upper molars not being specially enlarged; it therefore presents a less aberrant dentition than that genus.

Forms seen: alberti, christyi, cuninghamei, lozvei, lutescens, roosevelti.
According to llayman, all forms should be regarded as races of the type specites, a view which 1 fully support.

```
                    Llst of Named Forms
    1. \IM(OMIS (UNINOHANEI CENIN゙GIIA\IFI, Thomas
1906. Ann. \ag, Nat. Hist. 7, XVIII, p. 225.
            East of Aberdare Mountains, Kenya,
    2. NIILONIYS CLNINGHHANIFI CIIRISTYI, Thomas
1917. Ann. Mag. Nat. Hist. 8, XX, p. 362.
                            Mount Baginzi, Bahr-el-Ghazal, Sudan.
```



```
1916. Ark. Zool. io, no. 12, p. S.
                            El Donyo, Sabruk, Kenya.
```



```
1910. Smiths. Nise. Coll. LJT, no. I934, p. I.
                            Nzoia River, Guas N`gishu Plateau, Kenya.
    5. MYLf)\IY ('L NINGHA.ME| LETENCENS, Thomas
1915. Ann. Mag, Nat. IJist. S, SVI, p. I49.
            Nalasanji, S.-IV. Uganda.
    6. MYL{)\MY (LNI\`(iHANE! ALBERTI, Tboman
1915. Ann. Mag. Nat. Hist. 8, NVI, p. i48.
    Poko, Lpper Lelle, Congo.
    7 \I`LONIYS CL`I\GHANEI LOWHE, Hayman
1935. Proc. Zool. Soc. London, p. 934.
    Wenchi, Ashanti, Gold Coast.
```

Genus 24. DASyM1SS, Peters
1875. Dasymys, Peters, Monatsber. K. Preuss, Akad. Wiss. Berlin, p. 12.

Type Species,-Dasymys guienzii, Peters =. Ius incomtus, Sundevall.
Range.-African: Sudan, Kenya, Uganda, Abyssinia; Liberia, North

Nigeria, Congo; Angola, Rhodesia, South-west Africa, South Africa.
Nitaber of Forms.-Sixteen.
Characters.-Skull with extreme interorbital constriction (on average about 12.6 per cent of occipitonasal length, a measurement usually below any group of Rattus); this constriction is further forward than in Stenocephalemys, another African genus with this character, so that the braincase appears less shortened. Supraorbital ridges usually strong, extending over braincase to a greater or lesser degree. Nasals broad; rostrum heavy, rather short. Zygomatic plate broad, the anterior border concave, then sharply cut back above. Zygoma robust, the jugal rather long. Palate usually much narrowed. Incisive foramina narrow, slit-like, long, extending to toothrow. Bullae moderate. Upper and lower incisors very broad; the lower incisor root tends to show on mandible more than is usual.

Cheekteeth originally extremely heavily cusped, reminiscent to a degree of those of Mastacomys; but the cusps quickly wearing down. Each cusp, when cutting, is considerably raised up. The centre row is lange. M.ı with a small T.i and all other cusps except T.7; T. 9 is vestigial. M. 2 with T.1, the second and third laminae like those of M.r. M. 3 with T.i and two roughly equal-sized laminae, each bearing originally three cusps, therefore the posterointernal cusp has in this tooth not become suppressed. In adult, the posterior lamina of M. 3 is barely or not narrower than the anterior one, differing in this respect from Arcicanthis. Gradually, with wear, M. 3 appears to become longer than M.2, and sometimes even longer than M.1. In extreme age the cusps are obliterated, and the spaces between original laminae may isolate as enamel islands. It is very rare for $\mathrm{MI}_{3} 3$ to be smaller than M .2 , and it is never appreciably so; very generally it is slightly larger. M.ı is five-rooted. In two examples seen, M. 3 has a trace of an extra fourth lamina posteriorly. In the lower teeth the laminae are as usual; M. 3 is not much enlarged; the terminal heel of M. 1 and M. 2 is almost suppressed. There is a tendency for the cusps to become obliterated. In the young, the first lower molar has an extra cusp in front of the foremost lamina.

Form thickset and heary, often very soft-furred. Hindfoot moderately broad, the three centre digits appearing elongated, the two outer digits not reduced, and of normal proportions. Forefoot with D. 5 rather short. Tail usually slightly shorter than head and body, not well haired, though the degree of hairiness varies.

This genus appears to be most nearly allied to the Arvicanthis series of Rats. Mammae $1-2=6$ (Shortridge).

Forms seen: bentley'ae, foxi, fuscus, helukus, incomtus, montanus, mudipes, medius, rufulus, shawi.

It appears very unlikely that there is more than one species of this genus.
All are regarded here as races of incomtus, except perhaps orthos (not seen), which is said to have the concavity on anterior border of zygomatic plate scarcely marked.

## List of Named Foras


1847．Ofvers．Akad．Forh，Stockholm，is，6，p，izo．
Near Durban，Natal，S．Africa．
Synonym：gneinzü，Peters．1875．Monatsber．К．＇reuss．Akad．Wiss Berlin，p．13．Port Natal．
2．DASYMYS INCONTLS FLSCLS，de Winton
I896．Proc．Zool．Soc．London，p．8o4．
Mazoe，Mashonaland．
3．DASYMYS 1NCONHTLS CAPLNSIS，Roherts
1936．Amn．Transv：Mus．XVIII，p．254．
La Plisante，Wolseley，Cape Province．
4．DASYMYS INCOMTLS GRISEHFRON゙，Osgond
1936．Field．Mus．Pub．Zool．Ser．XX，p． 255.
South－west side of Lake＇Tana，near Dungulhar，Gisjam，Abyssinia，

i870．Jorn．Acı．Lisb．p． 126.
Huilla，Angola

1934．Amer．Mus．Nov．708，p． 6.
Lukolela，AIıddle Congo．
ㄱ．DASYNYS NCOMTUS MONTANL $\therefore$ ，Thomas 1906．Ann．Mag．Nat．Hist．7，X̌VIII，p．${ }^{1}+3$.

E．Ruwenzori，Uganda．
8．D．ASSMYS INCONTES BENTLEYAF，Thomas
1892．Ann．Mag．Nat．Hist．6，X，p． 179.
Ngombi，Lower Congo．
（2．DAsisMrs INCOMTLS MEDIL $s$ ，Themas 1906．Ann．Mag．Nat．Hist，7，XVIII，p．I＋ 3

Thubuku Valley，E．Ruwenzori，Uganda．
Io DASYAYS INCONHTE HELLKLS，Feller
1910．Smiths．Misc．Coll．LIV，no．1924，p． 2.
Sirgoit，Guas Ngishu Plateau，K゙ゃnya．
 1916．Smiths．Mise．Coll．LXVI，no．Io，P． 2.

Naivasha，Kenya．

1911．Smiths．Nisc．Coll．LV＇1，no．I7，p．It．
Fort Ilall，Kenya．

1924．Ann Xlary Nat．IIist．（1，XlIl，p， 25.
Mount laseinzi，Bahr－cl－（thazal，Sudan．
4．D．ASY：II：IN（OMITLA FOXI，Thomes．
1912．Ann．Mayg．Nat．IIst．S，18，p．6855
Pinyam，N．Nigeria．
15. DASYMY'S INCOMTC'S RLFLILSS, Miller
1900. Proc. Acad. Sci. Washington, 11, p. 639.

Mount Coffee, Liberia.
16. DASYMYS ORTHOS, Heller
1911. Smiths. Misc. Coll. LVI, No. 17, p. 13.

Butiaba, Albert Nyanza, Uganda.
St. Leger states that the character of the loosely knit metatarsals present in Colomys and Malacomys is present to a degree in this genus. Compared with these genera, apart from its dental peculiarities, the length of the foot in Dasymys is on average much less, about 20 per cent of the head and body length, against the averages 2,4 per cent for Malacomy's, and 29 per cent for Colomys.

## Genus 25. ARVICAN'THIS, Lesson

1842. Arvicanthis, Lesson, Nouv. Tabl. Regn. Anim. Mamm., p. 147.
1843. Isomys, Sundevall, K. Svenska Vet. Akad. Handl. Stockholm, p. 219. (Mus zariegatus, Brants.)
'Type Species.-Lemmus niloticus, Geoffroy.
Range.-African, including Palaearctic eastern portion: Egypt; South Arabia; Sahara (Asben); Sudan, Abyssinia, Somaliland, Kenya, Uganda, Tanganyika; Portuguese Guinea, Sierra Leone, Gold Coast, North Nigeria, East Congo; North Rhodesia.

Number of Forms.-About thirty-six.
Characters.-Skull with gradual and moderate interorbital constriction, and strong supraorbital ridges; rostrum broad, and short in appearance; braincase not broad. Incisors relatively thick; zygoma powerful, often broadened in centre. Zygomatic plate higher than in Lemniscomys, sharply cut back above, this portion strongly projecting forwards. Bullae large to very large. Palate tending to be narrowed. Incisive foramina long, usually reaching toothrow, and narrowed posteriorly.

Cheekteeth broad, tending to be rather shortened (particularly M.2); dentition heavy. M. 3 usually about as large as M. 2 ; in worn specimens this tooth, as in Dasymys, tends to become rather longer than M.2. The cusps originally well marked, but the teeth tending to become more or less laminate with wear, rather early; to a greater degree than in the allied Rhabdomys and Lemniscomys. The centre row of cusps in the upper molars is relatively broadened; 'T.9 is reduced in M. 1 and M.2, and sometimes tends to disappear; ' T '. 3 is rather reduced in M.1, normally absent or vestigial in M. 2 ; M. 1 appears seven-rooted. M. 3 with T.1, a main lamina, little curved, behind it, and a posterior lamina which is narrowed; the posterointernal cusp probably never occurs in this tooth (compare Dasymys). The inner row of cusps is well developed. Some specimens seen, from Abyssinia, appear to come very near the formation of pattern found in the subgenus Desmomys, though their incisors are plain; this group seems to connect Arvicanthis very closely indeed with l'elomys. Lower molars usually laminate, with cusps obsolete. The terminal
heed of M．1 and MI．2 are much reduced originally，apparently．Mandible robust．

A faint mid－dorsal stripe may be present．Fur rough．D． 5 in forefoot strongly shortened，but not vestigial，and bearing claw．Hindfoot with the three centre digits often appearing rather long，the two outer digits subequal and strongly reduced．＇Tail relatively well haired，as a rule shorter than head and body．

Forms seen：abyssinicus，ansorgei，centralis，chunleri，fluzicinctus，luctuosus， ＂minor，＂mordax，nairobae，neumami，niloticus，mubilans，occidcntalis，pallescens， pelliccus，praeccps，reptans，rubescons，rufinus，rumruti，saturatus，setosus，solatus， somalicus，tenebrosus，testicularis，＂varicgatus，＂zirescens，zaphivi．

There appears to be little essential difference between the described distinct species．

List of Named Fornis
1．ARV1C＇ANTHIS NHOTICLS NHOTICLS，Desmarest
1822．Nammalogie，pt．2，p．281．
Egypt．
Synonym：zariegatus，Lichtenstein， 1 S23，Doubl．Verz．Rerl．Mus． p． 2.
（？）ochropus， 1 leuglin，Reise N．Ost．Afr．［I，p．68， 1877. Bugos，Eritrea．
munor．Sundevall， 1842,1843, Ki．Svenska．Vet．Akad． Ilandl．Stockholm，p． 221.
major，Sundevall，same reference，p． 220 ．
discolor，Wagner，Arch．f．Naturg．8，I，p．9， 1842.
2．ARVICANHIS NHOTICLS TEsTICLLARIS，sundevall
1842．K．Svenska．Vet．Akad．Handl．Stockholm，p． 221.
White Nile，Sudan．
3．ARV［C．ANTHIS NH．OT］CLS NASO，Poeock
1934．Ann，Mag，Nat．Hist．1o，XIV，p． 636.
Labej，near Aden，S．Arabia．

1925．Ann．Nag．Nat．Hist．9，XVI，p． 194.
Aouderas，Asben，W．Sahara．
5．ARVK＇ANTHIS NHOTICUS CENTRALIS，D．HIman
1911．Ann．Mag．Nat．Hist．S，VIII，p． 33 欠．
Chak－Chak，WV．Bahr－el－Ghazal．
b．ARVICANTHES NILOTICLS KORDOFANENSil，Wettom
1916．Anz．Akad．Wiss．Wien．53，p． 162.
Kadugli，S．Kordofan．
7．ARVICANTHES NILOTICL゙S JEBEL．AE，Heller
1g1i．Smiths．Mise．Coll．LVI，no．17，p． 9.
Rhino Camp，Lado Enclave．

191t．Ann．Mag．Nat．Hist．8，VIII，p． 339.
Kaka，Fashoda，White Nile．
9. ARVICANTHIS NILOTICUS SETOSUS, Thomas
1905. Ann. Mag. Nat. Hist. 7, XV, p. 79.

Fra Fra country, Gold Coast Hinterland.
10. ARVICANTIIS NILOTICUS OCCIDENTALIs, Wroughton
1906. Ann. Mag. Nat. Hist. 7, XVII, p. 377.

Bo, Sierra Leone.
11. ARVICANTHIS NILOTICUS RUFINL's, Temminck
1853. Esq. Zool. Côte de Guiné, p. 163.

Elmina, Gold Coast.
Synonym: mordax, Thomas, 1911, Ann. Mag. Nat. Hist. 8, VII, p. 460. Panyam, N. Nigeria.
12. ARVICANTHIS NLLOTICUS ANSORGEI, Thomas
1910. Ann. Mag. Nat. Hist. 8, V, p. 353.

Gunnal, Portuguese Guinea.
13. ARVICANTHIS LACERNATUS, Rüppell
1842. Mus. Senckenb. III, p. 96, i15, pl. vi, fig. I.

Grassy plains about Lake Dembea ( $\rightarrow$ Lake Tana), Abyssinia.
Synonym: pelliceus, Thomas, 1928, Ann. Mag. Nat. Hist. Io, I, p. 302. Lake Tana, Abyssinia. (Status fide Osgood.)
14. ARVICANTHIS ABYSSINICU'S ABY'SSINICUS, Rüppell 1842. Mus. Senckenb. III, p. 104.

Entschetqab, Simen Province, Abyssinia.
Synonym: reichardi, Noack, 1887, Jahrb. Zool. 2, p. 235.
15. ARVICANTHIS ABYSSINICUS SATURATUS, Dollman
1911. Ann. Mag. Nat. Hist. 8, VIII, p. 343.

Didessa River, near Guma, Abyssinia.
16. ARVICANTHIS ABYSSINICUS BLICKI, Frick
1914. Ann. Carnegie Mus. 9, p. 20.

Hora Mountain, S. Chilalo Mountains, S. Abyssinia.
17. ARVICAN'THIS ABYSsiNiCUS MIEARNSI, Frick
1914. Ann. Carnegie Mus. 9, p. 22.

Sadi Malka, Hawash River, S. Abyssinia.
18. ARVICANTHIS ABYSSINICUS RAFFERTY1, Frick 1914. Ann. Carnegie Mus. 9, p. 23.

Gardula, S. Abyssinia.
19. ARVICANTHIS ABYSSINICUS FLUVICINCTUS, 0sgood 1936. Field. Mus. Pub. Zool. ser. XX, p. 251.

Bichana, Gojjam, Abyssinia.
20. ARVICANTHIS ABYSSINICUS PRAECEPS, Wroughton 1909. Ann. Mag. Nat. Hist. 8, IV, p. 538.

Naivasha, Kenya.
21. ARVICANTHIS ABYSSINICUS NL'BILANS, Wroughton 1909. Ann. Mag. Nat. Hist. 8, IV, p. 539.

Kisumu, Kenya.
22. ARIICANTHIS ABYSSINICL'S VIRESCENS, Heller
1914. Smiths. Misc. Coll. LXIlI, 7, p. II.

Voi, Kenya.

23．ARTIC ANTHIS ABYSSLNICL A AIROBAE，Allen
1900．Bull．Amer．Mus．Nat．Hist．XXVI，p． 168.
Nairobi，Kensa．
24．ARVICANTHIS ABYSALNICLS PALLESCENS，Dollman 1tit．Abstr，I＇roc．Zool，Soc，London，p． 25 ；Proc，Zool，Soc．London，p． 316. Loita Plains，Kenya．

25．ARVICANTHLS ABYSSINICUS RUBLECENS，Wroughton 1909．Ann．Mag．Nat．Hist．8，IV，p． 538.

Kibero，Unyoro，Uganda．
26．ARVICANTIIIS ABYSSINICUS CENTROSUん，Hollister 1916．Smiths．Misc．Coll．LぶVI，10，p．I． Rhino Camp，Lado Enclave．
27．ARVICANTHIS ABYSSINICUS MLANSAE，Matschu 1911．Sitz．Ber．Ges．Nat．F＇r．Berlin，p， 339.

Nwanza，Lake Victoria，Tanganyika．
28．ARVICANTHIS ABYSSINICUS NELMANNI，Matschie 1894．Sitz，Ber．Ges．Nat．Fr．Berlin，p．204． Jrangi，Tanganyika．
 1925．Atti Soc．Ital．Sici．Nat．LXIV，p．go． Atalia，Semllki Valley，E．Conger．
io ARITCANTHRS ABYSSINICLS ZAPHILRI，Dollman 1911．Ann．Mag．Nat．Hist．S，VIII，p． 349. Guma，s．Abyssinia．
33．ARVICANTH3N ABYSSINICLS RUMIRCTT，Dollman 1915．Ann．Nlag．Nat．Hist．S，VIII，p． 350.

Rumruti，Laikipia Plateau，Kienya．
32．ARVICANTHIS ABYMSINICLS TENEBROSCS，Kershaw 1923．Ann．Mag．Nat．Hist．9，X11，p． 595.

Tabora，Tanganyika．
（Listed as full species by（i．N1．Allen，1939．）
33．ARIICANTIIS ABYSSINICLS RHODOESAE，Not．Ierger
1932 Ann．Mag．Nat．Ilist，10，X，p．S5．
Sesheke district，N．Rhodesta．
（Race of temebrosus according tos（i．Al．Allen．）
34．ARVICANTHIS SO）NLARICUS SHMIALICLS，Thomas 1902．P＇ox．Zonl．Soc．London，p． 312, Shuk，N．Somaliland．
 I9II．Ann．Mag Nat．Hist．S，VIII，p． 129. Niama Nyangu，N．Guaso Nyro，Kinnya．
 1911．Ann．Wag，Nat．Hist．S，Vill，p． 130. Chanler Falls，N．Guaso Nivor，K゙enva．
The following name may helong in this genus，or in Lemniscomys：lincato－ affimis，Hedenborg， 1839 ，Isis，p．9，nom．nud．（？）

Gcnus 26. HADROMYS, Thomas
191t. Hadromys, Thomas, Journ. Bombay Nat. Hist. Soc. XX, p. 999.
'l'ype Species.-Mus humei, 'Thomas.
Range.-Manipur (Assam-Burma boundary).
Number of Forms.-One.
Characters.-This genus is represented, so far as the British Museum is concerned, by four broken skulls, all of which lack bullae, and all of which have the cheekteeth too worn-out for definite notes. At the present state of our knowledge, it is by no means easily distinguished generically from Arvicanthis.

Rostrum broad, and short, as in Arvicanthis or Golunda. Supraorbital ridges well marked. Zygomatic plate concave anteriorly, then sharply cut back above. Incisive foramina long, narrow, reaching toothrows. Incisors relatively very powerful and broad, but not grooved. M. 3 very little reduced, scarcely smaller than M.2, though rather narrower than that tooth. Dentition perhaps not highly abnormal, but too worn on specimens seen for notes.

Mammae $2-2=8$. Fur thick and soft. Outer digit of manus (D.5) extremely short, but with claw. Hindfoot rather narrow; D. 5 very slightly longer than the hallux, the two outer digits strongly reduced. Tail quite well haired, longer than head and body.

It is to be hoped that more specimens of this interesting Mouse will come to hand. The size is smaller than is usual in Arvicanthis.

Forms seen: humei.

## List of Named Forms

r. HADROMY'S HUME1, Thomas
1886. Proc. Zool. Soc. London, p. 63.

Moirang, Manipur.

## Genus 27. PELOMIS, Peters

1852. Pelomys, Peters, Monatsb. K. Preuss. Akad. Wiss. Berlin, p. 275.
1853. Desmomys, Thomas, Ann. Mag. Nat. Hist. S, V, p. 284. Pelomys harringtoni, Thomas. Valid as a subgenus.
1854. Komemys, de Beaux, Ann. Mus. Civ. Stor, Nat. Genoa, 5r, p. 207. Komemy's isseli, de Beaux. Valid as a subgenus.

Type Spectes.-Mus (Pelomys) fallax, Peters.
Range.-African: Kenya, Uganda, Abyssinia, Kome Island (Lake Victoria), Congo, Angola, Rhodesia, Nyasaland, Mozambique, South-west Africa.

Number of Forms.- About fifteen.
Cilaracters.-In this genus, I include all the Arvicanthis-like Rats from Africa in which the incisors are grooved, except Mylomys.

In the typical subgenus the forefoot has the outer digit vestigial, lacking the claw. This character is present in members of the subgenus Desmomys, except dembensis. In subgenus Komemys, the fifth finger, though strongly shortenced, bears a small claw.

The upper incisors are one-grooved, clearly in the typical subgenus, and Komemys; faintly in Desmomys. 'Ihe latter connects typical Pelomys with Arcicanthis closely in some ways.

In typical Pelomys, the checktecth are broad; originally the cusps are very prominent, though less extreme than in Mylomys or Oemomys; apparently the cusps are longer prescred than in Arcicanthis. N. 3 is often scarcely smaller than M.2; the tectli are broad, the ecntre row of cusps is enlarged and broadened. Lower incisors plain. Skull essentially as in Arvicanthis.

Tail quite well haired, usually about as long as head and body. Fur rather rough. Hindfoot about as in Arcicanthis, the outer digits strongly shortened, D. 5 scarcely longer than the hallus. Nammae $2-2-8$ (Shortridge).

Desmonirs contains rare and little-known species, from Abyssinia, in which the grooving of the incisors is faint, and the molars tend to approach those of Oenomys, though the pattern of the few specimens seen is not so extreme as in Oenomys, and there scems no need to refer this group to a genus distinct from Pelomys. M. 3 is as in Oenomys, with the outer row reduced, or more so than in Pelomys s.s. The species dembensis, referred ultimately by 'Thomas to Arcicanthis, has molars as in the present group, faintly grooved incisors, and is not an Arvicanthis as I understand that genus, if our specimens are correctly identified, but I have not seen the type. The few specimens seen have a small claw on the much-reduced fifth finger (as in Araicanthis), and incidentally intermediate between normal Pelomys or normal Desmomys and Komemys. The species rex appears to be an unusually large form (head and body, 212 mm .); the skull is not represented in London.

Komenys from Kome Island has a rather low zygomatic plate; the fifth finger of forefoot bears a small claw, though it is strongly reduced; there is a well-marked middorsal stripe present on the back, and the tail is longer than the head and body. I have seen only two specimens, the molars being too worn for notes; hut Komomys is regarded as a subgenus only of Pelomys by Hatt, 1935, and G. M. Allen, 1939. According to these authors, the form minor should be referred to the subgenus. I have seen very few of the latter.

Forms scen: anstralis, campanae, concolor, dembeensis, fallax, frater, harringtom, isseli, insignatus, minor, rex.

## List uf Namifd Foras

(I think it is very unlikely that there is more than one valid species in the typical subgenus.)

Subgenus Polomys, l'eters

1. 1ER.OMIS FAI.LAX F.BLLAX, Peters
2. Reise nach Mossambique: Zowl. Siugeth. p. 157. Caya, Zambesi Rwer, Portuguese E. Afroca.
3. PELOMY'S FALLAN IRIDESCENS, Heller 1912. Smiths. Misc. Coll. L1X, no. 16, p. 12.

Mount Mbololo, Taita Hills, Kenya.
3. PELOMI'S FALLAX CONCOLOR, Heller 1912. Smiths. Misc. Coll. LIX, no. 16, p. 13. Kiduha, Lake Mutanda, Uganda.
4. PELOMYS FALLAX INSIGNATU'S, Osgood 1910, Ann. Mag. Nat. Ilist. 8, V, p. 276.

Fort Hill, N. Nyasa.
5. PELOMIS FALLAX AUSTRALIS, Roberts 1913. Ann. Transv. Mus. IV, p. 90.

Mazambeti, Beira, Portuguese E. Africa.
6. PELOMYS FALLAX RHODESIAE, Roberts
1929. Ann. Transv. Mus. Xill, p. 118.

Machili River, N゙. W. Rhodesia.
7. PELOMYS LULUAE, Matschic
1926. Zeitschr. für Säugetierk. 1, p. 113.

Luluabourg, Kasai, S. Congo.
8. PELOMY'S CAMPANAE, Huet
1888. Le Naturaliste, p. 143.

Landana, north of Congo River, west coast Angola.
9. PELOMYS FRATER, Thomas
1904. Ann. Mag. Nat. Hist. 7, XIII, p. 415.

Braganza, N. Angola.
10. PELOMYS DYBOWSKII, Pousargues
1893. Bull. Soc. Zool. XVIII, p. 163.

River Kemo, north of Ubangui, French Congo.
Subgenus Desmomys, Thomas
11. PELOMY'S HARRINGTONI, Thomas
1902. Proc. Zool. Soc. London, p. 313.

Kutai, W. Shoa, Abyssinia.
12. PELOMI'S DEMBEENSIS, Rüppell
1845. Mus. Senckenb. III, pp. 109, 116 , pl. V1, fig. 3.

Dembea, Abyssinia.
13. PELONIYS REX, Thomas
1906. Ann. Mag. Nat. Hist. 7, XVIII, p. 304.

Charada Forest, Kaffa, Ahyssinia.

## Subgenus Komemys, de Beaux

4. PELOMYS MIINOR, Cabrera \& Ruxton
5. Ann. Mag, Nat. Hist. 9, XVII, p. 60 .

Luluabourg, Kasai, S. Congo.
15. PELOMYS ISSEL1, de Beaux
1924. Ann. Mus. Civ. Stor. Nat. Genoa, 51, p. 207.

Kome Island, Lake Victoria Nyanza.
5-Living Rodents-II

The genus Pelomys was formerly associated with the Indian Golunda, but it appears to be very much more closely related to Arzicanthis. Mylomys stands nearer Golunda, and is probably the African representative of it, but is less specialized dentally.

## Genus 28. LEMNIS(OMYS, Trouessart

is8i. Lemniscoxys, Trouessart, Cat. Namm. Viv. et Foss. Rodentia, Bull. Soc. Études Sci. D'Angers, X, ze fasc., p. 124 .
'Yype Species.-Mus barbarus, Linnaeus.
Range.-Africa, including Palaearctic north-western portion: Morocco; Sahara (Asben), Sudan, Abyssinia, Kenya, Uganda, 'Tanganyika; Gambia, Sierra Leone, Nigeria, Congo, Angola, Mozambique, South-west Africa, and South Africa.

Number of Forms. - Thirty-five.
Characters.-Closely allied to Arricantlis, but fifth digit of manus so shortened that the manus appears to have three functional digits only. Skull of Arvicanthis type. 'The anterior zygomatic plate is usually rather lower, about half height muzzle; sometimes slightly concave anteriorly. It is, however, less low than in Lophuromys. 'Teeth sometimes less heavy than in Areicanthis. L. griselda appears dentally to be near Arzicanthis; the outer row, particularly 'T. 9 in $\mathrm{M.1}$ and $\mathrm{M}$.2 strongly reduced, the centre row of cusps very large; M.I with eight cusps, M. 2 with six; M. 3 not highly abnormal (not, for instance, as in Oenomy's or Mylomys). The teeth broad, and M.3 relatively large. Outside the griselda group, as a rule, the centre row is less enlarged, and the dentition is less extreme, and more normal; but some forms, as for instance olga, or striatus venustus, appear at any rate from the type skulls to be intermediate between the two types of dentition. 'The details of M.3 noted by Thomas when he separated this genus, and Rhabdomys, from Arvicanthis, do not appear to be of generic value.

Hindfoot rather narrow, the three centre digits with elongated appearance, the two outer digits strongly shortened, suhequal in length. Forefoot with three main digits; D. 5 without claw, and nearly suppressed. Fur usually rough: tail relatively well haired, and may be longer than head and body. Nammae $2-2=8$ (griselda group) (Shortridge).

Three species groups may be recognized, as is well known; the grisclda group, with a middorsal stripe only; the barbarus group, in which this persists, but the sides with many stripes present (and general colour most often less dark than in striatus group); and the striatus group, in which the body stripes are broken up into rows of spots.

Forms seen: akka, ardens, barbarus, duma, calidior, convietus, fasciatus, griselda, limulus, Iymesi, macculus, massaicus, micropus, nigeriac, mubalis, olga, ozerni, phaeotis, pulchelhs, pulcher, rosulia, subulata, spekei, striatus, verustus, acroughtoni, achra.

## List of Named Forms <br> barbarus Group

1. LEMINISCOMI'S BARBARUS BARBARUS, Linnaeus
2. Syst. Nat. ed. 12, I, pt. 2, add. not paged.

Morocco.
2. LEMINISCOMY'S BARBARU'S IFNIENSIS, Agacino
1935. Bol. Real. Soc. Esp. Hist. Nat. 35, p. 390.

Ifni, S.-W. Morocco.
3. LEMINISCOMIYS BARBARUS ZEBRA, Heuglin 1864. Nov. Act. Acad. Caes, Leop. 31, Abh. VII, p. 10. Country of Reg Negroes, Djur and Bongo, Sudan.
4. LEMNISCOMI'S BARBARUS CONVICTUS, Osgood 1910. Field. Mus, Nat. Hist. Zool. ser, X, 2, p. 10. Voi, Kenya.
5. LEMINISCOMIYS BARBARUS ALBOLINEATUS, Osgood 19ro. Field. Nus. Nat. Hist. Zool. ser. X, 2, p. 1 i.

Ulukenya Hills, Kenya.
6. LEMNISCOMIS BARBARUS MLAN'TEUFELI, Matschie 1911. Sitz. Ber. Ges. Nat. Fr. Berlin, no 8, p. 338.

Mwanza, Tanganyika.
7. LEMNISCOMYS BARBARUS NIGERIAE, Thomas 1912. Ann. Mag. Nat. Hist. 8, 1X, p. 272.

Panyam, N. Nigeria.
8. LEMNISCOMY'S BARBARUS DUNNI, Thomas
1903. Proc. Zool. Soc. London, p. 297.

Kaga Hills, W. Kordofan, Sudan.
9. LEMINISCOMYS BARBARUS NUBALIS, Thomas \& Hinton 1923. Proc. Zool. Soc. London, p. 267.

Talodi, S. Kordofan, Sudan.
10. LEMNISCOMIYS BARBARUS OWENI, Thomas 1911. Ann. Mag. Nat. Hist. 8, VIlI, p. 120.

Gemenjulla, French Gambia.
11. LEMINISCOMIS BARBARUS ORIENTALIS, Hatt 1935. Amer. Mus. Nov. 790 , p. 2.

Faradje, N.-E. Belgian Congo.
12. LEMNISCOAIY'S BARBARUS SPEKEI, de Winton 1897. Ann. Mag. Nat. Hist. 6, NX, p. 318.

Unyamuezi, Tanganyika.
13. LEMINISCOMIS OLGA, Thomas \& Hinton
1921. Nov. Zool. XXV1II, p. 9.

Damergou, Air, W. Sahara.

## striatus Group

14. LEANASCONIS STR1ATLS STR1ATLA, Linnacu-
15. Syst. Nat. ed. 10, p. 62.
sierra Leone.
Synonym: orientalis, Desmarest, Nout: Dict. H. ※., 2, 29, 59, 1819.
16. LEMNILC(ONIS ATRIATL'S MASSAICLS, Pagenstecher
17. Jahrb. Gaml. wiss. Anst. p. 45.

Lake Naivasha, Kenya.
Synonym: pulchellus micropus, Heller, 1911, Smiths. Misc. Coll. LVI, 17. p. 9. Rhino Camp, Lado. pulchellus spermuphilus, Heller, 1912, Smiths. Misc. Coll. LiX, i6, p. if. Mt. Gargues, Kenya.

1910. Ann. Mag. Nat. Hist. 8, V1, p. 313.

Rombo, Kilimanjaro.
17. LEMINISCOMIS STRIATUS VENUSTUS, Thomas 1915. Ann. Mag. Nat. Hist. 8, V11, p. 461.

Panyam, N. Nigeria.
88. LEAINISCOMIS STRIATL'S WROLGHTONI. Thomas 19jo. Ann. Mag. Nat. ijst. S, V, p. 85.

Nono, west of Addis Ababa, Abyssinia.
19. LENINISCOMSS STRLATLS PLLCHER, Wroughton 1906. Ann. Mag. Nat. Mist. 7, XViI, p. 378.

Anambra Creek, S. Nigeria.
20. LIMNLACOMIS STRIATLS FASClATLA, Wroughton 1906. Ann. Mag. Nat. Hist. 7, XVH, p. 377.

Anambra Creek, S. Nigeria.
21. LEMNIACONIS STRIATLS PLLCHELLLS, GRay 1864. Proc. Zool. Soc. London, p. 57.
W. Africa.
22. REMINISCOMIS STRIATLS LLLLAE, Natschse 1926. Zeitschr. für Säugetierk. J, p. 112.

Shibakala, near Luluabourg, S. Congo.
23. LIANNILCONIS LYNESI, Thomas \& Henton
1923. Proc. Zool. Soc. London, p. 267.

Jebel Marra, Darfur.

## griselda Group

24. TEMINIGCOM1S GRISELDA GRIAELDA, Thmas
25. Ann. Mag. Nat. Hist. 7, Xlli, p. 414.

Jinga Country, N. Angola.
25. LIFMNICOMIS'S GRISELDA MIEARNSI, Heller
1914. Smiths. Misc. Coll LXIll, no. 7, p. 12.

Fort Hall, Kenya.

1910. Field. Mus. Nat. Hist. Zool. ser. N, 3, p. 17.

Voi, Kenya.
Synonym: griselda phaeotis, Thomas, 1910, Ann. Mag. Nat. Hist. 8, VI, p. 429. Mazeras, coast of Kenya.
27. LEMNISCOMIY GRISELDA ROSALIA, Thomas
1904. Ann. Nag. Nat. Hist. 7, XIII, p. 414.

Monda, Nequru Mountains, Tanganyika.
28. LIEMNISCOMIY GRISELDA LINELIU'S, Thomas 1910. Ann. Mag. Nat. Hist. 8, VI, p. 429.

Gamon, French Gambia.
29. LFMNINCOMIS GRISILLDA CALIDIOR, Thomas \& Wroughton 1908. Proc. Zool. Soc. London, p. 545.
'Tambarara, Gorongoza Mountains, Portuguese E. Africa.
30. IIEMINIACOMIY GRISELDA SABLCATA, Thomas
1927. Proc. Zool. Soc. London, p. 385.

Sandfontein, E. Damaraland, S.-W. Africa.
3土. LEMNINCOMI'S GRINELDA FITZSINIONSI, Roherts 1932. Ann. Transv. Mus. XV, p. 11.

Kaotwe Pan, Central Kalahari.
32. LEAIN゙ISCOMIYS GRISELDA SPINALIS, Thomas 1916. Ann. Mag. Nat. Hist. 8, XVIII, p. 69.

South Africa, assumed to be W. Transvaal.
Synonym: dorsalis, Smith, iS45, Ill. S. Afr. Zool. pl. 46, fig. 2; preoccupied.
33. ILEMNISCOMYS GR1SELDA ZULUENSIS, Roberts 1931. Ann. Transv. Mus. XIV', p. 235.

Manaba, N. Zululand.
34. 1.EMINISCOMYS MACCULUS MACCULUA, Thomas \&: Wroughton 1910. Trans, Zool. Soc. London, XIX, p. 515.

Moki, S.-E. Ruwenzori.
35. LEMINISCONI'S MACCULU'S AKKA, Thomas
1915. Ann. Mag. Nat. Hist. 8, XVI, p. 479.

Tingasi, Monbuttu, N.-E. Congo.

## Genus 29. RHABDOMYS, Thomas

1916. Rhabdomys, Thomas, Ann. Mag. Nat. Hist. 8, XVIII, p. 69.

Type Species.-Mus pumilio, Sparrmann.
Range.-African: Kenya, Angola, Rhodesia, Nyasaland, South-west Africa, Kalahari, and South Africa generally.
Number of Forms.-Fourteen.
Characters.-Skull not unlike that of a small Arvicanthis. Rostrum shortened, to a degree; supraorbital ridges usually present; zygomatic plate cut back anteriorly, higher than in Lemniscom's; bullae relatively large; palatal foramina long. Molars moderately heavy, more so than is normal in Rattus, rather lighter as a rule than Arvicanthis and Aethomys; the pattern seems not to wear down until rather late in life; the centre row of cusps tending
to be large: ' 1 '. 9 rather reduced in M. 1 and M.2. M. 3 smaller than M.2, but not strongly reduced. Lower teeth with the terminal heel of M.i and M.z rather reduced.

Back with three light lines bordered by four dark ones. D. 5 of forefoot reduced, but not vestigial. Hindfoot with the three centre digits moderate, and D. 5 and the hallux rather strongly reduced; D. 5 little longer than hallux, and scarcely reaching past base of D. 4 as a rule. Fur rather rough. 'Tail relatively well haired, subequal in length to head and body as a rule. Nammae $2-2=8$ (Shortridge).

Forms seen: angolae, bechuanae, chakae, cinereus, diminutus, dilectus, griupuae, intermedius, moshesh, mevidionalis, nyasae, pumilio.

## List of Named Forms

1. RHABDOXIYS PL MILIO PLXILIO, Sparmann

1784 . Vet. Akad. llandl. V, p. 236.
Sitzicamma loorest, on Snake River, east Cape of Good Hope. (See
G. M1. Allen, r939.)

Synonym: donazami, Lesson, Man. Mamm. p. 268, 1827. major, Brants, Geslacht der Muizen, 105, 1827. lineatus, Cuvier, Hist. Nat. Namm. pl. 161, 1829. septemrittatus, Schinz, Syst. Verz. Säug. 2, 155, 1845. vittatte, Wagner, I\$42, Arch. Nat. VIII, p. 11.
2. KHABDONIS PC'MILJO MERIDIONALIS, Wroughton
1905. Ann. \ag. Nat. Hist. 7, XVI, p. 632.

Tokai Retreat, Cape Toun.
3. RHABDOMYS PUXILIO MOSHESH, Wroughton
1905. Anm. Jlag. Nat. Hist. 7, NVI, p. 638.

Maseru, Basutoland, S. Africa.
4. RHABDONIS PUNILIO CHAKAE, Wroughton
1905. Ann May Nat. Hist. 7, XVI, p. 636.

Sibudeni, Zululand.
5. RHABDOXIS PUXILIO INTERMEDILS. Wroughton
1005. Ann. \as. Nat. Hist. 7, XVI, p. 635.

Deelfontein, Cape Colony.
h. RHABDONIY SUNHLIO C'INERELA, Thomas \& tichwann

1904 thatr. Proc. Zool. Soc. London, 2, p. 5 ; Proc. Zool. Sioc. London, p. 179. Klipfontein, Little Namaqualand.

- RHABDONISi PLMILIO GRIOUAE, Wroughton

1005. Ann. Mag. Nat. Jist. 7, XVI, p. 632.

Kiuruman, Bechuanaland.
8. RHABDOMY'S PLMILIO BECHUANAE, Thomas 1Noz. Proc. Zool. Soc. London, p. 55 t .

Ronibank, near Wialvis Bay, ふ.- IV. Africa.
๑. RHABDONIY'S I'XILLO DEsER'TI, Dollman
1910. Ann . Dlag Nat. llist. S, VJ, p. 394.

Lehuitıtung, l゙alahari.
(A synonym of groutue according to G. N. Allen.)
10. RHABDONYS PUMILIO NAMIBENSIS, Raberts 1926. Ann. Transv. Mus. XI, p. 255. Swakopmund, S.-W. Africa.
11. RHABDONYS PUMILIO NYASAE, Wroughton
1905. Ann. Mag. Nat. Hist. 7, XVI, p. 639.

Mlanji Plateau, Nyasaland.
12. RHABDOMYS PUMILIO DILECTUS, de Winton 1896. Proc. Zool. Soc. London, p. 803. Mazoc, Mashonaland.
13. RHABDONYS PUMILIO ANGOLAE, Wroughton 1905. Ann. Mag. Nat. Hist. 7, XVI, p. 636. Caconda, N. Angola.
14. RHABDONYS PUMILIO DIMINUTUS, Thomas 1892. Proc. Zool. Soc. London, p. 551.

Mianzini, Masai, Kenya.
The genus is distinguishable from Lemmiscomys by its functional fifth finger, and from Arvicanthis by its smaller M. 3 and much lighter teeth; but from Rattus and its subsidiary genera this genus is not clearly marked. The two posterior plantar pads appear to be becoming reduced; in five spirit specimens scen, one had only 5 plantar pads to the hindfoot ; the sixth pad in the remainder was extremely small.

It is probably most closely allied to Lemniscomys.

## Genus 3o. HIBOMIS, Thomas

1910. Hybomys, Thomas, Ann. Mag. Nat. Hist. 8, V, p. 85.
1911. Typonys, Thomas, Ann. Mag. Nat. Hist. S, VII, p. 382. (.Mus trizirgatus, Temminck.)

Type Species-Mus univittatus, Peters.
Range.-African: Ruwenzori, Cameroons, Gold Coast, Nigeria, Liheria.
Number of Forms.-Six.
Characters.-Skull short, broad, with not much interorbital constriction (least interorbital constriction on average about i8 per cent of occipitonasal length); infraorbital foramen relatively large; zygoma narrow. Nasals usually projecting somewhat anteriorly over the incisors. Supraorbital ridges moderately marked; rostrum broad, relatively long. Palatal foramina moderate or rather short. M.i four-rooted. Bullae moderate. Molars rather broad; dentition not extreme, but cusps well marked; centre row of cusps of upper molars relatively large; T. 6 usually joined to T. 9 in N. 1 and M.2; M. 3 little reduccd. Lower teeth complex, with well-marked cusps, and the outer subsidiary row strong. The molars of II. trizirgatus (type of genus Typomys of Thomas) are more extreme, heavier, with the cusps more raised up, the
valleys between the rows more noticeable, and M. 3 rather smaller; but the race pearcei appears to be intermediate between the two types, so that it is not possihle to say which the molars of this race come nearest to; Thomas compared the dentition of typical trivigatus to that of hylomys, but I am convinced it has nothing to do with that genus, being very much less extreme in all points, and with M. 3 quite normal instead of with the highly aberrant pattern characteristic of Mylomys. M. trieirgatus also has the skull a little more extreme than in unicittatus, with zygomatic plate sloping backwards as a rule, shorter palatal foramina, rather broader interorhital region.

In unirittatus, usually a black middorsal stripe is present, but this can be obsolete. In planifrons, there is also a middorsal; in trizirgatns, there are three black stripes on the back. Hindfoot narrow, with D. 5 much reduced, scarcely longer than the hallux; D. 5 of forefoot moderate; tail not well haired. Mammae $1-2-6$ or $0-2+$ (according to Thomas, either formula may be present in unizittatus). Ingoldby (1929, Ann. Mag. Nat. Hist. 10, III, p. 522) considers Typomys a synonym of Hybomys, and in this he has been followed by Hayman. I am in agreement with this classification; far too many essential points are shared by the two specific groups.

Forms seen: lunaris, pearcei, planifrons, trizirgatus, unizittatus.

## List of Named Forms <br> mizittatus (iroup

1. HYBONIS UNIVITTATES UNIVITTATUS, Peters
2. Monatsb, K. Akad. Wiss. Berlin, p. 479.

Dongila, Gaboon.
Synonym: rufocamus, Tullbere, Nova Acta Reg. Soc. Sci. Upsala, 3, 16, no. 12, ए. 23, 1893.
2. HYBUNIS UNIVITTATLSLENARIS, Thomas
1906. Ann. Vas. Nat. Hist. 7, XVH11, p. 145.
E. Ruwenzori, Uganda.
3. HIBONFS LNIVTTATLS BADILS, Osgood
1936. Field Mus. Pub. Zool. ser, NX, p. 254.

South-west slope of Mount Cameroon, Cameroon Mandate, British Nigeria.

1900. Proc. Acad, Lici. Washington, II, p. 641.

Alount Coffee, Lihema.

## trizirgatus Group


1853. Esq. Zool. (iote de Guine, p. 159.

Dabocrom, Gold Coast.
6. HYBOMI'S TRIVIRGATLS PEARCE1, Ingoldby
1929. Ann. Mag. Nat. Hist. 10, I11, p. 522.

Lagos, Nigeria.
The form planifrons is listed by G. M. Allen as a race of univittatus, though it was formerly classed as "Typomys." No skulls have been examined.

## Genus 31. MILLARDIA, Thomas

19is. Millardia, Thomas, Journ. Bombay Nat. Hist. Soc. XX, p. 998.
1917. Guyia, Thomas, Journ. Bombay Nat. Hist. Soc. XXV, p. 201. (11illardia kathleenae, Thomas.)
191 I. Gryponys, Thomas, Journ. Bombay Nat. Hist. Soc. XX, p. 999. (Mus gleadozti, Murray.)
Type Species.-Golunda meltada, Gray.
Ravge.-India: Punjab and Sind south to Ceylon; Burma.
Number of Forms.-Six.
Characters.-Skull with considerable interorbital constriction, and well-marked supraorbital ridges. Rostrum moderate, not shortened. Zygomatic plate cut back above. Palate normal (except in gleadowi), palatal foramina very long, extending between front molars. Bullae large.

Dentition in the young extremely heavy, and at all times strongly cuspidate: centre row of upper molars enlarged; inner row strong. In Mi. there is a tendency, most marked in kathleenae and gleadowi, for the anterointernal cusp to be distorted inwards, as in Mus; but M. 3 is not much reduced, little smaller than M.2, and the toothrow has none of the Mus specialization. M.i has all cusps except $\mathrm{T}_{.7} ; 11.2$ has all cusps except $\mathrm{T}_{.2}$ and $\mathrm{T}_{.7}$; in this tooth, T. 9 and T. 3 are reduced. Lower teeth with cusps strong, well developed.

Fur soft. Ear rather large. Tail subequal in length to head and body, relatively well haired. Hindfoot with plantar pads reduced to five or four, the fifth digit strongly shortened. D. 5 manus medium.

Three well-marked species are known, each of which has received a generic name. There seems not the slightest need to divide them generically. Their characters are as follows:
M. gleadoxi (which is the most extreme) has the posterior nares narrowed, the palate extending rather behind M.3., the effect as in Pyromys, also about as in Mus tenellus.
(The palate of gleadowi compares with meltada much as the palate of Mus tenellus compares with any of the normal small species of . Mus from Africa, such as bellus.)

Mammae $1-2=6$. Small, 97 mm . or slightly less, head and body. Sind and Cutch.
M. kathleenae. Posterior palate normal. Nammae $0-2=4$. Larger than gleadowi; about ${ }^{129} 9^{-1} 57 \mathrm{~mm}$. Burma.
11. meltadd. Posterior palate normal. Mammae $2-2-8$. Head and body about $107-156 \mathrm{~mm}$. Ceylon, P'eninsular India, north to Punjab.
Forms seen: coomberi, clunni, gleadozi, kathlcenae, listomi, meltada, pallidior.

## List of Named Fornis

meltada Group

1. MllLARDIA MEITTADA NEl.TADA, Gray
2. Ann. Jag. Nat. Hist. 1, p. 586.

Dharwar, S. Mahratta, India.
Synonym: comberi, Wroughton, 1907, Journ. Bombay Nat. Hist. Soc.
XV'II, p. 999. Nastk, Bombay.
$=$ MILIARDIA MELTADA DUNNI, Thomas
191\%. Journ. Bombay Nat. Hist. Soc. XXV' p. 202.
Handiserah, Amballa, Punjab.
$\therefore$ MILLARDIA NELTADA PALIIDIOR, Ryley
1914. Journ. Bombay Nat. Hist. Soc. XXII, p. 659.

Lunza, Palanpur, Gujerat, VV. India.
4. MILIARDIA MELTADA LISTONI, Wroughton

190\%. Journ. Bombay Nat. Hist. Soc. XVJJ, p. 998. Konkan, W. India.

## kathlecnae Group

- mildARDIA KATHLIENAE, Thomas

1914. Journ. Bombay Nat. IIist. Sire. XXIII, p. 29. Pagan, Burma.

## gleaduzci Group

6. MILLARDIA GLEADOW?, Murray
7. Proc. Zool. Soc. London, p. Sog. Karachi, Sind, W. India.

Genus 32. PYROMIS, Thomas
1911. Pyromys, Thomas, Journ. Rombay Nat. Hist. Soc. XX, p. n96.

Type Spfcifs.-Pyromys priestleyi, Thomas.
Range.--Sind (India).
Number of Forms.-One.
Characters- Cranially and dentally not distinguishable from Millardia gleadozi. External characters very different; form slender tar short, fur more or less spiny, hindfoot strongly shortened, plantar pads not reduced, D. 5 not shortened. 'Tail well haired. Nammac $4-2=12$.

The measurement of the type specimen, which is the only specimen represented in London, compares with a large specimen of gleadowi as follows:

Pyromys: head and body, 98 ; hindfoot, 16; car, 13.
M. gleadowi: head and body, 97; hindfoot, 20; ear, 20.5 .

It will be seen that the hindfoot is thus only about 16 per cent of the head and body length, which is much shorter than is usual in Rattus. 'The mammary formula suggests Mus (subgenus Leggadilla), but M. 3 is much too complex and not reduced, though M.r, as is usual with these small Indian genera, suggests the Mus type. The posterior nares are much narrowed.

It is to be hoped that more specimens of this mouse will come to hand.
The status of the genus at present is by no means clear.
Forms seen: priestleyi.

## List of Named Forms

I. PYROMY'S PRIESTLEEII, Thomas
1911. Journ. Bombay Nat. Hist. Soc. XX, p. 996. Virawar, Thar and Parkar, S. Sind.

## Genus 33. DACNOMISS, Thomas

1916. Dacnomys, Thomas, Journ. Bombay Nat. Hist. Soc. XXIV, p. fot.
'Type Species.-Dacnomy's millardi, Thomas.
Range.-Eastern Himalayas: Sikkim, Assam, Laos.
Number of Forms.-Three.
Characters.-Like a large Rattus, but with very heavy teeth, and with a longer toothrow. Skull with prominent supraorbital ridges.
Incisive foramina very broad, narrowed anteriorly and posteriorly, and approaching toothrows. Bullae very small. Zygomatic plate more or less straight anteriorly. Infraorbital foramen well open.

Cheekteeth with N. 3 little reduced (though smaller than M.2), and three laminae clearly traceable; all the usual cusps present; a tendency in the second lamina of M.I and M. 2 for the cusps to form very sharp angles with their neighbours; general effect rather complex, and like Rattus macleari. Posterointernal cusp absent. Lower teeth heavy, the small accessory outer cusps present, and well-developed terminal heel. The toothrow is longer than in any species of Rattus measured (members of all the leading groups of that genus have been measured); the percentage against the condylobasal is 23 per cent to 21.8 per cent, as against 21.4 of the highest Rattus ( $R$. velutimus, Australian). This, combined with the minute bullae and general complexity of the teeth, seems to make it quite clear that this is a valid genus, as all Rattus with bullae extremely reduced tend to have simple teeth. But it is not a well-known genus, and very few specimens are available for examination.

Size large, up to 290 head and body. No special external peculiarities; fur
rather coarse; feet normal; tail rather longer than head and body. Nammae $2 \quad 2=8$. 'The bullae are about $11-12$ per cent of the occipitonasal length. Forms seen: millardi, aroughtoni.

## List of Named Formis

1. DACNOMIS MHBI.ARDI MllLARDI, Thomas
2. Journ. Bombay Nat. Hist. Soc. NX1V, p. 405. Gopaldhara, near Darjeeling, Sikkim.
3. DACNOMIS MIIJARDI IN(iENS, Osgood
4. Field, Mus. Nat. Hist. Zool. ser. XVIII, p. 315. P'hong Saly, Laos.
5. DACNOMIS MIlLARDI WROLGHTONI, Themas
6. Journ. Bombay Nat. Hist. Soc. XXVIII, p. 430. Dreyi, Mishmi Hills, Assam.

Genus 34. EROPEPLUS, Miller \& 1 Iollister
1921. Eropeplus, Miller \& Hollister, Proc. Biol. Soc. Washington, XXXIV, p. 94.
'1Ype Species.-Eropeplus camus, Niller $\mathbb{N}$ Hollister.
Range.-Celches.
Number of Forms.-One.
Characters.-Very near Rattus, and doubtfully distinguishable from it, but with a relatively longer toothrow than is normal in that genus, so far as at present known.

This genus was unrepresented at the British Museum when this work was started, but two specimens have come to hand from the Frost collection, both females, from Rantekaroa, Quarles Mountains, Middle Celebes, 6,ooo ft.

Skull with rather heavy long rostrum, and considerable interorbital constriction; supraorbital ridges well developed, and extending back over braincase. Zygomatic plate very slightly cut back above. Palate strongly narrowed. Palatal foramina relatively long. Bullae moderate in size. Mlolars in one specimen (the other worn out) evidently not unlike those of Rattus; 'I'. i in M. 2 and M.1 relatively large; M. 3 not much reduced. 'Foothrow large and heavy, but in the worn specimens not particularly hypsodont as suggested by the describers. Lower molars probably originally with a large terminal heel in M.i and M.z.

Externally, largish, very soft-fursed; tail long, moderately haired, feet not abnormal.

Cranial measurements of the specimens:

| axthitumasal | contmbubasal | toothrow | bullaf | Lealaie | $\underset{\text { intirorbital }}{\text { Least }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $48 \cdot 4$ | f) | $9 \cdot 8$ | 8 | $3 \cdot 2$ | 6.7 |
| 48 | 45 | 9.8 | $7 \cdot 8$ | $3 \cdot 3$ | 6.2 |
|  | I Iead and body | . . | . | 230 | 230 |
|  | Tail. | . . | . | 205 | 290 |
|  | I Sindfoot | . | . | 40 | 45 |
|  | Ear | . . | . | 30 | 30 |

These specimens appear larger than Miller \& Hollister's (195 head and body), and with a proportionately shorter toothrow (toothrow 10 , condylobasal 44, from descripcion of type), and probably represent a new subspecies.

Forms seen: canus.

## List of Named Forms

1. EROPEPLUS CANUS, Miller \& Hollister 1921. Proc. Fiol. Soc. Washington, XXXIV, p. 95.

Goenoeng Lehio, S.-W. of Lake Lindoc, Middle Celebes.
'The "hypsodont" character of the cheekteeth having broken down, this genus is at present retainable on length of toothrow, compared with Rattus. Even here there is a slight overlapping, a specimen of Rattus velutinus from Australia giving a percentage of 21.4 of toothrow against condylobasal, against the measurements $21 \cdot 7,21 \cdot 3$, and 22.7 available for this genus. However, it is so very uncommon that this percentage is approached within Rattus, including all leading species throughout the Old World, that until it is proved to the contrary it may be assumed that Eropeplus may stand on having this character developed, and normally exceeding any Rattus. (Of eighty-five species of Rattus measured in this character, only four are over 20 per cent on this measurement, and all except the one mentioned above are under 21 per cent.)

## Genus 35. STENOCEPHALEMYS, Frick

1914. Stenocephalemys, Frick, Ann. Carnegie Mus. IX, p. 7.
'Type Species.-Stenocephalemys albocaudata, Frick.
Range.-Mountains of South Abyssinia.
Number of Forms.-One.

- Characters.-Skull with abrupt and extreme interorbital constriction (about 12 per cent of occipitonasal length), this placed posteriorly so that the braincase appears much shortened. Rostrum long, heavy. Infraorbital foramen relatively large; zygomatic plate with anterior border cut back above. Palatal foramina long, reaching toothrow. Upper molars like those of Dacnomys or a complex-toothed Rattus, the cusps well marked and angular, the folds between the cusps on each lamina well marked, the outer row not reduced, 'T. 9 strong, projecting out wards, in M.ı and M.2; M. 3 smaller than M.2.

Fur extremely thick and soft. Tail about head and body length, well haired; feet normal.

The strongly constricted frontals apparently will distinguish this genus sufficiently from Rattus; normally no Rattus gives as Iow a percentage as this, though in old age individuals might do so, in some cases (no specimen actually measured does so).

Forms seen: albocaudata.

## List of Named Forms

1. STENOCEPIALEMYS AlBOCALDATA, Frick
2. Ann. Carnegie Mus. 1X, p. S.

Inyala Camp, Chilalo Mountains, S. Abyssinia.

## Genus 36. AETHOMIS, Thomas

1915. Aethomys, 'Thrmas, Ann. Mag. Nat. Hist. 8, XVI, p. 477.
'Type Spectes-Epimys hindei, Thomas.
Range-African: Sudan, Kenya, Uganda, Tanganyika; Nigeria; South Congo, Angola; Rhodesia, Nyasaland, Mozambique, South-west Africa, Transvaal.

Number of Forms.-Thirty.
Characters.- As here understood, the genus is restricted to the species kaiseri, chrysophilus, walambac, and their immediate allies, and does not include the namaquensis group, which is fully discussed within the genus Thallomys, to which it is referred.

This genus is very difficult to classify, being one of the rather numerous African "borderline" genera, overlapping to a certain extent Rattus on the one hand, and Arricanthis on the other. It makes the generic separation of Arzicanthis from Rattus somewhat doubtful.
skull with well-marked supraorbital ridges; zygomatic plate strongly cut back, its anterior border with a tendency, which, however, is not constant, to be concave. Incisive foramina long, penetrating between molars. Bullae large to very large, about 17 to 21 per cent of occipitonasal length. Rostrum heavy, with rather broad nasals; normally longer than in Avicanthis. Molars relatively broad, rather heavier and more angular than is usual in normal Rattus (though not more so than in all species), and distinctly reminiscent of Arvicanthis; M. 3 is little reduced, and in some cases, particularly in worn specimens, tends to be as long as or longer than M.2, as in Arvicanthis. M. r with all cusps except T. 7 present. The centre row can become enlarged. The species walambac and kaiseri appear to have the least reduced NI .3 as a rule; some races of chrysophilhs. are more normal in this respect, though others are as walambac. Lower molars with no special peculiarities, as a rule.

Fur often rather soft. Hindfoot with the outer digits strongly reduced, in kaiseri and zealamboe with D. 5 scarcely longer than hallux, and barely reaching base of D.4; three centre digits not appearing lengthened as a rule; D. 5 forefoot moderate. A. chrysophilus also has the fifth digit of the hindfoot shortened, though in some cases rather less so than in kaseri group; but taking its molars into account, and also that the digit reduction is very general, it seems hest to refer it to this genus. In St. Leger's key, Aethomes is placed among the Rattus Rats, which have the digits less reduced than in the Arzicanthis group; but I am not able to distinguish Aethomys from Arvicanthis on this character. In fact, apart from the rostrum being on average longer, and the molars a little
less extreme, there is little to separate it from that genus; while the namaquensis group, formerly referred to this genus (but with a more or less arboreal foot, with D. 5 long, and M. 3 constantly smaller than M.2, so far as seen), connects it closely with Rattus.

Forms seen: acticola, algazel, amalae, avarilhus, bocagei, chrysophilus, hindei, hintoni, imago, ineptus, kaiseri, medicatus, manteufeli, nyikae, norae, pedester, stannarius, singidae, thomasi, tzaneenensis, voi, walambae.

In walambae, the tail is shorter than the head and body; in kaiseri and chrysophilus it is subequal or may be rather longer.

## List of Named Forms

1. AETHOMSS KAISERI kAISERI, Noack
2. Zool. Jahrb. Syst. II, p. 228, pl. ix, figs. 1-3.

Marungu, E. Congo.
2. AETHOMYS KAISERI TLRNERI, Heller
1914. Smiths. Misc. Coll. LXIII, no. 7, p. 8.

Kisumu, Kenya.
3. AETHONYS KAISERI MEDICATLS, Wroughton
1909. Ann Mag. Nat. Hist. 8, IV, p. 540.

Mumias, Kenya.
4. AETHOMYS KAISERI NORAE, Wroughton
1909. Ann. Mag. Nat. Hist. 8, IV, p. 541 .

Guaso Narok, Upper Guaso Nyiro, Kenya.
5. AETHOMY'S KAISERI HINDE1, Thomas
1902. Ann. Mag. Nat. Hist. 7, IX, p. 218.

Machakos, Kenya.
6. AETHONIY'S KAISERI HELLERI, Hollister 1918. Proc. Biol. Soc. Washington, XXXI, p. 97.

Lado Enclave, Rhino Camp.
Synonym: centralis, Heller, 1914, Smiths. Misc. Coll. LXIII, 7, p. 10. Preoccupied. Not of Schwann.
7. AETHOMYS KAISERI MANTEUFELI, Matschie
1911. Sitz. Ber. Ges. Nat. Fr. Berlin, p. 341.

Mwanza, Lake Victoria, Tanganyika.
8. AETHOMYS KAISERI ALGAZEL, Wroughton
1907. Ann. Mag. Nat. Hist. 7, XX, p. 501.

Bahr-el-Ghazal, Sudan.
9. AETHOMIS BOCAGEI, Thomas
1904. Ann. Mag. Nat. Hist. 7, XIII, p. 416.

Pungo Andongo, N. Angola.
10. AETHOMI'S WALAMBAE WALANIBAE, Wroughton
1907. Mcm. Manchester Phil. \& Lit. Soc. 5, p. 21.

Msofu River, N. Rhodesia.
11. AETHOMIS WALAMBAE AMLALAE, Dollman
1014. Abstr. Proc. Zool. Soc. London, p. 25; Proc. Zool. Soc. London, p. 313.

Near Amala River, Kienya.

## AETHOMIS

12．AETHONY＇S WALANBAE PEDENTER，Thomas
1911．Ann．Mag．Nat．Hist．8，VIII，p． 376.
Kigezi，S．－W．Uganda．
13．AETHOOMY＇S WALADFBAE HINTON1，Hatt
1934．Amer．Mus．Nov．708，p． 7.
Kambove，Katanga，S．Congo．
r．AFTHONIY THONAASI，de Winton 1897．Ann．Mag．Nat．Hist．6，八Х，p． 321. Galanga，Angola．

35．AETHONY：CHRY s Sg6．Proc．Zool．So London，p．Sor．

Mazoe，Mashonaland．
16．AETIIONIY CHRISOPHILUS VOI，Osgood
1910．Field Mus．Nat．Hist．Zool．ser．X，2，P．II．
Voi，Kenya．
17．AFTHOMIS CHRY゙ $\operatorname{AOPHFLUS}$ SINGIDAE，Kershaw 1923．Ann．Nag．Nat．Hist．9，XII，p． 535.
singıda，Kılosa，Tanganyika．
18．AETHONIY CHRYSOPHIIEA DOLLNANI，Hatt
1934．Amer．Nus．Nov．708，p． 8.
Kiatanga，S．Congo．
10．AFTHOMYS CHRYSOPHILUS AVARILLUS，Thomas \＆Wroughton 1908．Proc．Zool．Soc．London，p． 547.

Tette，Portuguese Zambezia．
20．AETHOMIYS CHRYSOPHILLTS INEPTLS，Thomas \＆Wroughton 1908．Proc．Zool．Soc．London，p． 546.
＇Tette，Portuquese Zambezia．
21．AFIHOMIS（HRY゙NOPHILL \＆NYHAF，Thomas
1897．Proc．Zool．Sonc．London，p． 431.
Nyika Plateau，N．Nyasa．
22．AETHOAIS CHRVSOPHILLS AC＇TICOLA，Thomas $\mathbb{S}$ Wroughton 1908．Proc．Zool．Soc．London，p． 547.

Beira，Portuguese E．Africa．
23．Al：THOAIS CHRY＇SOPHILLS IMA（；6），Thomas 1927．Proc．Zool．Suc．London，p． 387.
stampriet，S．－W．Africa．
24．AETHIONVS（HR）SOPHILLS TONGINSIS，Roberts 1931．Ann．Trans．Mus．XIV，p． 235.

Mangusi Forest，N．Zululand．
25．AFTHONIY（HRYKOPHILUS TZANELNENSIS，Jameson 5909．Ann．Mag．Nat．Hist．8，IV，p． 460.

Tzaneen，Zoutspansberg district，＇Transvaal．
26．AETHOMIYS ©HRYSOPHILL＇S PRETORIAE，Ruberts
1913．Ann．Transv．Mus．IV，p． 85.
Pretora，＇Transvaal．
27. AETHOMY'S CHRYSOPIHLL'S MAGALAKLINI, Roberts 1926. Ann. Transv. Mlus. Xl, p. 254.

Wilhanshohe, Nagalakuin, Transvaal.
28. AETHOMIS CHRY'SOPHILU'S CAPRICORNIS, Roberts
1926. Ann. Transv. Mus. X1, p. 254.

Zoutspansberg, Transvaal.
29. AETHONIS CHRYSOPHILL'S ALBIVENTER, Jentink
1909. Beitr. Kentn. Faun. S. Afr. p. 246.

Mossel Bay, Cape Colony.
30. AETHOMYS STANNARILS, Thomas
1913. Ann. Mag. Nat. Hist. 8, N1, p. 4 S2.

Ḱabwir, Bauchi Province, N. Nigeria.

## Genus 37. ThaLloMy's, Thomas

1920. Thallomys, Thomas, Ann. Mag. Nat. Hist. 9, V, p. 141.

Type Species.-Mus nigricauda, Thomas.
Ravge.-African: Kenya, Angola, Rhodesia, South-west Africa, Bechuanaland, Transvaal, South Africa.
Number of Forms.-Thirty, as here understood.
Characters.-(The genus is very doubtfully distinct from Rattus.) Molars more complex and angular than is usual in Rattus. Skull with considerable interorbital constriction, moderately marked supraorbital ridges as a rule. Zygomatic plate with anterior border cut back above. Bullae relatively large, in the typical group usually about 20 per cent or more of occipitonasal length. Palatal foramina long, usually penetrating between toothrows. Molars complex, angular; the centre row of the upper molars enlarged to a degree; M.ı with eight cusps, M. 2 with seven. M.i is five-rooted in the typical group. M. 3 smaller than M.2, but not much reduced. Lower molars with very prominent cusps, and the terminal heel of M.s and M. 2 is almost obliterated. It was on this account (as well as on the external specializations towards arboreal life, which do not distinguish it from several forms of Rattus) that the group was primarily given generic rank by Thomas, the lower molars being described as "cusps high, very sharply defined, their wearing surfaces pointed forwards, and the median valley along the toothrow sharp and deep; almost no trace of median supplementary cusps." Whether this distinguishes the genus from all forms of Rattus is a matter of doubt, and the genus has been retained mostly for convenience. The molars of "Aethomys" namaquensis are certainly not distinguishable from typical Thallomys, and, as discussed below, this group is here referred to the genus.

Fur soft. Feet short, the hindfoot relatively broad (but not more proportionately shortened nor broadened than in some species of Rattus), tocs rather short; D. 5 lengthened. A similar type of foot (if a little less shortened) appears in the Rattus cremorizenter group. Tail longer than head and hody as a rule,
relatively well hated. Nammae "0-2=4" (Thomas), "normal number is 6 ( $1-2-6$ )" (Shortridge).
T. namaquensis group. This group was referred to Aethomys by Thomas, atter originally being placed in Praom's. The molars are too heavy for Praomys (-Rattus), being, like Acthomys, well cusped and relatively heavy: But M. 3 appears constantly smaller than N .2 , which is not always the case in Aethomys; the supraorbital ridges appear lighter; and furthermore, the feet show none of the digit reduction common in Acthomys, and the foot is more or less of arboreal type, with relatively long D.5. The tail is as a rule considerably longer than head and body, quite well haired; the size is moderate (head and body usually under 130); the mammary formula is $1-2=6$. There is a note in Shortridge's hook on South-west African mammals to the effect that Roberts suggests that the group is not to be referred to Aethomys; I have worked through these African Rats and have come twice to the same conclusion. The molars being too heavy for Praomys, it is here referred to Thallomy's, with which it agrees in mammary formula, and differs in the slightly less arboreal hindfoot.

Typical Thallomys is as a rule rather larger than the namaquensis group (up to about 160 mm . head and body).

All these African Rats are closely allied, their relationships frequently being hidden under a bewildering number of generic names which are for the most part little more than well-marked specific groups of Rattus. The namoquensis group closely connects Thallomys, Aethomys, and Praomys with Rathus, and with each other.

Forms seen: auricomis, arborarius, calarius, centralis, damarensis, herero, kalaharicus, lehocla, lewconoe, loringi, monticolaris, namaquensis, nigricauda, mitcla, paedulcus, hodesiae, shortridgei, siccatus.

## List of Named Forms <br> migricauta Group

$\therefore$ THAIIINIY NIGRICALD. NIGRICALDA, Thomas
1882. Proc. Zool. Soc. London, p. 266.

IIountop River, Great Namaqualand, S.-W. Africa.
2. THALLOMIY NIGRICALDA LORINGI, Etler
1909. Smiths. Misc. Coll. LII, p. 471.

Lake Naivasha, lienya.
3. THALL(OMYS NIGRIC'ALDA KALAHARICLS, Dollman
1911. Ann. Nag. Nat. Hist. 8, VIII, p. 544.

Molopo River, Bechuanaland.
4. THALLOAIY NICRREAUDA LELCONOE, Thomas
1026. Proc. Zool. Soc. London, p. 303.

Osohama, Etosha Pan, Ovamboland, S.-IV. Africa.
5. THALLOAIY\& NIGRICALDA BRADIIEI.DI, Roberts
1933. Ann. Transv: Nus. XV, p. 26s.

Okahandja, S.-W. Africa.
6. Tilalloniss Nigiricatda molopensis, Roberts
1933. Ann. Transv. Mus. XV, p. 269.

Pitsani Junction, between Setlagoli and Molopo Rivers, Bechuanaland.
7. THALLOMIS NIGRICAUDA SHORTRIDGEI, Thomas \& Hinton 1923. Proc. Zool. Soc. London, p. 492.

Louisvale, Middle Orange River.
8. THALLOMYS Nigricaldd Nitela, Thomas \& Hinton 1923. Proc. Zool. Soc. London, p. 493.

Bombone, Mossamedes, Angola.
9. THALLOMIS DAMLARENSIS DAMARENSIS, de Winton 1897. Ann. Mag. Nat. Hist. 6, NIX, p. 349.

Damaraland.
ro. THALLOMIS DAMARENSIS RHODESIAE, Osgood 1910. Ann. Mag. Nat. Hist. 8, V, p. 277.

East Loangwa district, Petauke, N. Rhodesia.
4. THALLOMYS DAMARENSIS HERERO, Thomas 1926. Proc. Zool. Soc. London, p. 303.

Ondongwa, Ovamboland, S.-W. Africa.
12. THALLOMYS DAMARENSIS STEVENSONI, Roberts 1933. Ann. Transv. Mus. XV, p. 269.

Bembesi, 30 miles north of Bulawayo.
13. THALLOMY'S DAMLARENSIS SCOTTI, Thomas \& Hinton 1923. Proc. Zool. Soc. London, p. 493.

Yata Plains, between Thika and Tana Rivers, Kenya,
14. THALLOMIYS MOGGI MOGGI, Roberts 1913. Ann. Transv. Mus. IV, p. 85.

Zoutpan, Pretoria district, S. Africa.
15. THALLOMYS MOGGI ACACLAE, Roberts 1915. Ann. Transv. Mus. V, p. 120.

Woodbush, Transvaal.
16. THALLOMIS MOGG1 LEBOMBOENSIS, Roberts
1931. Ann. Transv. Mus. XIV, p. 234.

Mikuzi River, Ubombo, N. Zululand.
17. THALLOMYS PAEDLLCL'S, sundevall 1846. K. Svenska Vet. Akad. Stockholm, p. 120. Interior of Kaffirland.

## namaquensis Group

18. THALLOMYS NAMLAQUENSIS NAMLAQUENSIS, Amith
19. South Afr. Quart. Journ. II, p. 160.

Namaqualand.
Synonym: fusca, Cuvier, Hist, Nat. Mamm. pt. 6r, iSzo.
19. THALLOMYS NAMLAQUENSIS AURICOMIS, de Winton 1896. Proc. Zool. Soc. London, p. 802.

Mazoe, Mashonaland.
20. THALLOMY'S NAMAQUENSIS ARBORARILS, Peters
1852. Reise n. Mossambique: Säugeth. p. 152, pls. 35, 36.

Tette, Portuguese E. Africa.

21 IHALIOMOS \AMAOLFNSLS ACCATCS, Thomas 1926. ['roc. Zoxo]. Soc. Lomdon, p. 304.

Cuncne I'alls, ()vamboland, S.- WH. Africa.
 1926. Ann. Mag, Nat. Hist. 9, XV'1I, p. 184. Lehutitung, Kalahari.
23. THALI.OMIS NAMIAOLENSIS IJHOCLA, Smth 1836. App. Rep. Explor. Exped. S. Afr. p. 43.

Latakso, Bechuanaland.
24. THAI.J.OMI゙S NAMAOLENSIS GRAHAMII, Roberts 1915. Ann. Transv. Mus. V, p. in 8.

Grabamstuwn, S. Africa.
25. THAISONFS NAMAQLENSIS NON'TICLLARIS, Jameson 1909. Amm. Mag. Nat. Hist. \&, IV, p. for.

Johannesburg, 'I'ransvaal.
26. THALLOM1Y NAMAQLENSIS LIHOCHLOIDES, Roberts
1926. Ann. Transv. \Ius. XI, p. 255.

Nasalakuin, Transvaal.
27. ' HHALLOMNS NANLAQUENSLS (APENSIS, Roberts
1926. Ann. Transv. Mus. Xil, p. 254.

Paarl, Cape Colony.
 1926. Ann. Transw: Mus. XI, p. 254

Klaver, Cape Province.
21. ГHAJLOMノS NANAOUENSIS DRAKENSBIERGI, Roberts 1926. Ann. Transv. Mus. X1, p. 255.

Utrecht, Natal.
30. THAIIOMYS N.INAOEEXSIS CFNTRALIS, schwann
1906. Proc. Zool. Sinc. Jondon, p. 107.

Deelfontein, Cape Colony
Genus 38. RATTUS, Fischer
1803. Rattos, Fischer, Das Nationalmuseum der Naturgeschichte zu Paris, vol. 2, p. 128 .
1881. Epimys, Trouessart, Bull. Soc, Etudes, Sici. Angers, X, p. ix7. (This rattus, Linnaeus.)
1903. Lexuthrix, Miller. Proc. L.is. Nat. Mus. XXVI. p. 466. (Lenothrix canus, Miller.)
1905. Bullimus, Meams, Proc. U.S. Nat. Mus. XXVII1, p. 450. (Bullimus bagopus, Nearns.)
(?) 1905 . Limnomis, Mearns, Proc, U.S. Nat. Mus, XXVIII, p. 451. (Limmomys sibuanus, Mearms. See p. 295.)
1910. Braomys, Thomas, Ann. Mlag. Nat. Hist. S, V1, p. 50S. (Mus coelestis, Thomas.) 1g10. Stenomis, Thomas, Ann. Mag. Nat. Hist. 8, V1, p. 507. (Mus revecumdus, Thomas.)
1912. Cremnonys, Wroughton, Journ. Bombay, Nat. Hist. Soc. XXJ, p. 340. (Cremnomys cutchicus, Wroughton.)
1015. 1'raomys, Thomas, Ann. Mag. Nat. Hist. 8, XV'1, p. 477. (M/us tullbergi, Thomas.) Valid as a subgenus.
1915. Myomys, Thomas, Ann. Mag. Nat. IIist. 8, XVI, p. 477. (Mus colonus, Smith.) Valid as a subgenus.
1915. Mastomy's, Thomas, Ann. Mag. Nat. Hist. 8, XVI, p. 477. (Mus coucha, Smith.) Valid as a subgenus.
1916. Diplothrix, Thomas, Journ. Bombay Nat. Hist. Soc. XXIV, p. 404, footnote. (Lenothrix legata, Thomas.)
1920. Ochromys, Thomas, Ann. Mag. Nat. Hist. 9, V, p. 142. (Mus zoosnami, Schwann.) Valid as a subgenus.
1926. Stochomys, Thomas, Ann. Mag. Nat. Hist. 9, XVII, p. 176. (Dasymys longicaudatus, Tullberg.) Valid as a subgenus.
1926. Dephomys, Thomas, Ann. Mag. Nat. Hist. 9, XVII, p. 177. (Mus defua, Miller.) Valid as a subgenus.
1926. Hylomyscus, Thomas, Ann. Mag. Nat. Hist. 9, XVII, p. 178. (Epimy's aeta, Thomas.) Valid as a subgenus.
1936. Maxomys, Sody, Naturk. Tidjschr. Ned. Ind. 96, p. 55. (Mus bartelsi, Jentink.) Micaëlamis, New (below). (Mus granti, Wroughton.) Valid as a subgenus.

Type Species.-Mus decumanus, Pallas = Mus norvegicus, Berkenhout (see Miller, List N. American Recent Mammals, p. 428, 1923 ; according to Tate, 1936, and Rümmler, 1938, the type is Mus rattus, Linnaeus). Range.-Palaearctic: throughout Europe, "whole of European part of U.S.S.R., southern regions of Siberia, and Far East; some localities in Northern Siberia (upper reaches of River Lena, Commander Islands, Kamchatka)" (Vinogradov); 'Turkestan; China; Japan; Kashmir; Syria; North Africa. Indo-Malayan: very many groups extend throughout the whole area. Australasian: New Guinea, Ceram, Solomon Islands, Australia, Tasmania. African: Sudan, Abyssinja, Somaliland, Kenya, Uganda, Tanganyika; Liberia, Gold Coast, Nigeria, Cameroons, Congo, Angola; South Africa generally.

Number of Forms.-I have listed five hundred and fifty-four.
Detail notes on the range of the genus, with specific groups, are included below (the species rattus and norvegicus, the House-Rats, are accidentally introduced to America, and may be found anywhere. Apart from these, the concolor group appears to range eastwards to certain Pacific Islands, as Fiji, Hawaii, etc.).
Palaearctic:
Europe: ratius and norzegicus groups only.
Siberia: rattus and norvegicus groups only (three species recognized by Vinogradov as occurring in the U.S.S.R., rattus, turkestanicus, and norvegicus).
China, north of the langtsekiang, and Japan: rattus group (including Japanesc tanczumi); norvegicus group, and confucianus group (north to Chihli).
Indo-Malayan:
India: ton groups occur, distributed as follows-generally: rattus group. Peninsula only: blanfordi and cutchicus groups. Himalayas chietly: confucianus and cha groups. Burma: concolor, bozersi, berdmorei, and cremorizenter groups. Himalayas and Assam: edzardsi group.
'lhe rajah and mülleri groups may occur in 'lenasserim.

It appears, therefore, that only three groups occur in the l'eninsula of India, two of them being restricted to it.
('hina, south of the langtsekiang: rattus, norzegicus, bozersi, confucianus, cha, cdacardsi groups; rajah group (Formosa); canus group (Liukiu).
Siam and Malay Peninsula: rattus, mïllcri, confucianus, cremoriventer, zhitehcadi, rajah, cdzardsi, and berdmorei groups.
sumatra, and adjacent islands: balucnsis, camus, rattus, concolor, milleri, confucianus, cremorizenter, whitcheadi, rajah, and cdwardsi groups.
Java: canus, rattus, concolor, mïlleri, confuciamus, cremorizenter, lepturns. bartelsi, rajah, and cdacardsi groups.
Christmas Island, south of Java: macleari and natioittatus groups.
Borneo: baluensis, vattus, concolor, mïlleri, confucianus, hacodon, cremorizenter, adhitcheadi, rajah, cdwardsi groups.
Celebes: rattus, hoffmani, concolor, confucianus, cremorizenter, whitcheadi, rajah, wanthurus, chrysocomus, coelestis groups.
Philippines: rattus, norzegicus, concolor, xanthurus, rajah groups.
Australasian:
New Guinea: rattus, concolor, leucopus, tumeyi, zerecundus, mobe groups.
Australia: leucopus, tumeyi, fuscipes groups (the first from Queensland only '
Africa:
Morocco: rattus and coucha groups.
West Africa: tullbergi, aeta, defna, zerranuxi, concha groups.
Central Africa (Cameroons, Congo): longicaudatus, tullbergi, aeta, verreauxi groups.
East Africa: rattus, tullbergi, uta, zerreauxi, coucha groups (the last two as far as Abyssinia, and in case of rerreanvi group, Somaliland).
South Ifrica: zerreami, concha, granti, zoosnami groups.
The groups typified by "rattus" and "noraegicus" are included in the above list only when a race has been deseribed from a given area.

Characters:-'lhe genus Rattus, containing about half the named forms in the subfamily, and being the largest genus in the Order, is by no means easy to define. 'Tate in $193^{6}$ has published what amounts to more or less a revision of the Indo-Malayan and New Guinea forms of Rattus as currently recognized (Bull. Amer. Mus. Nat. Hist. INXII, pp. 512-580). The present classification has heen hased principally on 'Tate's arrangement.

Many groups, which appear to be absolutely indistinguishable from typical Rattus, so far as valid generic characters are concerned, have received generic or subgeneric names comparatively recently. These will be dealt with below.

There is a general tendency throughout the genus towards a somewhat simplified form of dental pattern, with cusps on the main laminae tending to morge into each other, at least to a certain degree. Some species approach the Cromys-Melomys series of genera in simplification, as, for example, lepturus, white headi group, some members of confucianus group, cromoricenter group. A few rather primitive(?) forms retain a certain angularity of cusps, and are, for
the genus, more complex-toothed than is normal, as macleari, natizittatus, legatus, blanfordi, cutchicus groups; between these cxtremes are intermediate forms, most noteworthy of which are the Housc-Rats, rattus (with allies) and norregicus, in which the teeth may he moderately to rather strongly cuspidate.

Mammary formula has been used, in certain African "genera," for generic purposes, as has the number of roots of M.1, which are typically but by no means constantly 5 in normal Rattus. Neither of these characters is of the slightest generic value, as will be shown below.

Mammary formula.-Of species of Rattus which have not yet received a generic name, the following formulas are known:

Mammae $3-3=12$. In noreegicus, rattus group (part), tunneyi group (part).
Nammae 3-2-10. In berdmorei, vicerex, mackenziei, manipulus.
Nammae $2-3=10$. In rattus group (part), tunteyi group (part).
Nammae $2-2=8$. In concolor group, mülleri group, ringens group (part), xanthurus group (part), huang group, cremorizenter group, whiteheadi group, sabanus group, rajah group, eha, lepturus.
Nammae $1-3=8$. In hoffmani group, rogersi.
Nammae $1-2=6$. In ringens group (part), xanthurus group (part), beccarii, blanfordi.
Nammae $0-2=4$. In chrysocomus group, xanthurus group (part), macleari, nativittatus.
(The above formulas as published by Thomas, Tate, Wroughton.)
Although the character in rattus and norvegicus $(3-3=12)$ is rather extreme compared with the $0-2=4$ formula, it will be seen that intermediate cases exist throughout, from the one to the other. It thus becomes clear that no genus based primarily on mammary formula can be retained, unless the character has with it other aberrant characters, which are not shared by the present genus.

It is interesting, in fact, to note the characters given to the genus Rattus by various authors in their keys to the Rats of any given country.

In St. Leger, liey to African Rodents, 193I, Rattus is keyed as with "Nammae $2-3$ or $3-3=10$ or 12 (see table above!), tail moderate or long, naked or sparsely haired, skull with straight or curved anterior border to zygomatic root, M.I with five roots."

In Wroughton, Indian Mammal Survey, Rattus is keyed as "Mammae more than 6 ; toothrow short, less than io mm.," against "Cremnomys" (mammae $1-2=6$ ). But later, in the same key, we learn that Rattus blanfordi, one of the Indian species, actually has the mammae $1-2=6$ !

In Vinogradov, Rodents of the U.S.S.R., Rattus appears to be distinguished from the other genera (except Nesokia) on size; "length of body in adult more than 130 mm .," although outside the area there are many Rattus, as concolor, which may be as low as 100 mm . head and hody in adult.

In Rümmler, Muridae of New Guinea, 1938, the only characters of the slightest value appear to be that in Rattus, as against "Stenomys" ( Rattus), the bullae are strongly inflated, instead of "smaller," and the rostral part of
the skull is shorter and broader. In "Stenomys" he includes the species lencopus. But according to Tate, the ringens group (=leucopus group; ningens being a race of leucopus according to Rummler), the bullae against occipitonasal percentage is $15-18$, whereas in the rattus group, which also occurs in New Guinea, the same percentage is $17-20$; it will thus be seen that the two "genera"


Fig. io. Rattus rattis rattus, Linnacus.
B.M. No. 1.6.3.7, 3 ; $2 \frac{1}{2}$.
of Rummler overlap; and what this author proposes to do with the numerous species of Rattus occurring outside New Guinca, which give a lower percentage than in "Stenomys," as miilleri group, edzcurdsi group, rajah group, lepturus, bartelsi, and others, is not clear.

In other words, the characters of this genus are in nearly every case different in one country from what they are in another, in order that some group, quite indistinguishable from the genus Rattus as a whole, may be retained under another name in each given country:

Cranial characters.- Typically, as in $R$. rattus, the skull shows moderate interorbital constriction, strong supraorbital ridges, which extend backwards over the hraincase, large interparictal, and relatively broad braincase. Zygomatic plate moderate, slightly cut back above; as a rule not very strongly so. Incisive


Fig. if. Rattes rattus rattes, Linnaeus. B.M. No. 1.6.3.7, © ; : $2 \frac{1}{2}$.


Fig. 12. A. Rattus rattis, Linnaeus; B. Rattus Norvegicts, Berkenhout. Cheekteeth: : 5
foramina rather long, terminating about on a line with first molars. Posterior part of palate extending slightly behind M.3. Bullae of moderate or largish size.

The braincase is narrowed in norzegicus, and rarely in other forms, as, for example, natizittotus. In norvegicus, the zygomatic plate is more projected forwards than is usual. Conversely in some species, as lepturus, cha, and others, it is almost straight anteriorly. 'The supraorbital ridges are relatively very weak
or almost absent in boacersi (a large form); in eha, and in several Australian species, as fuscipes, etc. The incisive foramina vary greatly. In lutreolus they are much narrowed; in the rajal group they are shortened and specialized; in inflatus they are much broadened. The bullae are strongly inflated in the Australian tumneyi group, and in some other forms, as blanfordi and ezcretti. On the other hand, they are very strongly reduced in some members of the edwardsi group. Except in the rattus group and norregicus, the palate very generally does not extend behind the posterior molars. Further details will be discussed below.

Teeth.-Incisors various, but not pro-odont, except in berdmorci and manipulus. Lower incisor root as a general ruke not showing very much on the mandible, and never extreme in this character. M.i typically five-rooted; three-rooted in rajah and surifer; four-rooted in other species, as noted below. Typically, M. 3 is little reduced. M.I with eight cusps, the outer row moderately developed, the general effect tending to become simple, though less so in rattus and norregicus than in many forms. M. 2 with T.i strong, T. 3 most often restigial or absent, T.4, 5,6 , and ' $\mathrm{T} . \mathrm{S}$ and 9 present. T.3, the anteroexternal cusp, sonxtimes tends to become strongly reduced in the first molar, as in $R$. norecticus, and in many species of the rajah group. M. 3 normally with three laminae traceable, thic first consisting of T.i only, the posterior narrowed, and small. The dentition is very heavy, with thick cusps, in some Australian types, as fuscipes and lutreolus, but there is no extreme angularity of cusps such as characterizes many "complex-toothed" African genera. 'Teeth strongly hypsodont in lusonicus, bagopus, lutreolus. In the progressive division of '「ate, containing the Indo-Malayan confucianus, cremorizenter, whiteheadi, cllowdsi, rajah, lepturus, and bartclsi groups, there is a tendency for the molars to lose all cusps in the adult, or more or less, and for strong reduction of 3.3 . In blanfordi, macleari, natizittatus, cutchicus groups, and legatus, the molars are more complex and angular than is usual. In macleari and baluensis, a small posterointernal eusp may be traceable. Lover molars as a rule without special peculiarity; nuter subsidiary cusps may be present or absent; terminal heel of M.i and X. 2 usually developed.

Bullate. - The following table shows the percentage of bullae against occipitonasal length in the various groups, and indicates intermediates between every evtreme:



External characters.-The external characters are, as might be expected, variable. Typically, as, for example, $R$. rattus, they present the following features. Build rather thickset. Hindfoot terrestrial; D.2, 3, and 4 subequal and longest; D. 5 reaching well past base of D.4; hallux moderate, shorter than D.5. Forefoot with D. 3 and D. 4 longest, next D.2; D. 5 not strongly reduced as a rule. Fur harsh. Tail relatively long, not well haired, but not with the great scarcity of hairs found in such genera as Uromy's. Ear medium. Plantar pads $6 . R$. norregicus usually has the tail shorter than the head and body. In a very large number of forms, it is considerably longer, and may be extremely lengthened, as, for example, in lepturus. As a general rule, no extreme digit reduction takes place as regards the hallux and D. 5 of the hindfoot; but in the rajah group, D. 5 very generally does not reach past the base of D.4, and in the type of $R$. moi, the foot is scarcely to be distinguished from the Arricanthis type. The lindfoot is considerably modified for arboreal life in the cremorizenter group, and may be more or less of arboreal type in the confucianus group, and apparently in several Indo-Nalayan representatives of the rattus group. I have not seen R. beccarii, from Celebes, which is said by Tate to have the foot much specialized for arboreal life. The $R$. concolor group is characterized by, for the genus, very small size, with head and body in the neighbourhood sometimes of 100 mm .; the zchiteheadi rats are not much larger. In the R. sabanus-edzardsi group, the size becomes largest for the genus, with a head and hody up to 290 mm .

The fur is densely spiny in some members of the rajah group, most members of the lencopus group, and the whiteheadi group. On the other hand, it is extremely thick and soft in R. eha, R. lepturus, R. bartelsi, some of the Celebes chrysocomus group, and many Australian species, such as fuscipes. The foot is strongly narrowed in bartelsi, and in fratrorum (chrysocomus group). The tail
is very naked in $R$. macleari and $R$. mutizittatus, from Christmas Island, being not unlike that of Uromys in these species. Further details will be discussed when dealing with the groups.

A few notes may be added on the main characters of each specific group. It will be more convenient to deal first with the twenty odd groups which occur in the Indo-Malayan region, three of which, rattus, norregicus, and confucianus, have penetrated into the Palaearetic region.

1. behuensis group. Incertae sedis. So far as the British Museum is concorned, two skulls only are represented: type of baluensis and type of korincli. In buth of these a small posterointernal cusp is traceable in N.1. In baluensis, an old specimen, this cusp is not present in M.2; in korinchi, it is quite well developed in both. This feature leads me to believe that if a large series came to hand, and it proved to be a constant character, the species woukd require generic separation from Rattus; but for the moment so few are avalable that the question must wait until more come to hand. The species do not agree either with Apodemus or Lenomys, the two most generalized and Rattus-like of the "posterointernal series" of genera, but appear otherwise to belong to the present genus.

Tate treats the species as members of the rattus group, and states that the mammat of baluensis are $2-3=10$. Fur rather soft. (Sumatra, Borneo.)
2. macleari group. 'The skull is without extreme peculiarity. 'lhe molars are complex, more or less Lanomys-like, the cusps rather sharply projecting from each other, the outer ones well developed and pointing outwards; something after the manner of Lenomy's, or Dacnomys. In five out of eight skulls examined, a vestigial posterointernal cusp may be traced in M.1 and M.2. 'The teeth are quite hypsodont.

Bullac rather small. Nammate $0-2=4$. Large forms; up to 228 head and body, or perhaps more. Foot relatively long. 'Tail very naked.

One species: macleari, from Christmas Island, south of Java. Tate regards it as a member of the xanthurus group, but the dentition is abtogether too complex, and the presence (sometimes) of a vestigial posterointernal cusp suggests that it is more primitive than in most other Raitus.
3. naticittatus group. Braincase tends to be rather narrow, and reminiscent of that of nomeegicus. N. 1 evidently five-rooted. Cheekteeth more comples and angular than is normal in Rattus, hut the posterointernal cusp is suppressed. Nammae $0-2-4$. 'Tail naked, of the mosaic-form found in Lromys and Melomys, but teeth widely different from those genera, and skull quite as in typical Rottus. Large forms. Up to 265 head and body. Claws relatively large.

One species: natizittatus, from Christmas Island, south of Java. One of the more aberrant members of the genus; hut more like normal Rattus dentally than is macleari.
4. blanfordi group. Zygomatic plate more strongly cut back above than is usual. Bullae very large, about 19 per cent of occipitonasal. Palate extending to just behind M.3. Molars with cusps quite prominent, angular and the outer row projecting outwards, not far from macleari type (but no posterointernal traceable, as is norma!); М. 3 rather small.

Mammae $1-2=6$. Relatively large; up to 195 mm . head and body, or perhaps more. D. 5 hindfoot rather long; tail longer than head and body, relatively well haired.

One species: blanfordi, from Peninsular India, which, as has been pointed out by Thomas and Hinton, is a more complex or angular toothed type than is normal in Rattus.
5. cutchicus group. Skull quite like that of a small blanfordi, except that the bullae are smaller, the zygomatic plate not much cut back above, and the palatal foramina are longer, tending to penetrate between the front molars (this is a somewhat variable character in blanfordi, though it is not extreme as in the present group). Nolars near blanfordi, rather broad in appearance; M.3 rather reduced. Size smaller than in blanfordi ( $105-149 \mathrm{~mm}$. head and body). Nammae $\mathrm{I}-2=6$. Tail normally longer than head and body, quite well haired. D. 5 relatively long; hindfoot appears somewhat arboreal.
$R$. cutchicus and allies, Peninsular India = the genus "Cremnomys" of Wroughton. The group was originally described as an ally of $1 \mathrm{H} / \mathrm{l}$ lardia, and compared with it; and every character placed against "Cremnomys" by Wroughton is a typical Rattus character (plantar pads 6 ; fifth hindtoe not reduced; tail long; molars normal). The group is, in fact, I think, composed of small allies of blanfordi, bearing much the same relationship to the latter that the smaller $R$. mobe group bears to the larger $R$. zerecundus in New Guinea.
6. canus group. R. canus, from Pulau Tuangku (Sumatra), Java, and Southern Malay Peninsula, and R. legatus from Liukiu. R. legatus only has been seen, the type skull of which lacks bullae. Rather large form; supraorbital ridges very heavy; zygomatic plate staaight anteriorly; molars complex, of same general type as macleari (but no posterointernal traceable); M. 3 little reduced; lower molars complex, with large outer subsidiary cusps. R. legatus has thick fur, intermixed with which are spines. The tail is very well haired for a member of this genus. Plantar pads 6.
$R$. canus was originally descrihed as a new genus, "Lenothrix," but Kloss and other authors have regarded it as a synonym of Rattus. Thomas described legatus as a Lenothrix, but later on the trivial character of the heavier braincase separated it as "Diplothrw.," It appears to be a well-differentiated species of more complex-toothed Rattus. I have no notes on the mammary formula.
After the above six species or groups we pass to those more normal groups of Rattus in which the molars are not angular, as a rule only moderately heavily
cuspidate, or in some cases are becoming strictly simple, though within any of the larger groups below may be some forms which will occasionally approach those above.
7. rattus group. The skull of this group (taken as typical of the genus), has already been described above. The molars are moderately cusped in the young, not excessively heavy; and the cusps on the laminae in adult teeth tend to fuse into each other to a certain degree. The group seems intermediate between the above described more angular types, and such forms as cremorizenter group, etc., which are nearer the $\ell$ romys type of dentition.

The bullae are relatively large ( $17-20$ per cent of occipitonasal length). 31.3 little reduced comparatively ( 25 per cent of molar crown series, 55 per cent of MI.1, '「ate).
'Tail usually longer than head and body, hut not always so.
Mammal $3-3=12$ or $2-3=10$. Moderate-sized forms as a rule, 144 mm . head and body or more, usually under 200 , but in some cases more (to 230). The foot in some Indo-Nalayan representatives of the group has an arboreal appearance. 'The external characters of R. rattus have already been dealt with.

This group is principally Indo-Malayan, though a few races of $R$. rattus have become more or less cosmopolitan. In the list which follows (list of named forms), in this and all the other larger Indo-Nalayan groups 1 have followed the classification of 'Tate, who has allocated to these various groups almost all the named species. There are many species from Indo- Walayan area which are described binomially by American authors, many of which will probably prove to be merely insular subspecific representatives of the better-known species. Above all, this is apparent in the Philippine Islands, very few of the numerous forms of which are represented in London. 'To the rattus group belongs apparently ricerex and its ally turkestanicus; and Tate places the species gestri in the group, from New Guinea; though perhaps it might be a member of the tunncyi group. Also flazipectus from China appears to conform to the rattus-group type; while losea (Formosa) and tanezumi (Japan), are provisionally referred here, though I have no notes of the mammary formula of either, and the cusps of the molars of both appear to tend to be more heavy than is normal.
8. norzegicus group. R. norvegicus differs from R. ruttus in the relatively shorter tail, which is shorter than the head and body; in the more narrowed braincase, the outline of which is distinguishable at a glance, and in the more reduced anteroexternal cusp of M.I. In two specimens seen there are traces of an extra front lamina to 31.1 , as in many Australian species. M. 1 is five-rooted. The zygomatic plate is more strongly cut back above than is usual.

Mammat $3-3=12$.
Notwithstanding the above-mentioned differences, norregicus and
rattus agree in very many essential characters. I am of the opinion that the two forms are closely related. Tate refers the norvegicus Rats to the rattus group. It is more than clear that there can be no question of subgeneric recognition between them (Miller, 1923, refers the two species to distinct subgenera), unless almost every group recognized here receives a new subgeneric name. The whole of Tate's "progressive division," for instance, are much more widely separated from rattus than is norvegicus, and the same applies to many Celebes and Australian groups of Tate's "primitive division," or so it seems to me.
R. norvegicus is more or less cosmopolitan, but seems to be primarily Palaearctic; in the group is included the closely allied Chinese humiliatus, and a few forms described by Miller from the Nicobar Islands (not seen), as "not remote from norvegicus"; also tyranmus, which is included by Taylor in the norvegicus group, from the Philippines.
9. concolor group. Cranially and dentally like the rattus group; but size much smaller (about 100 to 1.40 ), and mammae $2-2=8$. Tail as a rule longer than head and body. Some of the smallest members of the typical subgenus.

Burma, Sumatra, Java, Borneo, Celebes, Philippines, New Guinea, Fiji, Hawaii.
10. mïlleri group. Differing from the rattus group as follows: usually larger in size (though the measurements may overlap in large members of rattus group); about $180-222 \mathrm{~mm}$. head and body. Nammae $2-2=8$. Molars rather heary. Typically, bullae strongly reduced (about 12-14 per cent of occipitonasal length). However, in jarak and zillosus the bullae are less reduced.

Burma, Malay Peninsula, Sumatra, Java, Borneo.
11. xanthurus group. This assemblage, from the Philippines and Celebes, does not altogether give the appearance of a natural group. Further work may suggest the desirability of splitting it. Few forms are represented in the British Museum; I have seen only xanthurus, marmosurus, luzonicus, bagopus, dominator, ezeretti, albigularis, celebensis and callitrichus.

So far as seen the molars are rather heavy, and are well cusped in the young, though in some cases the cusps wear down in the adult. The size is usually large ( $187-260 \mathrm{~mm}$. head and body). The bullae may be very large ( $16-18$ per cent occipitonasal, Tate), or relatively small (12-13 per cent, dominator). According to Tate, "three well-marked types can be noticed, the bontanus type which approaches the rattus group in its arched skull, but nevertheless differs by its large teeth, long palatal foramina, and small bullae: the xanthuriss type, with smaller teeth, larger bullae, and larger foramina; and the dominator type, with moderately large teeth, small bullae, and quite small foramina." The mammae may be $2-2=8,1-2=6$, or $0-2=4$, according to Tate.
R. luzonicus and R. bagopus have been referred to Mearns' genus "Bullimus," which Thomas has shown to be a synonym of Rattus;
"Bullimus" is regarded by Taylor and Hollister as retainable on account of the hypsodont teeth and peculiar mammary formula; but a glance at the table above will show that the formula $1-3=8$ is by no means unknown elsewhere in the genus, occurring in the hoffmani group of Celches, and in rogersi, from the Andaman lslands, while the molars do not appear to me to be more hypsodont than is the case of the Australian species lutrcolus. R. luzonicus is referred by Tate to the present group. 'fhis author also refers, in addition to the above-mentioned forms, facetus, hamatus, tacrae, tondamus, arcuatus, salocco, microbullatus, funicans, tagulderensis, albisularis, and gala to the present group.

Many of the forms referred to this group have thick soft fur.
The zygomatic plate is rather strongly projected forwards in dominator.

The molars of adult hizonicus appear simplified and scarcely cuspidate.
12. hoffmani group. 'This group, from Celebes, does not appear to be represented in London. The bullae are smaller and the molars larger than in the rattus group, and the mammary formula is $1-3-8$ (Tate). See note at end of List of Named Forms, p. 215.
13. chrrsocomus group. Celebes. Very few of these are represented in London. The supraorbital ridges appear rather weak. The molars are heavier than in rattus group, according to Tate; the rostrum long, in old specimens becoming wide and heary. Nammae o-2-4. Foot long and narrow.

Head and body $145-198 \mathrm{~mm}$. (from 'Tate's measurements).
In this group Tate includes fratrormm, andrewsi, penitus, rallus, brezimolaris, nigellus, all from Celebes.
14. coclestis group. R. coelestis from Celebes=the genus "Bunomys" of Thomas. 'This is shown by 'Tate to be probably no more than a slightly specialized offshoot of the chrysocomus group; "this genus seems to comprise merely offshoots of the Rattus chrysocomus group which have become slightly fossorial, as indicated by their lengthened claws. 'The adult skull possesses the lengthened rostrum with tendency to expansion at its anterior end and the widened posterior portion of the braincase as well as a sloping zygomatic plate, all of which characters appear in the chrvsocomus group" . . . "it appears that the Mengkoka form koka constitutes a geographical race differing from true coelestis in being smaller, with a smaller hindfoot, and shorter claws (thus becoming annectant with the chrysocomus group of Rattus). . . ." According to Tate, the interparictal may be reduced. 'Thomas suggested that the group is allied to "Stchomys" (zerecmudus and mobe groups) of New Guinca, hut 'late does not agree with this assumption. Nevertheless the skulls of the two, both rather extreme, resemble one another to a considerable degree.

Aammae $0-2=4$. It may be mentioned that the development of the foreclaws (one of the main characters for the genus of Thomas) is
very slight compared with really fossorial Rodents as Notiomys, Prometheomy', Myospalax, etc.

Ilead and body 148 (type specimen); or up to ${ }_{17} 8$ from Tate's measurements.

Although some of the groups occurring in Australasia are included in the present division of Rattus by Tate, it is more convenient to deal with these later, and pass now to that section of Rattus which Tate regards as more progressive than the forms mentioned above. As characters mentioned by Tate for this division are the "varyingly marked degrees of reduction of M. 3 (the length of the crown of M .3 varying from 38 to 50 per cent of length of crown of M.1); marked reduction in size and change in form of the bullae, which rarely exceed 15 per cent of the occipitonasal length; tendency towards development of short palatal foramina, pointed at the front and widely rounded behind."

However, it must be noted that some forms of the primitive division of Tate just dealt with, such as the mülleri group, and dominator, have bullae as reduced as in this division. Tate also states that the mammary formula $2-2=8$ is constant throughout this group (or less than $S$ in some cases); but an exception to this appears to be the Indian species mackenziei, described as near bowersi (which Tate refers to the edzardsi-sabanus group), but which has the mammae $3-2=10$.
15. confucianus group ( $=$ the huang group of Tate). As indicated above, M. 3 is reduced, more so than is usual in the groups treated above.

The bullae are ${ }^{15}-17$ per cent of occipitonasal length.
This group contains a large number of forms; some, such as fulrescens, appear to be more or less without clear cusps, and near the simple type of tooth, in all seen; confucianus usually has cusps more or less apparent. R. andersoni, which is thought by Thomas to be near this type of animal, appears to have rather heavily cusped molars (too heavily cusped for the present group), though M. 3 is small. The bullae, however, are about as in the present group.

The status of this species seems somewhat doubtful. In a specimen of nireizenter, M. г appears four-rooted, but in confucianus it is five-rooted.

The size is moderate (about $108-178$ head and body). The tail usually longer than head and body.

Mammae $2-2=8$ ? Often in this group, the foot is more or less of arboreal type, with rather long D.5. The fur may be soft or spiny, even within the same species. Tate states that the group comprises two sections, "the more typical, containing huang and fulvescens, has mixed black and cinnamon coloured upper pelage with self-coloured whitish underparts; the other, confuciamus and allies, which occurs only in the northern part of the range of the group (China), has fuscous upperparts, and beneath is white."

The group ranges into Palaearctic China (Tibet, Shantung, Shensi, Chihli), also in Nepal, Burma, Sumatra, Java, Borneo. The main species are confucianus, niveizenter, huang, fulrescens, andersoni, the status 6-Living Rodents-II
of which is described above, and perhaps musschenbroekii, which Tate regards as intermediate in foot structure between this group and the rajah group.

The skull resembles that of the rajah group, including the formation of the palatal foramina. R. ling also seems to belong here, on foot structure, rather than with the cremorizenter group as suggested by Tate. Other species are excelsior and culturatus (according to descriptions), and those referred to the group by Tate, which are listed below.
16. cremoricenter group. M. appears five-rooted. 'The teeth of all seen with one exception are of simple laminate type.

Zygomatic plate nearly straight anteriorly. M. 3 reduced, and braincase hroat, as in last group̧. Rather small; about 125-153 head and body. Feet considerably modified for arboreal life; fur sometimes spiny. 'Tail long, pencilled terminally.

Siam, Sumatra, Java, Borneo.
'Fate suggests that $R$. beccarii (not seen), from Celebes, may he derived from this group. (Nammat $1-2=6$, and feet said to be highly specialized for arborcal life.)
17. whiteheadi group. A group of small Rats, with so far as seen molars quite simplified; M. i four-rooted (asper); skull like the two preceding groups. 'Tail subequal in length to head and body; head and body $9^{8}-133 \mathrm{~mm}$. Usually spiny.

Siam, Sumatra, Borneo, Celebes.
18. bacodon group. Like the last, but toothrow unusually reduced, less than If per cent of condylobasal length. One species from Borneo.
19. Icpturus group. R. lepturus was not allocated to group by Tate, who suggests it may be allied to the cha Rats. Nammae $2-2=8$. The fur is very soft. The tail much longer than the head and hody. The zygomatic plate is straight anteriorly. Bullae strongly reduced, about I3 per cent of occipitonasal length (12-1f per cent, Tate). In all examined, the molar cusps are obsolete, the teeth simple. D. 5 hindfoot is relatively long; the foot not narrowed. The toothrow is unusually long for the genus (zo per cent or more condylobasal length). R. lepturus, Java. Head and body $12,4-170 \mathrm{~mm}$.
20. eha group. Like the last in most essential characters, but differing in the fact that the supraorbital ridges are scarcely developed, the toothrow shorter, about 17 per cent of condylohasal length; and the smaller size (about $9^{S-1} 40 \mathrm{~mm}$.). The hullae are roughly ${ }^{1}+$ per cent of occipitonasal length. Essential external characters as lepturus. The molars originally are moderately cusped. $\mathrm{N}_{3} .3$ is strongly reduced both in the present species and lepturus. $R$. cha, Sikkim to Yunnan.

1. bortelsi group. Zygomatic plate tends to be sloping backwards anteriorly, as in coelestis, etc., and infranbital foramen rather narrow. Molars with cusps apparent, not eompletely simple. Bullae strongly reduced. Nammae 1 -2 6. Hindfoot long, much narrowed. Head and body
${ }^{135} 5^{-1} 78 \mathrm{~mm}$. Tail not much longer than head and body, rather more naked than is usual.

This species is not allocated to group by Tate. It has recently been made the type of a new genus Maxomys by Sody, but does not seem to be more differentiated from the more progressive small Rats of the area than is, for example, cha or lepturus. Sody's characters, namely the number of rings to the tail 25 to the centimetre, more than in other Javanese Rats, and the mammae (six instead of eight!) are much too slight for generic purposes. Probably if all the Rats belonging to the genus were examined more would be found with similar tail characters; see note on $R$. hellwaldi, p. 218. There are certainly more with six mammae, and even some with only four.
22. rajall group. Rostrum pointed, braincase broad, supraorbital ridges strong. Zygomatic plate often nearly straight. Bullae very small. Palatal foramina short, in front of toothrows, specialized in form, narrow in front, broad behind. Nolar cusps as a rule quite clear; in many examined T. 3 the anteroexternal cusp of M.I is becoming strongly reduced, as in $R$. norvegicus. In hellwaldi there is a fourth cusp on the inner side of the second lamina of M.I and M.2. In the young, the molar cusps may be quite angular, in species of this group. M. 1 is three-rooted in specimens examined of rajah and surifer. M. 3 is quite strongly reduced. Size as a rule larger than in preceding forms ( 135 to 235 mm . head and body approximately).

In inflatus, the palatal foramina are extremely broadened. There is a strong tendency in this group for the outer digits of the hindfoot to be reduced, which culminates in $R$. moi, which is in this respect more or less indistinguishable from the condition found in Arvicanthis. 'This species (type skin seen only) has a longer hindfoot than is normal ( 25 per cent head and body length). The fur is normally spiny in this group, but soft in hellwaldi from Celebes, which, however, agrees in foot structure with the majority. D. 5 is clearly longer than the hallux in the majority of the rajah Rats, but scarcely reaches past the base of D.4. Tate suggests that the animals can leap somewhat. This group is very strongly differentiated from typical Rattus, both in foot structure, cranial characters to a degree, and in the number of roots of M.i (if constant; every specimen examined on the point was clearly three-rooted); and may ultimately be subgenerically separated. Formosa, South China, Burma, Malay Peninsula, Sumatra, Java, Borneo, Celebes, Philippines. The main species are surifer and rajah; coxingi from Formosa is referred to this group by Tate; also panglima from the Philippines; as indicated, moi, inflatus, and hellwaldi appear distinct from the majority.
23. edwardsi-sabanus group. Large Rats, becoming as large as any forms of the genus ( $197-290 \mathrm{~mm}$. head and body). Bullae very strongly reduced ( $9-11$ per cent of occipitonasal length). Molars cuspidate originally, but more or less simple in adult ; $\mathrm{N1.3}$, as usual in this section,
strongly reduced. In a young specimen of sabamus, M.i is five-footed. Xlammae normally $2-2=8$.

This group contains edzoardsi, zociferams, sabamus, and others. Osgood refers several forms to edzourdsi as subspecies (as Iisted below). Southern China, Burma, Nalay Peninsula, Sumatra, Java, Borneo.
24. bowersi group. This is referred to the sabanas group by Tate, but differs clearly in cranial characters (chief of which are the proportionately very weak supraorbital ridges); the differences between the two groups are well defined by Osgood, Field Nus. N.H. 'Zool., SVIII, 1932, p. 312. In addition to these cranial differences, the hullae of bowersi and allies are considerably less reduced than in those members of the edwardsi group which I have seen, and are roughly 15 per cent of the occipitonasal length. Nammae $2-2-S$, or $3-2-10$ in mackenziei. South China, Siam, Burma. Osgood states ferreocamus belongs in this group, but has smaller bullae. R. hotersi is a large form, races of which measure up to 280 mm . in B.M. material.
25. berdmorei group. A small group of Rats from Burma and Siam. Incisors pro-odont (elsewhere in the subfamily considered a generic character; but the race mackenะiei feae, helonging apparently to the previous group, also shows some signs of the character, and may he regarded as an annectant form). Lower incisor root showing on mandible more than is usual. Bullae large (in berdmorei), about ig per cent of occipitonasal length, but appearing much smaller in mamipulus. Toothrow rather reduced in berdmorei. Head and hody $182-210 \mathrm{~mm}$. Nammae $3-2=10$. Two species, manipulus and berdmorei only.
Nany of the species listed as belonging to the various groups are not represented in London. I have, when possible, checked '了ate's results and figures on the many species that are represented; his classification atpears for the most part to he very clear, and has undoubtedly gone a long way towards revising this enormous genus.
Australasian Groups
East of Celehes and the Philippines, only two of the above groups occur naturally (other than introduced llouse-Rats), the concolor group, which ranges in New: Guinea, and in certain Pacific islands, and the rattus group, which is represented by gestri in New Guinea. There are, however, five specific groups peculiar to the area in question. Of these, two were referred by Thomas to a genus "Stenomys" (rerecundus and niobe groups, New Guinea); one, the lucopus group ( the ringens group of Tate, rimgens being regarded as a race of leucopus by Rümmler) is chictly in New Guinea, though also occurring in North Australia, and is referred by Rümmler to "Stenomys," and by Tate to the less progressive division of Rattus (i.e., that in which rattus group, concolor group, etc., are placed). Two other groups, typified by tumnevi and fuscipes, are mostly Australian, though the former is represented in New Guinea. Both are evidently considered by 'fate as members of his rattus or less progressive division, but both appear to be rather extreme members of the genus.
26. leucopus group. The supraorbital ridges are in some cascs weak. The rostrum is rather pointed. M. 1 is five-rooted. Palate extending rather behind Ml .3 (as in norvegicus and rattus). Bullae moderate in size, about ${ }^{1} 4-16$ per cent of occipitonasal length. N1.3 is not strongly reduced; the teeth are rattus-like, quite well cusped. Nammae $2-2-8$ or $1-2=6$ (Tate). Fur in most cases spiny, sometimes densely so. Rather large; head and hody about ${ }^{17} 75^{-25} 2 \mathrm{~mm}$.

New Guinea, Ceram, North Australia. All forms referred to this group are regarded as races of leucopus by Rümmler.
27. rerecundus group. This and the following group constituted the genus Stenomys of Thomas, having as its main distinguishing character the "slender long feet" and the "long smooth muzzle." But the muzzle and skull, though a little extreme, are not generically distinct from Rattus; fratrorum, bartelsi, confucianus, eha, lepturus, whiteheadi, all may be regarded as transitionary types towards this group in cranial characters to a greater or lesser degree. The hindfoot does not seem to be so narrowed in this group as it is in Rattus fratrorum (chrysocomus group) and Rattus bartelsi. M1.1 five-rooted. Nammae $1-2=6$.

The braincase is heavier than is usual, and the supraorbital ridges are very weak or absent. There is sometimes little interorbital constriction (particularly in the smaller nobe group, following); the zygomatic plate slopes backwards anteriorly, as in coelestis, and is often much narrowed. The palate extends slightly behind the last molars. The infraorbital foramen is not so widely open as in Nesoromy's, which has been referred to "Stenomys," neither is the palate anything like so specialized as in Nesoromy's, which has been fully discussed elsewhere. The molars are quite well cusped and inclined to be rather complex; N1.3 is moderate. Tail not very well haired; foot narrow; D. 5 rather short. Head and body $136-177 \mathrm{~mm}$.; hindfoot not under 30 (Rümmler). New Guinea. Plantar pads apparently 6.
28. niobe group. Like the last, but normally considerably smaller. Head and body $98-145 \mathrm{~mm}$.; hindfoot not over 29 (Rümmler). New Guinea.
29. tunnesi group. Placed by Tate in the more primitive division of Rattus, and characterized as follows: bullae largest of genus, 20-24 per cent of occipitonasal length; molars broad, large and heary. Lower incisor root rather prominent on mandible; supraorbital ridges most often present, but may be very weak. Frontals often more constricted than is normal in the genus. Toothrows often longer than is normal in the genus (the highcst measured is conatus, 20.9 per cent of condylobasal length). Palatal foramina long and narrow, sometimes extending between front molars. N. 3 is smaller than M1.2, but the molars are sufficiently heavy to be reminiscent of the Arvicanthis type in some cases. N.i appears five-rooted. In a young specimen of culmorum, traces of an extra lamina in front of M.i can be present. The tupe of $R$. melvilleus has an extra outer cusp on the second lamina of $\mathbf{M . 1}$, so that there are four cusps on this lamina.

Mammae $3-3 \quad 12$, or $2-3=10$ (Tate).
Tate refers the New Guinea species brachyrhinus to this group; the following appear to me to belong to it (Australian forms): woodzoardi, cillosissimus, tumeyi, culmorum, melvilleus, colletti, conatus, sordidus.

Fur normally rather coarse, but sometimes very soft. R. cillosissimus appears clearly distinguishable from all others on account of its colour and heavy build. Head and body about $535-200 \mathrm{~mm}$. in the group.
30. fuscipes-lutreolus group. Differing from the tumneyi group in the following characters: except in lutreolus and assimilis, very generally the supraorbital ridges are ohsolete or absent. The bullae are smaller ( $17-19$ per cent of occipitonasal length). The fur is normally very soft. The molars are on the whole even heavier than in the tunneyi group, reaching their heaviest in lutreolus, which has in the young extremely hearily cuspidate molars (for the genus), though in this species the pattern is not characterized by angularity of cusps, and wears down quickly to a more or less laminate pattern; the teeth are strongly hypsodont. N. 3 is relatively large through the group. The palate tends to be narrowed. The toothrow tends to be longer than in any other Rattus measured (including all leading species); in velutinus, highest of all measured, $21+$ per cent of condylobasal length. I have no note of the mammary formula beyond $2-3=10$ for lutreolus and greyi (Wood Jones): 'Tate states that in the assimilis group, which is named on p. 522, but not dealt with in his paper as it is restricted to Australia and Tasmania, the mammary formula is $0-2=4 . \quad$. assimilis appears to me to belong to the present group.

Head and body about $115^{-178} \mathrm{~mm}$. The claws may become rather large in lutreolus.

In this group I include the Australian species manicatus, mondraineus, lutrcolus, grevi, celutinus, assimilis, fuscipes. The group is probably closely allied to the tumeyi Rats.

Some of these Australian Rats tend to have the outer digits of the hindfoot rather shorter than is normal.

## Atrican Groups

. Ill the African groups of Rattus have received subgeneric names, which have been accepted recently as full genera. Until much more work is done, it is premature to divide any one of these off as a full genus, based primarily on characters such as mammary formula, number of roots of M. (which, as hown above, vary throughout typical Rattus), bristly fur, etc. Formerly the whole assemblage of Rats here referred to Ruttus were included in one genus, originally called Epimus, which is antedated by Rattus; it is not only convenient and desirable to retain this classification, but there appears to me to be no alternativo.

Vearest to typical subgenus Rattus stands
:1. lonsicaudatus group. (Subgenus Stochomys.) This was given generic rank by 'I homas on the characters: "Size comparatively large; fur with
elongate bristlc-hairs intermixed; tail very long, scaly, naked; mammae $1-2=6$; cranial crests strongly developed, amphoral. Palatal foramina not or scarcely longer than toothrow. Molars laminate, their normal cuspidate character obsolescent. . . . M. w with five roots." The character of the fur certainly cannot be taken very seriously when one takes into account that species of Rattus may be spiny as Acomys, or soft as a Chinchilla. The molars have the cusps wearing down early to a laminate pattern, but this occurs in many specialized species of Rattus, if a little later perhaps. From young specimens seen it appears that the dentition is normally cusped originally. The bullae are strongly reduced (about ${ }^{1} 3$ per cent of occipitonasal length). T. 9 in . M. i and M. 2 is small, projecting forwards, and T. 8 is broadened. M. 3 is considerably reduced.

Head and body $136-160 \mathrm{~mm}$. The tail appears almost devoid of hair.
Congo, Cameroons.
The majority of the remainder of the African groups of Rattus are smaller than is usual in the genus, and decidedly more generalized than the lndoMalayan smaller forms.
32. tullbergi group. (Subgenus Praomys.) Thomas's characters for this "genus" were: "Size medium. Form slender. Fur soft, without longer bristles. Tail long, very finely haired, not pencilled. Foot not broadened for climbing. Nammae $1-2=6$. Skull slender, rostrum long, braincase of normal proportions, the crests either absent, or very slightly developed, cuneate. Zygomatic plate projected forwards, its anterior edge straight or convex. Bullae of average size. Molars narrow, rather elongate, M. 2 longer than broad, M. i with three roots."

The molars are originally moderately cusped, later becoming simple, and do not appear to be very different from the type found in Rattus concolor. M. 3 is rather strongly reduced. None of the above-mentioned characters is of the slightest value for generic purposes.

Head and body $100-135 \mathrm{~mm}$. The toothrow is rather short; D. 5 hindfoot relatively long. Tail normally very poorly haired; longer than head and body.

Liberia, Nigeria, Congo, Kenya, Tanganyika, Lganda, Nyasaland. Closely allied to the above is
33. acta group. (Subgenus Ifylomyscus.) This group was given generic rank by Thomas on account of the fact that the feet are supposed to be broadened for climbing, though there seems very little difference between the feet of this group and the last, and that the zygomatic plate is straight anteriorly. The size is sometimes, for the genus, very small $(85-120$ head and body). Bullae about $16-18$ per cent of occipitonasal length. In the species aeta, supraorbital ridges are developed; in the others, they are absent. 'The braincase is broad. M. i is three-rooted. R. alleni has the incisors inclined to be pro-odont. The molars are narrow, Rattuslike, moderately cusped originally, but ultimately, so far as seen, becoming quite simple.

Regarding the hindfeet, it may he noted that on average they are in this group 18-21 per cent of the head and body length; exactly the same measurement percentage is found in the zerramai group, below; while tullbergi works out at about 21 per cent; this indicates that the supposed differences in the hindfeet of these groups are not very clear; and in St. I.eger's key, in which the present group is put among the Tree or Climbing Rats, with "feet short, broadened for climbing," as against the tullbergi and verreauxi groups, which are regarded as 'Terrestrial Rats, "feet normal, not broadened for climbing"; in "Praomys" and some species of "Myomys" the hindfoot has the fifth digit "very nearly as long as in the 'Tree-Rats," which are said to have the fifth digit "almost as long as the second digit."

The group is closely allied to the tullbergi group. Tail long, not very well haired; D. 5 hindfoot relatively long. To this group are referred the species aeta, stella, demiae, carillus, and alleni. Alken lists carillus as a subspecies of alleni; but the less pro-odont incisors of carillus compared with the type of alleni suggest that this is not correct.

Liberia, Cameroons, Congo, Uganda, Kenya, Sudan. Nammary formula $2-2=8$, or $\mathrm{I}-2=6$.
it. terreanxi group. (Subgenus Myomys.) This group has not yet been given a formal genus diagnosis, so far as 1 can trace, but has simply been given generic rank on the single character mammae $3-2-10$, which is not unknown elsewhere in Rattus, and is certainly not a generic claracter. It is not an easy group to classify. One of the species, daltomi, suggests the Mus type of dentition, though nothing like so extreme as the common African groups of Mus (bellus, tenellus, triton, etc.).

There is usually a tendency in the other species for the molars to be broal, rather angular, and well cuspidate; this most marked in forms like shorfridgei, and perhaps brockmani. N. 3 may be moderately to strongly reduced. There are no supraorbital ridges, as a rule. The zygomatic plate is slightly cut back ahove. In colonus, the posterior narts are narrowed, as is often the case in the coucha group. Shortridge has suggested that colonus may be based on a multimammate Rat. Bullac about ${ }^{15-17}$ per cent of occipitonasal length. Size rather small: $100-18_{+}$head and body. The tail is usually longer than head and body, except in shortridgei and angolensis; often much longer; rather well haired. D. 5 hindfoot usually relatively long.

T's the present group have been referred albipes from Ahyssinia, brockmani from Somaliland, fumatus from Kenya, daltoni from West Africa, anmolensis from Angola, shortridgei from South-west Africa, and cerreana from Capetown. The group is closely allied to the coucha Rats, and also to tullbergi, from which it is doubtiully subgenerically separable.

In my view the name Praomys, being the earliest, would cover all these small African Rattus, except perhaps the multimammate group.
35. coucha group. (Subgenus Mastomys.) Multimammate Rats. Mammae usually more than 12 , not separated into pectoral and inguinal sets,
apparently variable, and up to 24 . The supraorbital ridges are as a rule scarcely traccable. Incisive foramina long, usually penetrating between molars. Posterior nares very generally narrowed. Bullae variable in size, but never large, often rather strongly reduced. M. 3 is moderately or strongly reduced. The molars are as a rule well cusped, and may be reminiscent of the Mus type; the present group may be one of the primitive lines that may have given rise to Mus on one hand, or part of Rattus on the other. Head and body $82-152 \mathrm{~mm}$. 'The tail is moderately haired; the digits normal.

The classification of G. M. Allen is followed in this group, in my list of named forms; the majority of forms being referred to coucha as races, In this group has been also included the rare and very distinct pygmy form $R$. pernanus (head and body 76 mm ., tail 65 , hindfoot 15).

The range of the group is Morocco, Gambia, Gold Coast, Nigeria, Sudan, Abyssinia, Kenya, Uganda, Tanganyika, South-west Africa, and South Africa.
36. defua group. (Subgenus Dephomys.) 'This species was given generic rank by Thomas on the following characters: "Size medium; fur with some bristle-hairs intermixed; . . . feet broad; tail long, very thinly haired, not tufted. Mammae $0-2=4$. Skull with large braincase, the crests with tendency to be amphoral; zygomatic plate projecting forward, though less so than in Aethomys. Palatal foramina fairly long, but not penetrating between molars. Choanae widely open. Bullae small. Molars cuspidate, a distinct anteroexternal cusplet on M.1 and M.2. M.I with four roots."

None of these characters appears to distinguish the species from other species of Rattus sufficiently for it to be regarded as a genus. The bullae are about 13 per cent of occipitonasal length. Hindfoot relatively broad, of arboreal type; D. 5 relatively long; tail quite well haired, much longer than head and body. M. 3 is little reduced, and with three laminae traceable. The molars are quite angular, but not more so than in many Rattus. T. 3 in Ml. I is becoming strongly reduced, and T. I is distorted inwards to a degree. The terminal heel of M. ı and M. 2 lower is large, and the outer subsidiary cusps on the lower molars are strongly developed.

One species: defua. Liberia, Sierra Leone, Gold Coast.
37. granti group. Supraorbital ridges very weak. Zygomatic plate cut back above. Bullae moderate, about 17 per cent of occipitonasal length. Molars extremely complex and angular, quite unlike any other Rattus examined. M. 2 broader than long; molars very broad in appearance, and heary; M.I with T.1, T.2, and T. 3 all well developed; on the second lamina, which is broader, T. 4 and T. 6 point sharply outwards respectively from T.5; T. 8 broadened, T. 9 medium. M. 2 with a large T.ı, the centre lamina as in M.i, but even more exaggerated; T.S broad, and T. 9 strongly projecting outwards. M.3 very nearly as large as M.2; with 'T. 3 ; the centre lamina broad, and bent backwards each side, overlapping the last lamina which is composed of two cusps. M.I four-rooted.

The whole effect extremely exaggerated, and the pattern evidently persisting till old age. Lower molars with quite strong subsidiary cusps, the terminal heel of M.I and M.z suppressed or vestigial. Tail little longer than head and body, relatively well haired (more so than the other small Rats of the area apparently), plantar pads 6; digits normal; head and body about $108-116 \mathrm{~mm}$. This species has been lumped in Myomys. It is so aberrant dentally that I do not think it is a Rattus at all, and it may later be given generic rank. For the present, on account of its generalized external characters, I retain it in Rattus, though the molars


Fig. 13, (a) Raties rattes ratius, Linnaeus, B.M. No. 2.9.1.73, 9 ; 10. (b) Rattcs granti, Wroughton, B.M. 2.9.1.83, ${ }^{3} ; \quad \therefore 13$.
seem much too complex, and propose for it the new subgeneric name Micaëlaviys (named after a character in the opera "Camen"). Some measurements of the tecth are shown below.

| TOGTHROU | LT\.1.11 V.I | BRE.IDTH M. 1 | 1.1. 6.1 H M. 2 |  |
| :---: | :---: | :---: | :---: | :---: |
| 4'9 | $2 \cdot I$ | 1.8 | $1 \cdot 5$ | 1-7 |
| $5 \cdot 1$ | $2 \cdot 1$ | 1. S | 1.4 | I 5 |
| 4.6 | $2 \cdot 1$ | 1* 7 | 1.7 | I- ${ }^{\prime}$ |
| $5 \cdot 1$ | $2 \cdot 1$ | 1-8 | 1.4 | I•7 |
| $5 \cdot 1$ | 2-2 | 1.8 | 1. 7 | 1.7 |
| 5 | 2.1 | I. 8 | $1 \cdot 4$ | I $\cdot 7$ |
| $5 \cdot 2$ | $2 \cdot 1$ | I-8 | $1 \cdot 5$ | I-6 |

It will be seen that $\mathrm{NI}_{3}$ can be a little lonser than M. 2 here; but it is constantly narrower than this tooth.

Nammae $3-2=10$. R. granti, South Africa.
38. woosnami group. (Subgenus Ochromys.) This species is, I think, prohably not a Rattus, but it has not got sufficient characters to be regarded as a full genus. It might be described as essentially like Zelotomys on cranial and dental characters, but without pro-odont incisors. The tail is white, but this character, I think, is not of generic valuc, though there may be some who disagree. Skull with little interorbital constriction; braincase relatively narrow; supraorbital ridges not developed. Rostrum rather short. Zygomatic plate nearly straight anteriorly. Palatal foramina long, penetrating between molars. Bullae of medium size. Cheekteeth moderately broad; pattern like that of Zelotomys if less extreme; M.i a little over half the toothrow (but this character is not unknown in Rattus, as, for example, lepturus); M. 3 strongly reduced. M. 3 lower also strongly reduced. Tail considerably shorter than head and body, coloured white, moderately haired; digits normal. Nammae $3-2=10$. According to Shortridge, the eyes are smaller than in other South African Murinae. It is certainly an isolated and aberrant type, more different from Rattus than are any of the other subgenera referred here to the genus except Micaëlamys. M.i is three-rooted.

South-west Africa. R. zooosnami.
Forms seen: aemuli, "aequicaudalis," aeta, albigularis, albipes, alexandninus, alleni, alticola, andamanensis, andersoni, angolensis, annandalei, aoris, arboreus, arfakiensis, argentiventer, arrogans, asper, assimilis, "ater," australis, austrinus, avunculus, azrek, baeodon, bagopus, baluensis, bandahara, bandiculus, bartelsi, berdmorci, bhotia, blainei, blanfordi, bontanus, bowersi, bradfieldi, brama, brevicaudatus, brockmani, brozvni, brunneus, brunneusculus, bukit, butangensis, butleri, callitrichus, campus, canorus, caraco, carillus, celebensis, champa, changensis, chihlicnsis, ciliatus, coelestis, coenorum, colletti, colonus, conatus, concolor, confucianus, coniger, connectens, coracius, coucha, coxingi, cremorizenter, cretaceizenter, culmorum, culturatus, cuninghamci, cutchicus, daltoni, dammermanni, defua. delectorum, denniae, diardi, dominator, eclipsis, edwardsi, effectus, eha, ephippium, crythroleucus, evclyni, everetti, excelsior, exulans, feae, feliceus, ferreocanus, finis, firmus, flazidulus, flazigrandis, flavipectus, focdcris, fratermus, fratrorum, frugizorus, fulzescens, fuscipes, "fuscus," gambianus, gangutrianus, garonum, germaini, gestri, girensis, glauerti, grandis, granti, greyi, griscipectus, griseizenter, hawaiensis, hellwaldi, herberti, hildebrandti, huang, huberti,"'huegeli," humiliatus, hylomyoides, inas, "indicus," inflatus, infraluteus, ismailae, ituricus, jacksoni, jalorensis, jarak, jerdoni, kandianus, kelaarti, klyyensis, kina, klossi, klossi (Stenomys, here renamed haymani), klumensis, korinchi, kraensis, kutensis, lancavensis, langbiunus, latouchei. legatus, lconis, lepcha, lepturus, leucopus, "leucosternum," ling, lingensis, listeri. longicaudatus, losea, luticola, lutreolus, luzonicus, mackenziei, macleari, macmillani, macrolepsis, magnus, makensis, manicatus, manipulus, manuselae, "maorium," marinus, mariquensis, marmosurus, "maurus," mayapahit, medius, mekongis, melvilleus, mentosus, "microdon" (-binominatus), "microdon" ( coucha), milletti, mindanensis, mindorensis, moi, molliculus, mondraineus, montanus, montis. mordax, morio, milleri, mullulus, murrayi, musschenbroekii, narbadae, natizittatus,
meglectus, negrinus, nemoralis, nimus, niobe, nitidus, nizeizenter, "nizeiventris" ( fumatus), norregicus, wobletus, ochraceizenter, ohiensis, orhus, pallidus, pan, panglima, pannosus, pelagius, pellax, pemangilis, peregrinus, perlutus, pernanus, pesticulus, pocnitcntiari, portus, practor, profusus, "pyctoris," rajah, rajput, rangensis, rapit, ratticolor, rattoides, rattus, razus, remotus, rezertens, rhionis, ringens, rogersi, rubricosa, rufescens, rufulus, rumpia, sabanus, sacer, satarat, "saturatus" (here renamed ingoldbyi), schoutedent, "sebastiamus," setiger, shortridgei, sikkimensis, similis, siporanus, siza, somereni, sordidus, spurcus, stragnlum, stridens, surdus, surifor, tanezumt, tatkoncnsis, temmincki, tenaster, tenebrosus, tersus, "tctragomurus," tikos, tiomanicus, tistae, todayensis, tramitius, trenbi, tullbergi, tumnevi, turkestanicus, ugandue, ululans, utakza, zalidus, zallesius, zellerosus, zelutinus, zerecundus, zerrouxi, ziator, zicerex, villosissimus, zillosus, zociferans, zulcani, zellsi, zhhteheddi, zwodzardi, zoosnami, zuroughtoni, xanthurus, youngi, suluensis.

List of Nanied Forms ${ }^{1}$
(The races are listed as far as possible geographically.)
Subgenus Rattus, Fischer
baluensis Group

1. RATTL'S BALCTENSIS BALLENSIS. Thomas
2. Ann. Mag. Nat. Mist. 6, X1V, p. 454.

Kina Balu, Borneo.
2. RATTLSBALLENSIS KORINCHI, Robinson \& Kloss
1916. Journ. Str. Branch Roy. Asiat. Soc. 73, p. 275.

Korinchi Peak, W. Sumatra. macleari Group
3. RATTUS MACIEARI, Thomas
1887. Proc. Zook. Soc. London, p. 513.

Christmas Island, south of Java. nativittatus Group

+ RATTLS NATIVITTATLS, Thomas 1888. Proc. Zool. Soc. London, p. 533.

Christmas Island, south of Java.

## blanfordi Group

5. RATTL's BLANFORDI, Thomas
6. Ann. Mag. Nat. Hist. V11, p. 24.

Kadapa, Madras, India.

## cutchicus Group

6. RATTLS CLTCHICLS, Wroughtom
7. Journ. Bombay Nat. Hist. Soc. XX1, p. 340.

Cutch, India.
${ }^{1}$ For further notes on the arrangement of these forms see p. 644 .
7. RATTUS MEDIUS MEDIUS, Thomas
1916. Journ. Bombay Nat. Hist. Soc. XXIV, p. 240. Kudia, Junagadh, India. (Kathiawar district.)
8. RATTTLS MEDIUS RAJPUT, Thomas 1916. Journ. Bombay Nat. Hist. Soc. XXIV, p. 241. Mt. Abu, Rajputana.
9. RATTUS MEDIUS CAENOSUS, Thomas 1916. Journ. Bombay Nat. Hist. Soc. XXIV, p. 241. Singar, Gaya, Bihar and Orissa, India.
10. RATTUS AUSTRALIS AUSTRALIS, Thomas
1916. Journ. Bombay Nat. Ilist. Soc. XXIV, p. 242. Vijayanagar, Bellary, India.
11. RATTUS ALSTRALIS SIVA, Thomas 1916. Journ. Bombay Nat. Hist. Soc. XXIV, p. 242. Sivasamudram, S. Mysore, India.

## canus Group

12. RAT'TUS CANUS CANUS, Miller 1903. Proc. U.S. Nat. Mus. XXVI, p. 466.

Pulau 'Tuangku, N.-W. Sumatra
13. RATTL'S CANLS MALAISJA, Kloss
1931. Bull. Raffles. Mus. 5, p. 105.

Kuala Lumpur, Selangor, Malay Peninsula.
14. RATYTUS LEGATLS, Thomas
1906. Ann. Mag. Nat. Hist. 7, XV11, p. 88.

Liukiu Islands.
Synonym: bozersi okinavensis, Namiya, 1909, Dobuts. Z. Tokyo, 21, p. 452. Okinawa Island, China Sea. Status fide Aoki.
rattus Group
15. RATTUS TANEZUNII, Temminck
1843. Fauna Japonica, p. $5^{1}$, pl. xv, fig. 5-7.

Japan.
16. RAT"TL's LOSEA, Swinhoe

1S70. Proc. Zool. Soc. London, p. 637.
Formosa.
17. RATTLS FLAVJPECTUS FLAVIPECTUS, Milne-Edwards 1871. Nouv. Archiv. Mus. Bull. 7, p. 93.

Eastern Tibet.
18. RAT"TUS FLAVIPECTL'S YLNNANENSIS, Anderson 1879. Zool. Yunnan, p. 306.
W. Yunnan.
19. RA'T"TUS FLAVIPEC'TL'S MOLLICLLL'S, Robinson \& Kloss 1922. Ann. Mag. Nat. Hist. 9, IX, p. 97.

Daban, Phanrang Province, S. Annam.
20. RATTL'S TURKESTANICLS, Satunin 1903. Ann. Mus. St. Petersb. VII, p. 588.

Assam-bob, 'Turkestan (Ferghana).

## RATTUS

21. RATTLS VICEREX, Bonhote
22. Ann. Mag. Nat. Hist. 7, XI, p. 473.

Simla, N. India.
22. RATTUS RATTOIDES, Hodgson
18.45. Ann. Mag. Nat. Hist. XV, p. 267.

Nepal.
23. RATTUS RATTLS RATTLS, Linnaeus

175S. Syst. Nat. 1oth ed., p. 61.
Upsala, Sweden.
Synonym: latipes, Bennett, 1835, Proc. Zool. Soc. London, p. S9. Asia Minor.
insularis, Waterhouse, 1838 , Zool. Beagle, p. 35. Asia Minor. tompsoni, Ramsay, I \&8ı, Proc. Linn. Soc. New S. Wales, V1, p. 763. New South Wales.
personatus, Krefft, i 867 , Proc. Zool. Soc. London, p. 3 i \$. Cape York, Queensland.
ater, Millais, 1905, Zoologist, 4, IX, p. 205. Great Btitam. Not of Fitzinger.
arboricola, Gould, 1863, Mamm. Australia, p. 35. Australia, cacrulus, Lesson, 1842, Tabl. Regn. Anim. W. Asia.
chionogaster, Lönnberg, K. Svenska. Vet. Akad. Handl. Stockholm, 52, 2, p. 6, 1915 . Australia.
samharensis, Heuglin, 1877, Reise N. Ost. Afr. Il, p. 67. Eritrea
aequicaudalis, Hodgson, Ann. Mag. Nat. Hist. 1849, 2, III, p. 203.
pyctoris, Hodgson, 1845 , Ann. Mag. Nat. Hist. XV, p. 267.
(?) sctostus, Lund, $18+1$, Afhandl. K. Danske Vid. Selsk, V111, pp. 49, 98. America.
(?) jacobiae, Waterhouse, 1838 , Voy. Beagle, p. 35. James Island, Galapagos.
doriac, Trouessart, IS97, Cat. Mamm. I, p. 472. New Guinea. New name for beccarii, Peters.
beccarii, Peters 太 Doria, 188 s , Ann. Mus. Genova, 16, p. 700. New Guinca. Not of Jentink.
fuliginosus, Bonaparte, $18_{33}$, Ic. Faun. Ital. I, fasc. 3, pl. 22, fig. I. Italy.
subcaerulus, Lesson, Noux: Tabl. Regn. Anim, p. 138, 1842. France.
domesticus, Fitzinger, I867, Sitz. Ber. kais. Akad. Wiss. Wien. Math. Nat. Cl. Ivi, I, p. 64.
fuscus, Fitzinger, same reference.
zarins, $\mathrm{F}^{\mathrm{r}}$ tzinger, same reference.
fulzuster, Fitzinger, same reference.
albus, Fitzinger, same reference, p. 65.
ater, Fitzinger, same reference.
alexandrinorattus, Fatio, 1902, Rev. Suisse Zool. x, p. 402. Switzerland.
galapagocnsis, Waterhouse, 1839, Zool. Voy. Beagle, p. 65. Galapagos.

[^3]25. RATTUS RATTUS ALEXANDRINUS, Geoffoy
1803. Cat. Mamm. Mus. Nat. Hist. Paris, p. 192.

Alexandria, Egypt.
Synonym: asiaticus, Gray, 1837, Ann. Mag. Nat. Hist. 1, p. 585. India. intermedius, Ninni, 1882, Atti. Inst. Venct. 5, V111, p. 571. Venice, Italy.
crassipes, Blyth, 1859, Journ. Asiat. Soc. Bengal, p. 295. India.
tamarensis, Higgins \& Petterd, 1883, Proc. Roy, Soc. Tasmania, p. 185. Tasmania.
griseocaeruleus, Higgins \& Petterd, 1882, Proc. Royal Soc. Tasmania, p. 173. Tasmania.
zariabilis, Higgins \& Petterd, 1882, Proc. Roy. Soc. Tasmania, p. 174. Tasmania.
novaezelandiae, Buller, 1871, Trans. New Zealand Inst. 3, p. 1, New Zealand.
sylvestris, Pictet, 1841, Mém. Soc. Phys. Hist. Nat. Genève, p. 153. Switzerland.
leucogaster, Pictet, same reference, p. 154.
nemoralis, de Selys-Longchamps, Atti. Del. Sec. Riun. degli Sci. Ital. Torino, p. 247, 1840.
picteti, Schinz, Syn. Mamm. 1845, II, p. 142.
(?) caledonicus, Wagner, 1842, Schrebers Säug. Suppl. IV. tcttensis, Peters, Reise nach Mosambique, Säug. 156, 1852.
26. RATTU'S RATTUS FRUGIVORUS, Rafinesque
1814. Préc. des Decouv. et. Trav. Somiologiques, p. 13.

Sicily.
Synonym: tectorum, Savi, 1825, Nuovo Giorn. de Lett. Pisa, X, p. 74. Itaiy. siculae, Lesson, 1827, Man. de Mamm. p. 274.
27. RATTUS RATTUS FLAVIVENTRIS, Brants
1827. Gesl. Muizen, p. 108.

Arabia.
28. RATTUS RATTUS SUEIRENSIS, Cabrera 1921. Bol. R. Soc. Esp. Hist. Nat. 21, p. 159.

Mogador, Morocco.
Synonym: chionogaster, Cabrera, Real. Soc. Esp. Hist. Nat. 5o, p. 5 I, 1921. Not of Lönnberg \& Mjoberg.
29. RATTUS RATTUS NIEICOLA, Cabrera 1921. Mem. Real. Soc. Nat. Hist. Madrid, 50, p. 54. Saf-Saf, Morocco.
30. RATTUS RATTUS KIJABII's, Allen 1909. Bull. Amer. Nus. Nat. Hist. XXVI, p. 169.

Kijabe, Kenya.
Synonym: rattiformis, Matschie, 1915, S. B. Ges. Nat. Fr. Berlin, p. 98. Usambara, Tanganyika. jujensis, Lönnberg, 1916, Ark. Zool. 10, no. 12, p. 10. Kenya. muansae, Matschie, 1911, S. B. Ges. Nat. Fr. Berlin, p. 340. Muansa, Tanganyika.
31. RATTLS RATTL'S SIIIGARLS, Miller 1913. Proc. Biol. Soc. Washington, XXVI, p. 19 §.

Shigar, Baltistan, Kashmir.

1845．Ann．Mag，Nat．Hist．XV，p． 266.
Nepal．
33．RATTLS RATTUS BRLN．NELSCLLC - Hodgson
1845．Ann．Mag．Nat．Hist．XV，p． 267.
Nepal．
34 KATTLS R．ITTLS UROLGHTON1．Henton
1919．Journ．Bombay Nat．Hist．Soc．XXVI，p．384．
Nilgiri Hills，India．
35．RATTL $\because$ RATTL $\because$ ARBOREL $S$ ，Horsfield
$\mathrm{I}_{5}$ I．Cat．E．lnd．Nus．p． $1+1$ ．
Bengal，India．
36．RATTL\＆RATHLS KANDEANしミ，Kelaart
I850．Journ．R．As Sioc．Ceylon，11，5，p． 326.
Newera－Elha，Rambodde，Ceylon．
Synonym：tetragonuws，Kelaart，i $S_{50}$ ，Journ．R．As．Soc．Ceylon， 330．Colombo，Ceylon．

37．RATTL゙か RATTLA RUFFんCEXS，Gray
I837．Ann．Mar．Nat．Ilist．I，p． $5^{8} 5$.
1V．India．
Synonym：indicus，Desmarest，IS22，Des．Mamm，11，p．299．Not of Bechstein．
flatescens，Elliot， $1 \$ 39$ ，Madras Journ．L．S．X，P． 214. infralineatus，Blỵth， 1863 ，C＇at．Namm．As．Suc．in6，nom． nud．
ceylontus，Ficlaatt，IS50，Prodr．Fauna Zeylanicae，p． 61.
38．RATTLS RATTLS GANGLTRIANL - Hinton
1919．Journ．Bombay Nat．Hist．Soc．SXVI，p． 389.
Ranbagh，Naini Tal，N．India．
39．RATILS RATTL S KHYEN゙il，Hinton
1919．Journ．Bumbay Nat．Hist．Loe XXV1，p． $39 \mathrm{~S}^{5}$ Chm HiIls，Kindat，India．

40．RAT＂IC R RATTL A VARBADAE，Henton
1918．Journ．Bombay Nat．Ilist．Soc．XXV1，p． 77.
Sakot，Hoshangabad，India．
41．R．A＇TH \＆RATTL G GIRENSIs，Henton
1918．Journ．Bombay Nat．Itist．Soc．XXVI，p．83．
Sasan，Junagadh，India．
42．RATTL \＆RATTU：SATARAE，Hinton
1918．Journ．Bombay Nat．Hist．Soc．KXVI，p． 87.
Ghatmatha，satar district．India．
43．RATTL R RATTL＇S NEMIORAIAA，Bly th
185 I．Joum．Asiat．Suc．Bengal，XX，p． 168.
Ceylon．
44．RATTE \＆RATTC＇S KELAARTI．Wroughton 1915．Journ．Bumbay Nat．IIst．Soc．NXIV，p． 48. Hightands of Ceylon．
45. RATTUS RATTUS TISTAE, Hinton
1918. Journ. Bombay Nat. Hist. Soc. XXVI, p. 68. Sikkim.
46. RATTUS RATTUS SHKKLMENSIS, Hinton 1919. Journ. Bombay Nat. Hist. Soc. XXVI, p. 394. Pashok, Sikkim.
47. RATTUS RATTL'S BHOTLA, Hinton
1918. Journ. Bombay Nat. IList. Soc. XXVI, 1, p. 72. Hazimara, Bhutan Douars.
48. RATTUS RATTUS TATKONENSIS, Hinton
1919. Journ. Bombay Nat. Hist. Soc. XXVI, p. 402. Tatkon, Kindat, west bank River Chindwin, Burma.
49. RATTL'S RATTUS TIKOS, Hinton
1919. Journ. Bombay Nat. Hist. Soc. XXVI, p. 400. Tenasserim Town.
50. RATTLS RATTLS ROBLSTULLS, Blyth
1859. Journ. Asiat. Soc. Bengal, XXVIII, p. 294.

Schwegyin, Tenasserim.
51. RATTC'S RATTU'S SLADEXI, Anderson
1879. Zool. Yunnan, p. 305.
W. Yunnan.
52. RATTUS RATTUS EXIGUUS, Howell
1927. Proc. Biol. Soc. Washington, XL, p. 43.

70 miles south-west of Yenpingfu, Fukien, S. China.
53. RATTUS RATTUS HAINANICUS, G. M. Allen
1926. Amer. Mus. Nov. 217, p. 3.

Hainan.
54. RATTUS RATTUS PORTLS, Kloss 1915. Journ. Nat. Hist. Soc. Siam, I, p. 221. Koh Si Chang, Siam.
55. RATTUS RATTUS POENITENTIARII, Kloss 1915. Journ. Nat. Hist. Soc. Siam, I, p. 222.

Koh Phai, Inner Gulf of Siam.
56. RATTUS RATTU'S RANGENSIS, Kloss 1916. Proc. Zool. Soc. London, p. 56.

Koh Rang Island, Siam.
57. RATTUS RATTU'S KLLMIENSIS, Kloss 1916. Proc. Zool. Soc. London, p. 56.

Koh Klum Island, S.-E. Siam.
58. RATTL'S RATTL'S MAKENSIS, Kloss 1916. Proc. Zool. Soc. London, p. 56.

Koh Mak Island, S.-E. Siam.

59．RATTES RATTL＇S KRALNSIS，Kloss
1916．Proc．Zool．Soc．London，p． 57.
Koh Kra Island，S．－E．Siam．
60．RATTES RATTCS TllA1，Kloss
1917．Journ．Nat．Hist．Soc．Siam，II，p． 286.
Raheng，Central Siam．
6ı．RATTLS RATTLS LANEXNIS，Kloss
1919．Journ．Nat．Hist．Soc．Siam，III，p． 378. Koh Lan，Inner Gulf of Siam．
62．RATTLS RATTLS KRAMIENSIS，Kloss
1919．Journ．Nat．Hist．Soc．Siam，1II，p． 379.
Koh Kram，Inner Gulf of Siam．
63．RATTLS RATTLS MESAN1』，Kloss
1919．Journ．Nat．Hist．Soc．Siam，III，p． 379.
Koh Mesan Island，near Cape Liant，S．－E．Sıam．
b4．RATTES RATTLS KORATENSIA，Kloss
1919．Journ．Nat．Hist．Soc．Siam，III，p． 379.
Lat Bua Kao，E．Siam．
65．RATTUS RATTUS DENTATLS，Niller
1013．Smiths．Misc．Coll，LXI，2 1，p． 14.
Hastings Island，Mergui Archipelago．
66．RATTL\＆R．AITLS INSLIANせ゚，Miller
1913．Smiths．Misc．Coll．LXI，21，p．It．
Helfer Island，Mergui Archipelago．
67．RAT＂lLA RATTLS lixSLL，Nibler
1913．Smiths．Misc．Coll．LK1，2I，p． 15.
James Island，Mergui Archipelago．
68．RATTUS RATTLS JORILNATLS，Miller
1913．Smiths．Misc．Coll．LXI，21，p． 15.
Chance Island，Mergui Archipelago．
（\％．RATTLS R．JTTLS JALORINSl心，Bonhote
1903．Fasc．Malay Zool．1，p． 29.
Malacca，Straits Settlements．
Synonym：roquci，Sody，1929，Nat．Tijds．Ned．Ind．S9，P．I63．Java．
70．RATTLS RATTL\＆PAYANL＇S，Chasen \＆kloss
1931．Bull．Raffles．Mus．5，p． 79.
Pulau Paya，Straits of Malacca．
71．RATTLS RATTLS RIIIONIS，Tlionas \＆Wroughton
1909．Ann．Mag．Nat．Hist．S，III，P． $4+1$ ．
Bintang Island，Rhio Archipelago．
72．RAT＇FLS RATTUS BATID，Robinson
ioi6．Journ．Fed．Malay States Mlus．VII，p． 66.
Mentigi，I＇ulau Mapor，Rhio Archipelago．
73．RATTUS RATTU F KLNDR1S，Chasen \＆Kloss
1931．Bull．Raffes．Mus，5，p． 77.
Kundur Island，Khio Archipelago．
74. RATTUS RATTUS RUMIPIA, Robinson \& Kiloss
1911. Journ. Fed. Malay States Mus. IV, p. 169.

Pulau Rumpia, Sembilan 1slands, off Perak coast, W. Malay Peninsula.
75. RATTUS RatTUS VICLANA, Miller
1913. Smiths. Misc. Coll. LXI, 21, p. 13.

P'ulau Lankawi, Malay Peninsula.
76. RATTUUS RATTUS MANGALUMIS, Kloss

193r. Bull. Raffles. Mus, 5, p. 88.
Mangalum Island, N.-W. Borneo.
77. RATTUS RATTUS JEMURIS, Chasen \& Kloss
1931. Bull. Raffles. Mus. 5, p. 78.

Aroa Islands, Straits of Malacca.
78. RATTUS RATTUS ANDAMANENSIS, Blyth 1860. Journ. As. Soc. Bengal, XXIX, p. 103.

Andaman Islands, Bay of Bengal.
79. RATTUS RATTUS ARGENTIVENTER, Robinson \& Kloss 1916. Journ. Straits Branch Roy. Asiatic Soc. no. 73, p. 274.

Pasir Ganting, west coast Sumatra.
80. RATTUS RATTUS PALEMBANG, Tate \& Archbold 1935. Amer. Mus. Nov. 802, p. i.

Morcarah Doewa, Palembang, S. Sumatra.
8i. RATTUS RATTUS MENTAWI, Chasen \& Kloss 1928. Proc. Zool. Soc. London, 1927, p. 831.

Sipora Island, W. Sumatra.
82. RATTUS RATTUS BREVICAUDATUS, Horst \& de Raadt 1918. Zool. Med. Leiden, 4, p. 69.

Java.
83. RATTUS RATTUS BALI, Kloss 1922. Trcubia, JI, 1, p. 123.

Laboean Amok, Bali.
84. RATTUS RATTUS SAMIATI, Sody
1923. Natuurh. Maandbl. Maastricht, XXI, p. 159. Bali.
85. RATTUS RATTUS TURBIDU'S, Miller 1913. Smiths. Misc. Coll. LX1, 21, p. 12.

Tanggarung, Dutch S.-E, Borneo.
86. RATTUS RATTUS BANGUE1, Chasen \& Kloss 1932. Bull. Raffles. Mus. 6, p. 35.

Bangucy Island, N. Borneo.
87. RATTUS RATTUS PAUPER, Miller
1913. Smiths. Misc. Coll. LXI, 21, p. 13.

Sirhassen Island, S. Natuna Islands.
88. RATTUS RATTUS LUXURIOSUS, Chasen
1935. Bull. Raffles. Mus. 10, p. 20.

Natuna Island. Bunguran Island.

Sョ. R.ATCL \& RATTLS SEPTICLS, Gody
1933. Ann. Mag. Nat. llist. Io, XII, p. 437.

Banda Island, Dutch E. Indies,
(10. RATTLS RATTTLS SLMBAE, sody
1930. Zool. Med. Leiden, 13, p. 98.

Sumba lsland.
91. RATTLS RATEUS SANTALLD, sody
1932. Natuurh. Maandbl. Maastricht, XXI, p. 159.

Sumba Island.
92. KATTUS RATTLS MOLLCCARIUSA, sody
1933. Ann. Mag. Nat. Hist. ro, Xll, p. 437.

Boeroe, Dutch E. Indies.
93. RATTLS RATTLS DIARDI, Jentink
1879. Notes Leyden Mus. II, p. 13.
W. Java.

Q4. RATTUS RATTUS NEGIECTUS, Jentank
1879. Notes Leyden Mus. II, p. I4.

Bornco.
95. RATTLS RATTUS DLCLS, Lyon
1911. Proc. U.S. Nat. Mus. XL, p. 90.

Pulau Datau, W. Borneo.
96. RATTUS RATTUS LAMLCOTANUS, Lyon
1911. Proc. U.S. Nat. Mus, KL, p. 100.

Pulau Lamucotan, W. Borneo.
97. RATTES MONTANLS, Phillips
1932. Ceylon Journ. Sci. Sec. B. XVI, p. 323.

West Ilaputale, Ohiya, Ceylon.
Q8. RATTUS NITIDUS, Hodgson
1845. Ann. Mag. Nat. Hist. XV, p. 267.

Simla, N. India.
Synonym: griseipectus, Milne-Edwards, i871, Nouv. Arch. Mus. Bull. 7. p. 93. Tibet; status fide Osgood. horeites, Hodgson, i845, Ann. Mag. Nat. Hist. XVV, p. 268.
90. RATTUS NIT1DL'S OBLOLETUS, Hinton
1919. Journ. Bombay Nat. Hist. Soc. NXVI, p. 415.

Chin Hills, Burma.
100. RATTLS MACMILLANI, Hinton
1919. Journ. Bombay Nat. Hist. Soc. SXVI, p. 409.

Upper Chindwin, Burma.
ror. RATTT G GRISEIVENTER GRISLIV'EN'TER, Bonhote 1903. Fasc. Malay Zool. I, p. 30.

Bidor, S. Perak, Malay Peninsula.
102. RATTL'S GRISEIVENTER ANNANDALE1, Bonhote
1903. Fasc. Nalay Zool. r, p. 30.

Sungkei, S. Perak.
103. RATTLS GRISEIVIENTER RAHEN゙GIS, Kloss
rqi8. Journ. Nat. Hist. Soc. Siam, III, p. 74.
Raheng, W. Siam.
104. RATTUS REMOTUS, Robinson \& Kloss
1914. Ann. Mag. Nat. Hist. 8, XIII, p. 231.

Ǩoh Samui, N.-E. Malay Peninsula.
105. RA'T"IUS TINGIUS, Miller
1913. Smiths. Misc. Coll. LX1, p. 9.

Pulau Tinggi, east coast Johore, Malay Peninsula.
ro6. RATTUS FULMINEUS, Miller
1913. Smiths. Misc. Coll. LXI, p. 9.

St. Barbe 1sland, S. China Sea.
107. RATtUS ROA, Miller
1913. Smiths. Misc. Coll. LXI, p. 10.

Pulau Aor, east coast Johore, Malay Peninsula.
ro8. RATTUS PANNOSUS, Miller
1900. Proc. Biol. Soc. Washington, XIII, p. 190.

Butang Island (Pulau Adang), west coast Malay Peninsula.
109. RATTUS PANNELLUS, Miller
1913. Smiths. Misc. Coll. LXI, p. 8.

Pulau Rawi, Butang Islands.
110. RATTUS ATRIDORSUM, Miller
1903. Proc. Biol. Soc. Washington, XVI, p. 50.

Barren Islands, Andamans.
Synonym: atratus, Miller, 1902, Proc. U.S. Nat. Mus. XXIV, p. 767. preoccupied.
11. Rattus flebilis, Miller
1902. Proc. U.S. Nat. Mus. XXIV, p. 762.

Henry Lawrence Island, Andamans.
iiz. RATTUS PALMARUM, Zelebor
1869. Reise der Oesterr. Fregatte Novara. Zool. Th. I, Wirbelth. 1, Säugeth. p. 26. Nicobar Islands.
Synonym: nozarae, Fitzinger, 186s, Sitz. Ber. Math. Nat. Cl. Akad. Wiss. SL11, p. 394, nom. nud.
113. RATTUS LUGENS, Miller
1903. Smiths. Misc. Coll. XLV, p. 33.
N. Pagi Island, Sumatra.
114. RATTU'S MAlERENS, Miller

19:1. Proc. Biol. Soc. Washington, XXIV, p. 26.
Nias Island, Sumatra.
115. RATTUS SIMALURENSIS SIMALURENSIS, Miller
1903. Proc. U.S. Nat. Mus. XXV1, p. 458.

Simalur Island, W. Sumatra.
116. RATTUS SiMALLRENSIS BABI, Lyon
1916. Proc. U.S. Nat, Mus. L11, p. 447.

Pulau Babi, Sumatra.
117. RATTUS SIMALLRENSIS LASIAE, Lyon
1916. Proc. U.S. Nat, Mus. LII, p. $4+6$.

Pulau Lasia, Sumatra.

いふ．RATTLS BULIATCぶ，I．ぃи！
1908．Proc．U．S．Nat．Mus，XXXIV，p．6qt．
Pulau Rapit，E．coast Sumatra．
110．RATTUS SIANTANICUS，Miller
1900．Proc．Washington Acad．Sci．II，p． 210.
PuJau Siantan，Anamba Islands．
120．RATTUS TIONANICLS，Miller
1900．Proc．Washington Aead．Scı．II，p． 209.
Tioman Island，S．China Sea．
1ュ1．RATTUS TANIBELANICL＇S，Niller
1900．Proc．Washington Acad．Sci．II，p． 212.
Big Tambelan Island，S．China Sea．
122．RATTL＇S MARA，Mhlet
1913．Smiths．Misc．Coll．LXI，p． 10.
Maratua Island，S．－E．Borneo．
123．RATTL＇S TL＇A，Milfer
I913．Smiths．Misc．Coll．LXI，p． 12.
Maratua Island，S．－E．Bormeo．
124．RATTL\＆JUL1ANL゙S，Miller
I903．Smiths．Nisc．Coll．NLV，p． 34
St．Julian Island，Malaya．
125．RATTU＇S DAMIIERMLANI，Thomas 1921．Ann．Mag．Nat．Hist．9，VII，p． 247.

Wadjo，N．Celebe＇s．
126．RATTLS PESTICLLLS，Thomas 1921．Ann．Mag．Nat．Hist．9，VII，p． 248. Menado，Celebes．

127．RATTLS LAHOLIS，Tate \＆Archbold 1935．Amer．Mus．Nov．Soz，1， 2.

S．Celebes．
128．RATTLS MINDANEN゙SIS MINDANENふIN，Meams
igo5．Proc．U＇S．Nat．Mus．XXVIII，p．+42.
Mount Apo，Mindanao，Philippine Jslands．
120．RATTUS MINDANINMI TABLASI，Taylon
1934．Philippine Land Mamm．p．+39.
Odoingan，Tablas，Philıppines．
130．RATTLS ZANBOANGAE，Nearns
1905．Proc．U．S．Nat．Mlus．XXVIII，p．+43.
Mindanao，Philippines．
131．RAT＇TLS KELLERI，Mearns
1905．Proc．U＇S．Nat．Nus．XXVVIII，p． 444
Mindanao，Philippines．
132. RATTLS MAGNIROSTRIS, Mearns
1905. Proc. U.S. Nat. Mus. XXVIII, p. 441. Mindanao, Philippines.
13.3. RATTUS COLORATUS, Ilollister 1913. Proc. U.S. Nat. Mus, XLVI, p. 317. Basilan, Philippines.
134. RATTUS ROBIGINOSUS, Hollister 1913. Proc. U.S. Nat. Mus. XLVI, p. 318. Cagayan, Philippines.
135. RATTU'S MINDORENSIS, Thomas
1897. Abstr. Proc. Zool. Soc. London, June; Trans. Zool. Soc. XIV, 1898, p. 402. N. Mindoro, Philippines.
136. RATTUS DOBOENSIS, Beaufort 1911. Abh. Senckenberg. Ges. 34, p. 122. Dobo Island, Aru Islands.
137. RATTUS MANUSELAE, Thomas 1920. Ann. Mag. Nat. Hist. 9, VI, p. 424. Mt. Manusela, Ceram.
138. RATTUS GESTRI GESTRI, Thomas
1897. Ann. Mus. Civ. Stor. Nat. Genoa, 2, XVIII, p. 611.

Kapa Kapa, British New Guinea.
139. RATTUS GESTRI V'ANHEL'RNI, Sody
1933. Ann. Mag. Nat. Iist. Io, XII, p. 435.
N.-W. New Guinea.
norvegicus Group
t40. RATTUS NORVEGICL'S NORVEGICUS, Berkenhout
1769. Outlines Nat. Hist. Gt. Britain \& Ireland, r, p. 5.

Great Britain.
Synonym: decumanus, Pallas, 1778, Nov, Spec. Quad. Glir. Ord. 91. W. China.
hibernicus, Thompson, 1837, Proc. Zool. Soc. London, p. 52, Ireland.
maurus, Waterhouse, 1839, Zool. Beagle, p. 31 . America. leucosternum, Rüppell, 1842 , Mus. Senckenb. III, pp. 108, 116. Eritrea.
maniculatus, Wagner, 1848 , Arch. Naturg. XIV, p. 186. Egypt.
(?) decaryi, Grandidier, 1934, Bull. MIus. Paris, 2, VI, p. 478. Nadagascar.
surmolottus, Severinus, 1779, Tentamen Zool. Hungaricae, p. 73.
hybridus, Bechstein, Pennants Allgem. Uebersicht d . Vierfuss, Thiere, II, p. 713, 1800.
caspius, Oken. Lehrb. Naturg. Ill, Abth. 2, p. 895, 18 r 6.
decumanoides, Hodgson, Journ. As. Soc. Bengal, X, p. 915. nom. nud. is $\$ 1$.
141. RATTUS NORVEGICUS PRIMIARIUS, Kastschenko
1912. Ann. Mus. St. Petersb. 17, p. 401.

Transbaikalia.

## RATTUS

142．RATTLK NORVE（iICLS（ARAC（O），Paltas 1778．Nov：Sp．Quad．Glir．Ord．p． 91. E．Siberia．

143．RATTLK NORVEGlCLS soctr，Miller 1914．Proc．Biol．Soc，Washington，X゙オVIl，p．yo． Taocheo，Kansu，China．

144．RATTUS NORVEGICLS PRAESTANS，Trouessart 1904．（＇at．Mamm．Suppl．p．546，footnote． Celehes． Symonym ：hoffmani，Trouessart，same reference，p．365．Not of Matschie． major，Itoffman，i 887 ，Abh．Zool．Dresden，p．ı8．Pre＝ occupied．

1868．Rech．Namm．p．137，pl．41，fig， 1 ．
Pekin，China．
Synonym：plumbens，Milne－Edwards，i87t，Reeh．Mamm．p．138， Suen－hoa－fou，W．Tcheli，C＇hina． omangthomae，Nilne－Edwards，1871，Vouv．Areh．Mus． p．93，Kiang－si，China．

146．RATTLS HLMILIATLS SOWHRBYI，Howell
1928．Proc．Biol．Soe．Washington，SLI，p．+2.
Near Imienpo，N．Kirm，Manchuria．
147．RATTLS HLAH1AIATLSINSOLATLS，Howell
1927．Proc．Biol．Soc．Washington，XL，p． $4+$
12 miles south of Yenanfu，thensi，Chana．

1926．Amer．Nus．Ňov．217，p． 5.
Taku Ferry，west bank of Yangtsekiang．Yunnan．
149．RATTLK TY゙RAN心US，Miller
1910．Proc．U．S．Nat．Nus．NXXVIII，p． 397.
Ticao，Philippine Islands．
15o．RATTCS BLRRLS，NAller
1902．Proc．L＇S．Nat．Mus．XXIV，p． 768.
Trinkut Island，Nicobars．
151．RATTL S BLRRLLLS，Nbller
1goz．Proc．U．S．Nat．Mus．XXIV，p． 770.
Car Nicobar，Nicohar Islands．
152．RATTL A BLRRESCENS，Milter
1402．Proc．L．S．Nat．Nus．NXIV，p． 771.
Great Nicnlvar Island，Nicobars．
hoffmami Group

！901．Abh．Senckenb．Ges．KXV，p．284．
Celches．

154．R．AT＇LC＇S IIOFFMANI LINDUEN゙SIS，Miller \＆Hollister 1921．Proc．Biol．Soc．Washington，KXXIV p．p． 70. Lake Lindoe，Niddle Celebes．
155．RATTUS 1IOFFMAN1 SUBDITIVUS，Mifice \＆Hollister 1921．Proc．Biol．Soc．Washington，XXXIV，p． 70. Bada，Middle Celebes．
156．RATTLS IIOFFMANI MENGKOKA，Tate \＆Archbold 1935．Amer．Mus，Nov．802，p． 3. Nengkoka Mountains，S．－E．Celebes．
157．RATTUS MOLLICOMILS，Miller \＆ 1 －hollister 192：．Proc．Biol．Soc．Washington，XXXIV，p． 71. Pinedapa，Middle Celebes．
15\％．RATTL＇S MOLLICOMLLLS，Tate \＆Archbold
1935．Amer．Mus．Nov．Soz，p． 4. Nountains of S．Celebes．
159．RATTL＇S PALELAE，Miller \＆Hollister 192f．Proc．Biol．Soc．Washington，XXXIV，p． 69. Pulo Paleleh，north coast of Celebes．
160．RATTUS PLLLIVENTER，Miller 1902. Proc．U．S．Nat．Nus．XXIV，p． 765. Great Nicobar Island，Nicobars． （Perhaps a memher of rathus group，but mammae in $\quad 3-8$ ，as in hoffmam group．）
161．RATTL＇S ROGERSI，Thomas
1907．Ann．Mag．Nat．Hist．7，XX，p． 206.
Andaman Islands，Bay of Bengal．
（Xammae $\mathrm{t}-3-8$ ，as in hoffmani group；position doubtful．）

## concolor Group

162．RATTU＇S CONCOLOR CONCOLOR，Blyth
1859．Journ．Asiat．Soc，BengaI，XXVIII，p． 295. Shwagyin，Burma．
163．RATTLS CONCOLOR EPHIPPILX，Jentink
1880．Notes Leyden Mus．p． 15.
Sumatra．
164．RATTLS CONCOLOR STRAGLLUM，Robinson \＆K゙loss 1916．Journ．Str．Br．Roy．Asiat．Soc．LKIIII，p． 274.

Mount Korinchi，W．Sumatra．
165．RATTCS CONCOLOR CLABATLS，Lyon 1906．Proc．U．S．Nat．Mus．XXXI，p． 596. Banka Island，Sumatra．
166．RATTLS CONCOLOR EQUILE，Rohinson \＆K゙loss 1927．Journ．Fed．Malay States Mus．XIII．p． 209. Idjen Massif，E．Java．
167．RATTUS CONCOLOR OTTENI，Kopstein
1931．Journ．Morph．Okol．Thiere，22，p． 783.
Java．
165) RATILS CONCOLOR BLRLEXSIS, Alle
1911. BuIl. Amer. Mus. Nat. Mist. XXX. p. 336.

Buru Island, Moluccas.
160). RATTLS PlliLLS, Maller
igor. Proc. Biol. Soc. Washington, NIV, p. 178 \%.
Tioman Island, Malay Peninsula.
Synonym: obscurus, XIiller, 1900, Proc. Washington Ac. Sci. II, p. 213. preoccupied.
170. RATTLS SLRDUS Malle:
1903. Proc. U.S. Nat. Mus. XXVI, p. 460.

Simalur Island, Sumatra.
171. RATTLS SCHLITEMAKERI, Sods 1933. Ann. Mag. Nat. Hist. 1o, NHI, p. 43 r.

Pontianak, W. Borneo.
172. RATTLS RAVENI RAVEN1, Mhllet \& Hollistel 1921. Proc. Biol. Soc. Washington, XXXIV, p. 69.

Toli Toli, N. Celebes.
173. RATTL \& RAVEN ILROLS, Miller \& Hollister 192. Proc. Biol. Soc. Washington, XXXIV, p. 69.

Kwandang, N. Celebes.
174. RATTL'S WCHMIANXI, Jentink
1890. Weber's ZonI. Ergebn. pp. 120, 121.

Flores.
175. RATTLS NLGRINLS, Thoman 1898. Trans. Zool. Soc, London, XIV, p. +03.

Negros, Philippine Islands.
176. RATTLS LUTEIVENTRIS, Allen
1910. Bull. Amer. Mus. Nat. Hist. XXVIII, p. iq. Palawan, Philippines.
17, RATTLE TODAJENSIS, Meatm
1905. Proc. U.S. Nat. Mus. XXVIII, p. $4+5$.

Mit. Apo, S.-E. Mindanao, Philippines.
1-8. R.ATTL'S PAMTARF NSIS, Neam
1905. Proc. U.S. Nat. Mus. NXIIII, p. 48 .

Pantar, Mindanan, Philippines.
179. RATTL'S CALCIS, Hollinter

191 . Proc. Biol. Soc. Washington, SXIV, p. So.
Luzon, Philippines.
18o. RATTLS OLIRRCl.TI. Hollister
1911. Proc. Biol. Soc. Washington, XVIV, p. yo.

Luzon, Philippines.

1913. Proc. U's. Nat. Nus, NLVI, p. 319.

Luzon, Philippines.

1013. Proc. L'.S. Nat. Mus. NLVI, p. 320.

Cataduanes Island, Philippines.
183. RATTUS V'IGORATLS, Hollister 1913. Proc. U.S. Nat. Mus. XLVI, p. 321.

Mindoro, Philippines.
184. RATTUS BASILANUS, Hollister 1913. Proc. U.S. Nat. Mus. XLVI, p. 322. Basilan, Philippines.
185. RATTLS ORNATULUS, Hollister 1913. Proc. U.S. Nat. Mus. XLVI, p. 322.

Cagayancillo, Cagayan Island, Philippines.
186. RATTU'S VULCANI VULCANI, Mearns 1905. Proc. U.S. Nat. Mus. XXVIII, p. 446.

Mt. Apo, Mindanao, Philippines.
187. RATTUS VULCANI APICIS, Mearns 1905. Proc. U.S. Nat. Mus. XXVIII, p. 477.

Mt. Apo, Mindanao, Philippines.
188. RATTU'S AEMILLL, Thomas 1896. Ann. Mag. Nat. Hist. 6, XVIII, p. 249.

Aemuli, Jampea Island, Salayer Group, off Celebes.
189. RATTU'S EXULANS EXULANS, Peale
1848. U.S. Explor. Exped. VIII, p. 47.

Fiji Islands.
Synonym: vitiensis, Peale, U.S. Explor. Exped. VIII, p. 49, 1848. Fiji. maorium, Hutton, 1879, Trans. New Zealand Inst. XI, p. 344. New Zealand.
jessook, Jentink, 1879, Notes Leyden Mus. II, p. 15. New Hebrides.
Iuegeli, Thomas, s880, Proc. Zool. Soc. London, p. $\mathrm{Is}^{2}$ Fiji Islands.
190. RATTLS EACLANS BROWNI, Alston
1877. Proc. Zool. Soc. London, p. 123.

New Ireland.
Synonym: echimyoides, Ramsay, 1877 , P. Linn. Soc. N.S. Wales, II, p. 15.
concolor lassacquerei, Sody, 1933, Ann. Mag. Nat. Hist. 10, XII, p. 433. New Guinea (fide Rümmler).
concolor manoquarius, Sody, 1934, Nat. Tydsch. Ned. Ind. XCIV, p. 175. New Guinea (fide Rümmler).
191. RATTUS MICRONESIENSIS, Tokuda
1933. Annot. Zool. Jap. 14, p. 83.

Ponape Island, W. Pacific.
192. RATTLS HAWALIENSIS, Stone
1917. Occ. Papers Bern. P. Bishop Mus. 3, no. 4, p. 10.

Popoia Island, Oahu, Hawaii Islands.

## mülleri Group

(9). RATTL's MľlleRI MÜLLERI, Jentink
1879. Notes Leyden Mus. II, p. 16.

Batang, Singalur, Sumatra.
Synonym: zictor, Miller, 1913, Smiths. Misc. Coll. LN1, p. 16. Rumpin River, Pahang. Status fide Kloss.

## RATTUS

 1916．Journ．Str．Br．Roy，Asiat．Soc．p． 275.

W．Sumatra．
Synonym；zirtus，Lyon，iosf，Proc．Busl．Sise．Washangton，XXIX， P． 210 ，Sumatra．

105．RATTLS MÜlLERI FOEDERIS，Robinson \＆Kiloss 1911．Journ．Fed．Malay States Mus．IV，p． 245.

Perak，Nlalay Peninsula．

1934．Bull．Raffles Mus．Singapore，9，p． 98.
Balambangan Island，N．Bornes．
147．RATTLS MLLLLERI BORNEANUS，Miller 1913．Smiths．Mise，Coll．Lx゙T，p．I5．

Telok Karang Tigan，Dutch S．，E．Borneo．
 1900．Proc．Biol．Soc．Washington，XIII，p， $1+1$ ． ＇Trang，Lower Siam．

199．RATTUS VALIDLS TEREXIPA，Chasen \＆Kiloss 1928．Journ．Malay Br．Roy，Asiat．Soc．VI，p． 36.

Anamba Islands．
200．RATTES JARAK，Bonhote
1905．Journ．Fed．Nalay States Nfus．I，p． 69. Pulau Jarak，Malacca．

201．RATTLS V1LLOSしが，K゙loss
1908．Journ．Fed．Nalay States NJus，IJ，p．Ift．
Singapore．
202．RATTL゙S F1RML $\stackrel{\text { R Miller }}{ }$
1902．Proc．Acad．Nat．Sci．Philadelphia，p． 155.
Linda Island，E．Sumatra．
203．RATTLS D（M［lTOR，Miller
1903．Proc．U．S．Nat．Mus．XXVI，p．461．
Pulau Mansalar，W．Sumatra．
20＋RATTLA POLLENS，Millef
1913．Smiths．Misc．Coll．1XI，p． 17.
Banka Island，Sumatra．
205．RATTLS fotels，Mnller
1913．Smiths．Mise．Coll．LXI，p． 17.
Pulau＇Tuangku，W．Sumatra．
20h．RATTLEA VADNNS，Miller
1913．Smiths．Misc．Coll，LN1，p，is．
I＇ulau Bangkaru，Banjak Islands．
207．RATTELS BAIMASLS，Lyon
19i6．Proc．U．S．Nat．Nus．LIJ，P． $4+7$.
Tana Bala，Batu Islands，Sumatra．
208．R．AT＂LLS CHOMLBOLIS，ま，\％m
1909．Proc．U．S．Nat．Mus，XXXVl，p． 484.
Pulau Jombol，Rhio－Lingea Archipelago．

209．RATTES MANI，Sody
1932．Natuurh．Maandbl．Maastricht，XX1，p． 157.
Tjiboeni，Bandoeng，W．Java．
210．RATTUS INFRALUTEUS，Thomas
1888．Ann．Mag．Nat．Hist．6，II，p．409．
Ǩina Balu，Borneo．
211．RAYTUS CRASSUS，Lyon
1911．Proc．U．S．Nat，Mus，NL，p． 103. Pulau Lamukotan，W．Borneo．
212．RATTUS SEBUCUS，Lyon
1911．Proc．U．S．Nat．Mus．XL，p． 102.
Pulau Sebuku，south－east coast Borneo．
213．RAT＂TC＇S INTEGER，Niller
1901．Proc．Washington Acad．Sci．1II，p． 119.
Sirhassen，Natuna Islands．
vanthurus Group
214．RATTUS DOMHNATOR DOMINATOR，Thomas
1921．Ann．Mag．Nat．Hist．9，VII，p． 244.
Mt．Masarang，Minahassa，N．Celebes．
215．RATTUS DONHNATOR CANURUS，Miller \＆Hollister
1921．Proc．Biol．Soc．Washington，XXXIV，p． 96.
Pinedapa，Middle Celebes．
216．RATTUS N゙ANTHURUS，Gray
1867．Proc．Zool．Soc．London，p． 598.
Celebes．
217．RATTUS CALLITRICHUS，Jentink 1878．Notes Leyden Mus．p． 12.

Menado，N．Celebes．
218．RATTL＇S MARMOSURL＇S，Thomas
1921．Ann．Mag．Nat．Hist．9，VII，p． 246.
Mt．Masarang，Minahassa，N．Celebes．
219．RATTUTS FACETUS，Niller \＆Hollister 1921．Proc．Biol．Soc，Washington，XXXIV，p． 96.

South－west of Lake Lindoe，Niddle Celebes．
220．RATTL＇S HANATL＇S，Miller \＆Hollister
1921．Proc．Biol．Soc．Washington，K゙ざIV，p． 97.
South－west of Lake Lindoe，Middle Celebes．
221．RATTC＇S TAERAE，Sody
1932．Natuurh．Maandbl．Maastricht．NXI，p． 158.
Lembean，east of Tondano，N．Celebes．
222．RATTUS TONDANUS，Sody：
1932．Natuurh．Maandhl．Maastricht．21，p． 158.
Tondano，N．Celebes．
223．RATTUS ARCLATLS，Tate \＆Archbold
1935．Amer．Mus．Nov．802，p． 9.
Mengkoka Mountains，Celehes．
224. RATTUS sALOCCO, Tate \& Archbold 1935. Amer. Mus. Nov. Soz, p. 7.

Mengkoka Mountains, Celebes.
225. RATTL'S M11CROBLLIATLS, Tate S: Archbold 1935. Amer. Mus. Nov. Soz, p. 8.

Mengkoka Mountains, Celebes.
226. RATTUS PUNICANS, Miller \& Ilollister 1921. Proc. Biol. Soc. Washington, SXXIV, p. 98.

Pinedapa, Middle Celebes.
227. RATTU CELEBENSIS, Gray 1S67. Proc. Zool. Soc. London, p. 598.

Menado, N. Celebes.
228. RATTL $\&$ BONTANLS, Thomas 1921. Ann. Mag. Nat. Hist. 9. V1I, p. $2+5$.

Mt. Lampobatang, S. Celebes.
Synonym: (?) orientalis, Revilliod, 1911, Zool. Anz. 37, p. 513. Preoccupied.
229. RATTUS TAGULAYFNiss, Mearns
1905. Proc. U.S. Nat. Mus. XXVIII, p. 439.

Mindanao, Philippine Islands.
230. RATTLS ALBIGULARIS, Nearns
1905. Proc. U.S. Nat. Mus. SXVIII, p. 440.

Nindanao, Philippines.
231. RATTC゚ (GALA, Niller
1911. Proc. U.S. Nat. Nus. XXXVIII, p. 39 S.

Mindoro, Philippines.
232. RATTLS I:VERETTY, (iünthet
1879. Proc. Zool. Soc. London, P. 75.

Mindanao, Philippines.
233. RATTLS LUZONICLS, Thonas
1895. Ann. Mag. Nat. Hist. 0, XVI, p. 163.

Luzon, Philippines.
234. RATTL \& BAGoPLS, Mearns
1905. Proc. U.S. Nat. Mus. XXVIII, p. $45^{\circ}$.

Mindanao, Philippines.

## chrysocomus Group

235. RATTLS CHRLSOC()NILS, Hoffmar
236. Abh. Mius. Dresden, III, p. 20.

Cclebes.
236. RAT'JUS FRATRORLTM, Thomas
1896. Ann. Mag. Nat. Hist. 6, XVIII, p. 246.

Rurukan, Celcbes.
237. RATTUS ANDRIWSL, Allen
1911. Bull. Amer. Mus. Nat. Hist. XXX, p. 336.

Buton Island. Cclebes.
238. RATTUS ADSPERSLS, Miller \& Hollisfer 1921. Proc. Biol. Soc. Washington, XXXIV, p. 71. Pinedapa, Middle Celebes.
239. RATTL'S PENITL'S PENITLS, Miller \& Hollister 1921. Proc. Biol. Soc. Washington, XXXIV, p. 72. Lake Lindoc, Middle Celebes.
240. RATTUS PENITL's 1NFERIOR, Tate \& Archbold 1935. Amer. Mus. Nov. 8oz, p. 6.

Mengkoka Mountains, S.-E. Celebes.
241. RATTUS PENITUS HEINRICH1, Tate \& Archbold 1935. Amer. Mus. Nov. 8o2, p. 6. Lampobatang, S. Celebes.
242. RATTUS PENITUS SERICATUS, Milter 1921. Proc. Biol. Soc. Washington, XXXIV, p. 73. Rano Rano, Middle Celebes.
243. RATTUS RALLUS, Miller \& Hollister 1921. Proc. Biol. Soc. Washington, XXXIV, p. 73. Gimpoe, Middle Celebes.
244. RATTL'S BREVINIOLARIS, Tate $\mathbb{S}$ - Archbold 1935. Amer. Mus. Nov. So2, p. 7.

Lalolis, south-east of Mengkoka Mountains, 太.-E. Celebes.
245. RATTUS NIGELLUS, Niller \& Hollister
1921. Proc. Biol. Soc. Washington, XXXIV, p. 72.

Near Toboli, N. Middle Celebes.
colestis Group
246. RATTLS C'OELESTIS CELESTIS, Thomas
1896. Ann. Mag. Nat. Hist. 6, NV111, p. 248.

Bonthian Peak, S. Celebes.
247. RATTUS COELESTIS KOKA, Tate $\&$ Archbold
1935. Amer. Nius. Nov. 8o3, p. 1.

Mengkoka Mountains, S.-E. Celebes.

## confuciamus-huang Group

(The position of the first species and its allies, andersoni, is uncertain.)
248. RATTUS ANDERSONI ANDERSONI, Thomas
1911. Abstr. Proc. Zool. Soc. London, p. 4 ; Proc. Zool. Soc. London, p. 17 I. Omi-san, Szechuan, China.
249. RATTUS ANDERSONI ZAPPEYI, Allen
1912. Bull. Mus. Comp. Zool, Harvard Coll. XL, p. 225.

Washan Mountains, W. Szechuan.

[^4] 1871．Nouv．Archiv：Mus．Nat．Hist．NII，Bull．p． 93. Tibet．

253．RATTUSC゚NJI（IANUS ASLIR，Thomas 1908．Proc．Zool．Soc．London，p． 6. Shantung l＇eninstila，China．

254．RATTLSCONHC（1ANLS（HHH1，II NSIS，Thomas 1917．Ann．Mag．Nat．Hist．S，XX，p． 190.

Imperial＇「ombs，Pekin．

1908．Abstr．Proc．Zool．Sire．London，p． 45 ；Proc．Zool．Soc．London，p． 972. Yen－an－fu，Shensi，$N$ ．Chma．

1931．Bull．Dept．Biol．Sun lat－sen（iniv．no． 12, p． 3. Kwantung，Chima．
257．RATTLS CONHLCHANS CANORLS．Thoman
1911．Proc．Zool．Soc．London，p． 600.
Wen－hsien country，S．Kansu，China．

1930．Bull．Dept．Brol．Sun Yat－sen Unis．no．4，p． 6. Kwangsi，Chma．
259．RATT世゙ヵ CONFCOANU S 1．JTTORELS，Cabrera
1923．Bol．Soc．Esp．IIst．Nat．22，p． 167.
Foochow，China．
260．RATTUS CONFUCIANLS LOTIPES，G．M．Allen
1926．Amer．Mus．Nov．217．p． 11.
Haınan．
261．RATTLS WON（；I，Shh
1931．Bull．Dept．Biol．Sun Yat－sen Lniv：12，p． 6.
Fongtung，kwantung Chana．
262．RATTLA ELIEGANS，Nha
193I．Bull．Dept．Biol．Sun Yat－sen Univ．12，p． 7.
Fongtung，Kwantune，China．
263．R．ATTLH RLBRIC（NAA．Anderson
1878．Anat．Zool．Res．Yunnan，p． 300.
Yunnan．
20q．RATTL＝NIVIRENTLR，Hodeson
1836．Journ．Asıat．Soc．Benyal，V，p． 234. Central region of Nepal．

265．RATTLSLI八（f，Bonhote
1906．Proc．Zool，Soc．London，2，p． 388.
Ching Feng Jing，N．－UV．Fokten，S．China． Synonym：minor，Shih，Bull．Dept．Bod．Sun Yat－sen Univ．8，2， 1930.
266. RATTU'S HLANG, Bonhote
1905. Proc. Zool. Soc. London, p. 387.

Kuatun, China.
Synonym: flavipilis, Shih, Bull. Dept. Biol. Sun Y'at-sen Univ. 8, 2, 1930.
267. RATTUS FULVESCENS FLLVESCENS, Gray
1846. Cat. Hodgson Coll. p. I8.

Nepal.
Synonym: huang vulpicolor, G. M. Allen, 1926, Amer. Mus. Nov. 217, p. 14. Yunnan-Burma border, Namting River (status fide (Sgood).
caudatior, Hodgson, 1849, Ann. Mag. Nat. Hist. 2, IlI, p. 203. Nepal.
jerdoni, Blyth, 1863 , Journ. Asiat. Soc. Bengal, XXXII, p. 350. Sikkim.
octomammis, Gray, 1863, Cat. Hodgson Coll. Ind. ed. p. 10.
268. RATTUS FLTVESCENS TREUBII, Robinson \& Kiloss
1919. Ann. Mag. Nat. Hist. 9, IV, p. 376.
W. Java.

260 . RATTUS FLLVESCENS TEMMINCKI, Kloss
r921. Journ. Fed. Malay States Mus. X, p. 233.
Besoeki, E. Java.
270. RATTUS FULVESCENS OSIMENSIS, Abe
1935. Journ. Sci. Hiroshima Univ. 3, p. 107.

Amamiosima Island, Liukiu Islands.
271. RATTUS FULVESCENS MARINUS, Kloss 1916. Proc. Zool. Soc. London, p. 50.

Koh Chang Island, S.-E. Siam.
272. RATTUS FULVESCENS PAN, Robinson $\mathcal{E}$ Kloss 1914. Ann. Mag. Nat. Hist. 8, XIII, p. 229.

Koh Samui, N.-E. Malaya.
273 RATTUS FULVESCENS CHAMPA, Robinson \& Kloss
1922. Ann. Mag. Nat. Hist. 9, IX, p. 96.

Langbian Peaks, S. Annam.
274. RATTUS FULVESCENS BATURUS, Sody
1932. Nat. Tijd. Ned. Ind. XCII, p. 334 .

Gunong Agong, E. Bali.
275. RATTUS FLLVESCENS LEPTTUROIDES, Sody
1934. Nat. Tijd. Ned. Ind. XCIV, p. 174.

Gunung Lawu, Mid Java.
2;6. RATTUS FLLVESCENS BLKIT, Bonhote
1903. Ann. Mag. Nat. Hist. 7, XI, p. 125.

Bukit Besar, Jalor, Malay Peninsula.
277. RATTUS FLLVESCENS CONDORENSIS, Chasen \& Kloss 1926. Journ. Siam Soc. Nat. Hist. Suppl. VI, 4, p. 358.

Pulau Condore, south-east coast Cochin China.
7-Living Kodents-II
258. RATTUS (OH1ENSIS, Phillips
1929. Ceylon Journ. Sci. Sec. B. XV, p. 167.
W. Haputale, Ohiya, Ceylon.
279. RATTUS ALTICOLA, Thomas
1888. Ann. Mag. Nat. Hist. 6, II, p. 408.

Kina Balu, Bomeo.
28o, RATTL'S OCHRACEIVENTER, Thomas
1894. Ann. Mag. Nat. IIist. 6, XIV, p. 451.

Kina Balu, Borneo.
281. RATTL'S BRAMA, Thomas
1914. Journ. Bombay Nat. Hist. Soc. XXIII, p. 232.

Mishmi Hills, Assam.
282. RATTLS MENTOSUS. Thomas
1916. Journ. Bombay Nat. Hist. Soc. XXIV, p. 643.

Hkampti, Upper Chindwin, Burma.
283. RATTLS LEPIDLS, Mile:
1913. Smiths. Misc. Coll. LXI, p. 20. Bok Pyin, S. Tenasserim.
284. RATTETS GRAC'ILIL, Niller
1913. Smiths. Misc. Coll. LXI, p. 21.

Mt. Mooleyit, N. Tenasserim.
285. RATTL's INDOsiNICL's, Osgood
1932. Field. Mus, Nat. Hist. Zool, ser, XVIII, p. 307. Chapa, Tongking.
286. RATTLS BATANIANLS, LJon
1907. Proc. U.S. Nat. Mus. SXXI, p. 654. Batum Island, Rhio Archipelago.
287. RATTLS MANDLS, Lyon
1908. Proc. U.S. Nat. Mus. NXXIV, p. 644. Sungei Mandau, E. Sumatra.
288. RATTL\& BARLSSANUS, Miller
1911. Proc. Biol. Soc. Washington, XXIV, p. 26. Nias Island, Sumatra.
289. RATTU'S HYLOMIOIDES, Robinson \& Kloss
1916. Journ. Str. Br. Roy. Asiat. Soc. LXXIII, p. 273. Korinchi Peak, W. Sumatra.
290. RATTLS SPATLLATLS, Lvon
1911. Proc. U.S. Nat. Mus. NL, p. 1 II. Pulau Lamukotan, W. Bomeo.
291. RATTL'S RAPIT, Bonhote
1903. Ann. Mag. Nat. Hist. 7, XI, p. 123.

Kina Balu, Borneo.
292. RATTUS TRACHYNOTLS, Cabrera
1920. Bol. Real. Soc. Esp. I list. Nat. 20, p. 212. Kina IBalu, Borneo.
293. RATTUS LI:PCHA, Wroughton
1916. Journ. Bombay Nat. Hist. Soc. XXIV, p. 429.

Sikkim.

## musschenbroekii Group

294. RATTU'S MU'SSCHENBROEKII MUSSCHENBROEKII, Jentink 1878. Notes Leyden Mus. p. 10 Menado, N. Celebes.
295. RATTUS MUSSCHENBROEKII TETRICL'S, Miller \& Hollister 1921. Proc. Biol. Soc. Washington, XXXIV, p. 68. Gimpoe, south-west of Lake Lindoe, Middle Celebes.

## cremorizenter Group

206. RAT'TU'S CREMORIVENTER CREMORIVENTER, Miller 1900. Proc. Biol. Soc. Washington, XIII, p. 144. Trang, Lower Siam.
207. RATTUS CREMORIVENTER LANGBIANIS, Robinson \& Kloss 1922. Ann. Mag. Nat. Hist. 9, IX, p. 96. Langbian Peaks, S. Annam.
208. RATTUS CREMORIVENTER CRETACEIVENTER, Robinson \& Kloss 1919. Ann. Mag. Nat. Hist. 9, IV, p. 377.

Tjibodas, W. Java.
299. RATTUS CREMIORIVENTER MLALAWALI, Chasen \& Kloss 1932. Bull. Raffles Mus. 6, p. 32. Mallewalle Island, N. Borneo.
300. RATTUS CREMORIVENTER KINA, Bonhote
1903. Ann. Mag. Nat. Hist. 7, XI, p. 124. Kina Balu, Borneo.
301. RATTUS CREMIORIVENTER TENASTER, Thomas
1916. Ann. Mag. Nat. Hist. 8, XVII, p. 425.

Mt. Mooleyit, Tenasserim.
302. RATTUS BLYTHI BLYTHI, Kloss
1920. Records Indian Mus. 13, p. 8.

Schweygin, Tenasserim.
Synonym: cinnamomeus, Blyth, 1859 , Journ. Asiat. Soc. Bengal, XXVIII, p. 294.
303. RATTUS BLYTHI MEKONGIS, Robinson \& K'loss 1922. Ann. Mag. Nat. Hist. 9, IX, p. 96.

Mekong River, Laos, $18^{\circ} 53^{\prime} \mathrm{N}$.
304. RATTUS ORBUS ORBUS, Robinson \& Kloss 1914. Ann. Mag. Nat. Hist. S, XIII, p. 228.

Kao Nawng, Bandon, N.-E. Malay Peninsula.
305. RATTUS ORBL'S FRATERNUS, Robinson \& Kloss 1916. Journ. Str. Br. Roy. Asiat. Soc. LXXIII, p. 273.

Korinchi, W. Sumatra.
306. RATTL'S GILBIVENTER, Miller
1903. Smiths. Misc. Coll. X゙LV, p. 35.

Sullivan Island, Merpui Archipelago.
307. RATTLS SOLLS, Miller
1913. Smiths. Misc. Coll, LKI, p. 22.

Pulau Terutau, west coast Malay Peninsula.
308. RATTLS MLENGLRLS. Miller
1911. Proc, Biol. Soc. Washington, XXIV, p. 27.

Billiton Island, Sumatra.
309. RATTLS FLAVIVENTER, Miller
1900. Proc. Washington Acad. Sci. 11, p. 204. Anamba Islands.
310. RATTLS BECCARII, Jentınk
1879. Notes Levden Mus, II, p. iI.

Menado, Celebes.
Synonym: thysanurus, Sody: I432, Natuurh. Maandbl. Maastricht, XXi, p. 157. Minahassa, N. Celtbes.
akhiteheadi Group
3HI, RATTLS ASPER, Miller
1900. Proc. Biol. Soc. Washington, XIII, p. 145.

Trang, Lower Siam.
312. RATTLS SAKERATENSIS, Gyldenstolpe
1916. K. Svenska. Vet. Akad. Handl. Stockholm, 57, 2, p. 46. Sakerat, E. Siam.
313. RATTLS KLOSSI. Bonhote
1906. Proc. Zool. Soc. London, p. 9. Mt. Pulai, S. Johore, Malay Peninsula.
314. RATTLS INAS, Bonhote
1906. Proc, Zool. Soc. London, p. 9.

Gunong Inas, Perak, Malay Peninsula.
315. RATTLS BATLS, Miller
1911. Proc. Biol. Soc. Washington, XXIV, p. 27. Pulau Pinie, Batu Islands, Sumatra.
316. RATTLS WHITEHEADI WHITEIIEADI, Thomas
1894. Ann. Mag. Nat. Hist. 6, XIV, p. 452.

Kina Balu, Borneo.
317. RATTUS WHITEIEADI PERLLTLSA, Thomas
1911. Ann. Mag. Nat. Hist. 8, VIl, p. 205.

Balangean, N. Central Sarawak, Borneo.
318. RATTLS MELINOGASlER, Cabreta
1920. Bol. Real. Soc. Esp. Hist. Nat. 20, p. 21 I.

Bongon, N. Borneo.
319. RATTUS AsPINATUS, Tate \& Archhold
1935. Amer. Mus. Nov. Soz, p. 9.
N. Celebes.

## baeodon (iroup

320. RATTLS BAEODON, Thomas
189.4. Ann. Mag. Nat. Jist. 6, XIV, p. 452.

Kina Balu, Borneo.

```
eha Group
```

321. RATTUS IEHA ELLA, Wroughton
322. Journ. Bombay Nat. Hist. Soc. XXIV, p. 428.

Sikkim, I IImalayas.
322. RATTUS EHA NINUS, Thomas
1922. Ann. Mag. Nat. Hist. 9, X, p. 404.

Kiu-kiang, Salween Divide, $28^{\circ}$ N. Yunnan Highlands.

## lepturus Group

323. RATTUS LEPTURU'S LEPTURUS, Jentink
324. Notes Leyden Mus. II, p. 17. Java.
325. RATTU's LEPTURL'S FREDERICAE, Sody
326. Nat. Tijds. Ned. Ind. XCI, p. 212.
W. Java.
327. RATTUS LEPTURUS BESLKI, Sody
328. Nat. Tijds. Ned. Ind. XCI, p. 214.
E. Java.
329. RATTUS LEPTURL'S MACULIPECTL's, Sody
330. Nat. Tijds. Ned. Ind. XCIV, p. 173.

Gunung Tjereme, W. Java.

## bartelsi Group

327. RATTUS BARTELSI, Jentink
328. Notes Leyden Mus. XXXIII, p. 69.

Mt. Pangerango, Java.
Synonym: tjibumiensis, Sody, 1933, Ann. Mag. Nat. Hist. 10, XII, p. 430. W. Java, Tjiboeni.
rajah Group
328. RATTT'S MOI, Robinson \& Kloss
3922. Ann. Mag. Nat. Hist. 9, IX, p. 95.

Langbian Mountains, S. Annam.
329. RATTL'S SURIFER SL'RIFER, Miller
1900. Proc. Biol. Soc. Washington, XIII, p. 148.

Trang, Lower Siam.
330. RATTTL'S SURIFER FINIS, Kloss
1916. Proc. Zool. Soc. London, p. 51.

Klong Menao, S.-E. Siam.
331. RATTUS SLRIFER CHANGENSIS, Kloss 1916. Proc. Zool. Soc. London, p. 52.

Kioh Chang Island, S.-E. Siam.
332. RATTU'S SURIFER KLTENSIS, Kloss
1916. Proc. Zool. Soc. London, p. 52.

Koh Kut Island, S.-E. Siam.
333. RATTLS SLRIFER PELAG1US, Kloss 1916. Proc. Zool. Soc. London, p. 53.

Koh Rang Island, S.-E. Siam.
334. RATTL゙今 SURIFER ECLIPSIS, Kloss 1916. Proc. Zool. Soc. London, p. 53. Koh Kra Island, S.-E. Siam.
335. RATTLS SLRIFER TENEBROSL. K Klos1916. Proc. Zool. Soc. London, p. 54.

Koh Klum Island, S.-E. Siam.
336. RATTUS SLRIFER CONNECTENS, Kloss 1916. Proc. Zool. Soc. London, p. 53. Koh Mak Island, S.-E. Siam.
337. RA'lTLS SLRIFER LEONI.S, Robinson \& Kloss 1911. Journ. Fed. Malay States Mus. IV, p. 170. Singapore.
338. RATTLS SURIFER PMNANGILIA, Robinson 1912. Ann. Mag. Nat. Hist. 8, X, p. 593.

Pulau Pemanggil, Johore Archipelago, Malaya.
339. RATTLS sLRIFER MIANICAL1S, Robinson \& Kloss 1914. Ann. Mag. Nat. Hist. 8, XIII, p. 230.

Koh Pennan, N.-E. Malay Peninsula.
340. RATTL'S SLRJFER SPLRCLis, Robinson \& Kloss 1914. Ann. Mag. Nat. Hist. 8, XIII, p. 230. Koh Samui, N.-E. Malaya.
34 I . RATTUS SLRRIFER FLAVIDLLU\&, Mhller 1900. Proc. Biol. Soc. Washington, XIII, p. 189.

Pulau Lankawi Island, west coast Malay Peninsula at northern extremity of Straits of Malacca.
342. RATTUS SLTRIFER BLTANGENSIS, Niller 1900. Proc. Biol. Soc. Washington, XIII, p. 190.

Pulau Adang, Butang Islands, west coast Malay Peninsula.
343. RATTLS SLRIFER GRANDIS, Kloss 1911. Ann. Mag. Nat. Hist. 8, VII, p. 119. Great Redang Island, off Trengganu, E. Malaya.
344. RATTL's sLRIFER FLAVIGRAN1)IS, KJoss
1911. Ann. Mag. Nat. Hist. 8, VII, p. 119.

East Perhentian Island, off Trengganu, Malaya.
345. RATTUS SLRIFER AORIS, Robinson
1912. Ann. Mag. Nat. Hist. 8, X, p. 594.

Pulau Aor, Johore Archipelago.
346. RATTLS SLRIFER BSNOMIINATLS, Kloss 1915. Journ. Fed. Malay States Mus. V, p. 223.

Tioman Island, east coast Malay Peninsula.
Synonym: microdon, Kloss, 1908, Journ. Fed. Nalay States Mus. II, p. 145 , preoccupied.
347. R.ATTL'S sLRIFI:R IANGENSIS, Miller 1900. Proc. Washington Acad, Sci, II. ए. 206.

Linga Island, Rhio-Linega Archipelaso.
348. RATTUS SURIFER BANACUS, Lyon 1916. Proc. U.S. Nat. Mus. LII, p. 449. Banjak Islands (Pulau Bankaru), Sumatra.
349. RATTU'S SL'RIFER ANTUCUS, lyon 1916. Proc. U.S. Nat. Mus. LII, p. 449. Banjak Islands (Pulau Bankaru), Sumatra.
350. RATTUS SLRIFER MABALLS, Lyon 1916. Proc. U.S. Nat. Mus. LII, p. 449.

Tana Masa, Batu Islands, Sumatra.
351. RATTUS SURIFER PINATUS, Lyon 1916. Proc. U.S. Nat. Mus. LII, p. 448.

Pulau Pinie, Batu Islands, Sumatra.
352. RATTUS SLRIFER RAVUS, Robinson \& Kiloss
1916. Journ. Straits Br. Roy. Asiat. Soc. LXXIII, p. 272.

Sungei Kumbang, Korinchi, W. Sumatra.
353. RATTUS SURIFER SOLARIS, Sody
1934. Nat. Tidjs. Ned. Ind. XCIV, p. 170.

Gunung Gedeh, W. Java.
354. RATTUS SURIFER BANDAHARA, Robinson 1921. Ann. Mag. Nat. Hist. 9, VII, p. 235.

Kina Balu, Borneo.
355. RATTUS PELLAX, Niller
1900. Proc. Biol. Soc. Washington, XIII, p. 147.

Trang, Lower Siam.
356. RatTUS CONINGI, Swinhoe
1864. Proc. Zool. Soc. London, p. 185.

Formosa.
Synonym: coninga, Swinhoe, same reference.
357. RATTUS RAJAH RAJAH, Thomas
1894. Ann. Mag. Nat. Hist. 6, XIV, p. 45 r.

Sarawak, Borneo.
358. RATTUS RAJAH SIARMIA, Kloss
1918. Journ. Nat. Hist. Soc. Siam, III, 2, p. 75.

Sikawtur, 40 miles north-west of Raheng, W. Siam.
359. RATTUS RAJAH KORATIS, Kloss
1919. Journ. Nat. Hist. Soc. Siam, III, 4, p. 376.

Lat But Kao, E. Siam.
360. RATTUS RAJAH KRANIIS, Kloss
1919. Journ. Nat. Hist. Soc. Siam, III, 4. p. 377.

Koh Kiam, Gulf of Siam.
361. RATTU'S RAJAH SIMIILIS, Robinson \& Kloss 1916. Journ. Str. Br. Roy. Asiat. Soc. LXXIII, p. 272.

Korinchi Valley, W. Sumatra.
362. RATTL'S RAJAH VERBEEKI, Sody
1930. Zool. Med. Leiden, 13, p. 130.

Java.

36．3－RATTLES RAJAII HIDONGIS，kloss
1921．Treubia，Buitenzorg，2，p． 122.
S．Natuna Islands．
364．RATTLS LLTEOLUS，Miller 1903．Smiths．Misc．Coll．XLV，p． 36.

St．Matthew Island，Mergui Archipelago．
365．RATTLS L MBRIDORSC M，Miller
1903．Smiths．Misc．Coll．XLV，p． 37.
Loughborough Island，Dergui Archipelago
366．RATTC S CASENSIS，Miller 1903．Smiths．Misc．Coll．XLV，p． 38. Chance Island，Mergui Archipelago．

367．RATTLA DOMIELICLS，Miller 1903．Smiths，Misc．Coll．XLV，p． 39. Domel Island，Mergui Archipelago．
368．RATTL B BENTINCANLS，Millet 1903．Smiths．Misc．Coll．XLV，p． 38.

Bentinck Island，Mergui Archipelago．
36\％．RATTUA（＇ATELLIFER，Maller 1903．Proc．U．S．Nat．Mus．XXVI，p． $\boldsymbol{f}^{6} 4$. Pulau Mansalar，W．Sumatra．

370．RATTLTS PAGENSIA，Mhllet 1903．Smiths．Nisc．Coll．XLV，p． 39. S．Pagi Island，W．Sumatra．

371．RAT＂TLS INFLATUS，Robinson \＆K゙loss
1916．Journ．Straits Br．Roy．Asiat．Soc．IXXIII，p． 273.
Sungei Kumbang，Korinchi，WV．Sumatra
372．RATTL゙S PERFLAVLS，Lyon
19i1．Proc．U．S．Nat．Mus，XL，p．io8．
Pulau Laut，S．－E．Borneo．
373．RもTTL゙九 CARINATAE，Miller
1906．Proc．U．S．Nat．Mus．X゙X゙II，p． 59.
Karimata Island，W．Borneo．
374．RATTL＇S SERL＇TL＇S，Miller
igo6．Proc．U．S．Nat．Mus．XXXI，p． 50.
Pulau Lerutau，Karimata Island，W．Borneo
375．RATTTUS BATURATLS，LAOM
1911．Proc．U．S．Nat．Nus．XL，p． 109.
Pulau Panebangen，W．Borneo．
376．RATTLS CBICLS，Iyon
1911．Proc．U．S．Nat．Nus．XL，p．iog．
Pulau Sebuku，S．－E．Borneo．
377．RATTI A ANAMBAE，Miller
1900．Proc．Washington Acad．Sci．11，p． 205.
Pulau Jimaja，Anamba Islands．
378. RATTUS PANGLIMIA, Robinson
1921. Ann. Mag. Nat. Hist. 9, VII, p. 235.

Palawan, Philippine Islands.
Synonym: palarcanensis, Taylor, 1934, Philippine Land Mammals, p. 416. Palawan.
379. RATTL'S IIELLWALDI HELLWALDI. Jentink
1878. Notes Leyden Mus. p. ${ }^{11}$.

Menado, Celebes.
380. RATTUS HELLWALDI LOCALIS, Miller \& Hollister 1921. Proc. Biol. Soc. Washington, XXXIV, p. 74.

North of Parigi, Celebes.
381. RATTL'S HELLWALDI CEREUS, Milfer \& Hollister 1921. Proc. Biol. Soc. Washington, XXXIV, p. 74.

Toli Toli, N.-W. Celebes.

## edzuardsi-sabanus Group

382. RATTU'S MELLI, Matschie 1922. Arch. Naturg. 88, Heft 10, p. 26. N. Canton, S. China.
383. RATTUS EDWARDSI EDWARDSI, Thomas 1882. Proc. Zool. Soc. London, p. 587.
W. Fokien, China.
384. RATTL'S EDWARDSI MILLETTI, Rohinson \& Eloss 1922. Ann. Mag. Nat. Hist. 9, IX, p. 94.

Dalat, Langbian Plateau, S. Annam.
385. RATTU'S EDWARDSI LISTERI, Thomas 1916. Journ. Bombay Nat. Hist. Soc. NXIV; p. qo6. Darjiling, Himalayas.
386. RATTU'S EDWARDSI GARONUNI, Thomas 1921. Journ. Bombay Nat. Hist. Soc. XXVMII, p. 27. Tura, Garo Hills, Assam.
387. RATTUS EDWARDSI CILIATLS, Bonhote 1900. Proc. Zool. Soc. London, p. 879.

Gunung Inas, Perak, Malay Peninsula.
388. RATTU'S EDWARDSI SETIGER, Robinson \& kiloss 1916. Journ. Str. Br. Roy. Asiat. Soc. LXXIII, p. 27 I.

West side Barisan Range, Korinchi, W. Sumatra.
389. RATTUS EDWARDSI GIGAS, Satunin 1903. Ann. Mus. Zool. St. Petersb. VII, p. 16.

Near Lun-fan-fu, Szechuan, China. Status fide Osgood.
390. RATTL'S SABANL'S SABANUS, Thomas
1887. Ann. Mag. Nat. Hist. 5, XX, p. 269.

Kina Balu, Borneo,

391．RATTUS SABANLS REVERTENS，Robinson \＆Kloss 1922．Ann．Mag．Nat．Hist，9，IX，p． 95.

Daban，Phanrang Province，S．Annam．
392．RATTUS SABANLS CLULANS，Robinson \＆Kloss 1916．Journ．Str．Br．Roy．Asiat．Soc．LXXIII，p． 272. Siolak Dras，Korinchi Valley，W．Sumatra．

393．RATTC：SABANLS BUNGURAN1：NSIS，Chasen 1935．Bull．Raffles Mus．10，p． 17.

Bunguran Island，Natunas．
394．RATTLA SABANLS MAVAPAHIT，Robmson \＆Kloss
1919．Ann．Mag．Nat．Hist．9，IV，p． 375.
Tjibodas，W．Java．
345．RATTLS KENNETHI，Kloss
1918．Journ．Nat．Hist．Soc．Siam，III，p． 61.
Sikawtur， 40 miles north－werst of Raheng，W．Siam．
306．RATTLS VOClFERANS VOCIFLRAN゙S，Miller
1900．Proc．Biol．Soc．Washington，XIII，p． 138.
Trang，Lower Siam．
397．RATTUS VOCIFERANS HERBERTI，Kloss 1916．Journ．N゙at．Hist．Soc．Siam，II，p． 25.

Pak Jong，E．Siam．
398．RATTLS V＇OLIFERANS INGULARLN］，Miller 1913．Smiths．Misc．Coll．LXI，p．I9．

Domel Island，Mergui Archipelago．
349．RATTUS VOC1FERANi（ClARAL：Aliller 1913．Smiths．Misc．Coll．LXI，p． 20.

Clara Island，Mergui Archipelago．
＋oo．RATTUS VOCIFERANS TAPANULILS，Lyon
1916．Proc．Biol．Soc．Washington，XXIX，p． 209.
Tapanuli Bay，W．Sumatra．
401．RATTLS VOCIFERANS TERSLS，Thomas \＆Wroughton 1909．Ann．Mag．Nat．Hist．8，IV，p．535．

Terutau Island，Straits of Malacca．
402．RATTES VOC•IFERAN゙ 1，ANC：DVENSIS，Mbler
1900．Proc．Biol．Soc．Washington，XIII，p． 188.
Pulau Lankawi，west coast Malay Peninsula．
403．RATTL＇S sTOMCL，Diller
1902．Proc．L．s．Nat．Nlus．XXIV，p． 750.
Henry Lawrence Island，Andamans．
404．RATTLS TACITLRNじs，Miller
1902．Proc．U．S．Nat，Mus．XXIV，p． 762.
S．Andaman Island，Andamans．
405. RATTUS STENTOR, Miller
1913. Smiths. Misc. Coll. LXI, p. 19. James Island, Mergui Archipelago.
406. RATTUS STRIDULLUS, Miller
1903. Smiths. Misc. Coll. XLV, p. 29. Bentinck Island, Mergui Archipelago.
407. RATTL'S Mat'ThaEUS, Miller
1903. Smiths. Misc. Coll. XLV, p. 29.

St. Matthew Island, Mergui Archipelago.
408. RA'TTUS LLCAS, Miller
1903. Smiths. Misc. Coll. XLV, p. 30.

St. Luke Island, Mergui Archipelago.
409. RATTU'S SIPORANU'S, Thomas
1895. Ann. Mus. Civ. Stor. Nat. Genova, XXXIV, p. ir. Sipora Island, Sumatra.
410. RATTUS SOCCATUS, Miller
1903. Smiths. Misc. Coll. XLV, p. 30.
N. Pagi Island, west coast Sumatra.

4f. RATTUS FREMENS FREMENS, Miller
1902. Proc. Acad. Nat. Sci. Philadelphia, p. 154.

Sinkep Island, Rhio-Lingga Archipelago.
412. RAT'TUS FREMIENS MANSALARIS, Lyon
1916. Proc. U.S. Nat. Mus. LII, p. 450.

Pulau Mansalar, W. Sumatra.
413. RATTUS FREMENS TUANCUS, Lyon
1916. Proc. U.S. Nat. Mus. LII, p. 45 I.

Pulau Tuangku, Banjak Islands, Sumatra.
+r4. RATTUS BALAE, Miller
1903. Smiths. Misc. Coll. XLV, p. 33.
Tana Bala, Batu Islands, west coast Sumatra
+15. RATTUS MASAE, Miller
1903. Smiths. Misc. Coll. XLV, p. 32.

Tana Masa, Batu Islands, W. Sumatra
416. RATTUS NASUTUS, Lyon

191i. Proc. U.S. Nat. Mus. XL, p. 104.
Pulau Panebangen, W. Borneo.
417. RAT'TUS LUTA, Miller
1913. Smiths. Misc. Coll. LX1, p. 8.

Pulau Laut, Dutch S.-E. Borneo.
418. RATTL'S STRIDENS, Miller
1903. Smiths. Misc. Coll. XLV, p. 28.

Tioman Island, Malaya.
419. RATTUS STREPITANS, Miller
1900. Proc. Washington Acad. Sci. II, p. 207.

Pulau Siantan, Anamba Islands.

## bozersi Group

420. RATTUS FERREOCANUS, Milfer
421. Proc. Biol, Soc. Washington, XIII, p. 140.

Trang, Lower Siam.
421. RATTLS BolVERSI BOWERSI, Anderson 1879. Zool. Res. Yunnan, p. 304.

Hotha, Iunnan.
422. RATTLS BollFRSI LATOLCHEI, Thomas 1897. Ann. Mag. Nat. Ilist. 6, XX, p. 113

Kuatun, N.-WV. Fokien, S. China.
423. RATTUS BOWERSI LACTIVFNTER, Kloss
1918. Journ. Nat. IIst. Soc. Siam, HI, p. 80.

Sikawtur, 40 miles north-west of Raheng, Siam.
424. RATTLS WELL.si, Thomas
1921. Journ, Bombay Nat. Hist. Soc. XXVIII, p. 26. Khasi Hills, Assam.
425. RATTUS NACEENZIE1 NACKENZIEI, Thomas 1916. Journ. Bombay Nat. Hist. Soc, XXIV, p. 4 Io.

Haingyan, 50 miles $N$. of Kindat, Chin Hills, ISurma.
426. RATTLA MACKENZIEI FEAE, Thomas
1916. Journ. Bombay Nat. Hist. Soc. XXIV, p. 412.

Tenasserim.
berdmorei Group
+27. RATTL'S MANIPCLUS. Thomas
1916. Journ. Bombay Nat. Hist. Soc. XXIV, p. 412. Kampat, Kabaw Valley, Upper Burma.
428. RATTUS BJRRDMOREI BERDMIOREI, Blyth

185 I. Journ. Asiat. Soc. Bengal, XX, p. 173.
Burma.
429. RATTUS BIERDMIGREI MAGNLS, Kloss
1916. Proc. Zool, Soc. London, p. 57.

Klong Menao, S.-E. Siam,
430. RATTUS BERDNIOREI MLLLLLUS, Thomas
1916. Journ. Bombay Nat. Hist. Soc. XXIV, p. 413 .

Tenasserim.
Icucopus Group
431. RATTUS LELCOPLis LEUCOPUS, Gray
1867. Proc. Zool. Soc. London, p. 598.

Cape lork, Qucensland.
Synonym: terrateginae, Alston, i879, Proc. Zool. Soc. London, p. 646.
432. RATTUS LELCOJTS RINGENt, Peters \& Doria

I880, Ann. Mus. Civ. Stor. Nat. Genova, XVI, p. 700.
Fly River, British New Guinea.
433. RATTLS LELCOPL'S RATTJCOLOR, Jentank
1908. Nova Guinea, 9, p. 7.

Noord River, Wutch New Guinea.
434. RATTL'S LEL'COPUS UTAKWA, Rümmler
1935. Zeitschr. für Säugetierk. 10, p. 115.

Utakwa River, New Guinea.
435. RATTUS LEUCOPUS MORDAX, Thomas 1904. Ann. Mag. Nat. Hist. 7, XIV, p. 398.
N.-E. British New Guinea.
436. RATTUS LECCOPUS COENORUMI, Thomas 1922. Ann. Mag. Nat. Hist. 9, IX, p. 262.

Mamberano River, N. New Guinea.
Synonym: bandiculus, Thomas, 1922, Ann. Mag. Nat. Hist. 9, IX, p. 262. Mamberano River, New Guinea.
437. RATTUS LELCOPUS TRAMITIUS, Thomas 1922. Ann. Mag. Nat. Hist. 9, JX, p. 262.

Namberano-Idenberg region, N. New Guinea.
+38. RATTUS LEUCOPUS STEINI, Rummler 1935. Zeitschr. für Säugetierk. 10, p. 115.

Kunupi, Weyland Range, New Guinea.
439. RATTUS LELCOPUS RUBER, Jentink
1879. Notes Leyden Mus. II, p. 18.

New Guinea.
4\%. RATTUS LEUCOPL'S JOBIENSIS, Rümmler 1935. Zeitschr. für Säugetierk. ıo, p. 116.

Japen Island, New Guinea.
441. RATTUS LEUCOPUS PRAETOR, Thomas 1888. Ann. Mag. Nat. Hist. 6, I, p. 158.

Ada, Guadulcanar, Solomon Islands.
Synonym: praetor mediocris, Troughton, 1936, Rec. Austral. Mus. 19, p. 343. Buin, Bougainville, Solomons. Status fide Rümmler.
442. RATTUS LEUCOPUS FELICEUS, Thomas
1920. Ann. Mag. Nat. Hist. 9, VI, p. 423.

Mt. Manusela, Ceram.

## rerecundus Group

443. RATTU'S VERECUNDUS VERECUNDUS, Thomas 1904. Nov. Zool. XII, p. 598.

Avera, Aroa River, British New Guinea.
444. RATTLS VERECUNDUS MOLLIS, Rümmler 1935. Zeitschr. für Säugetierk. Io, p. II6.

Morobe, Mt. Misim, N.-E. New Guinea.
445. RATTUS VERECLNDL'S FORSTERI, Rümmler 1935. Zeitschr. für Säugeticrk. Io, p. 117.

Bulung, New Guinea.
446. RATTLS VERECE'NDUS LNICOLOR, Rummler 1935. Zeitschr. für Säugetierk. IO, p. 117.

Kunupi, Weyland Range, New Guinea.
niobe Group
447．RATTL＇S NIOBE NIOBE，Thomas 1906．Ann．Mag．Nat．Hist．7，XVII，p． 327.

Owgarra，Angabunga River，New Guinea．
4ヶ8．RATTUS NIOBE STJFVEN゚SI，Rümmler 1935．Zeitschr．für Säugetierk．10，p． 117.

Morobe，Mt．Misim，New Gtinea．
449．RATTL\＆NIOBE RLFLLUS，Thomas
1922．Ann．Mag．Nat．Hist．9，IX，p． 669.
Saruwaged Mountains，N．－E．New Guinea．
450．RATTLS NFOBE ARROGANS．Thomas
1922．Ann．Mag．Nat．Hist．9，IS，p． 263.
Doormanpad－bivak，N．New Guinea．
451．RATTUS NIOBE：HAYMLANI
New name for klossi，Thomas，1913．Ann．Mag．Nat．Hist．8，X11，p． 207.
Upper Utakwa River，Dutch New Guinea．Not Rattus klossi，Bonhote， 1906.

452．RATTLis NIOBE CLARAE，Rummler ${ }^{1}$ 1935．Zeitschr．für Säugetierk．10，p． 118.

Sumuri，Weyland Range，New Guinea．
453．RATTU＇S NIOBE ARFAKIENSIS，Rummer 1935．Zeitschr．für Säugetierk．10，p． 118.

Arfak Mountains，New Guinea． tumneyi－zillosissimus Group
454．RATTLS TLNNEYI，Thomas 1904．Nov．Zool．XI，p． 223.

Mary River，N．Territory，Australia．
455．RATTLS BRACHIYRHINL＇S，Tate \＆Archbold 1935．Amer．Mus．Nov．802，p． 4.

Boroka，St．Joseph＇s River，Coast Region，S．Papua．
456．R．ATTUS MELVHLEL $\stackrel{A}{ }$ ，Thomas 1921．Ann．Mag．Nat．Hist．9，VIII，p． 427.

Melville Island，N．Australia．
457．RATTLS（＇LLMORLMI C＇LLAORLX，Thomas \＆Dollman 1909．Proc．Zool．Soc．London，1908，p． 790.

Beach Mountain，Inkerman，QueensIand．
458．RATTL゙\＆C＇LLMIORLNI VALIESIU＇s，Thomas
1921．Ann．Dag．Nat．Hist．9，VIII，p． 426.
Macquarie River，Upper Darling，New South Wales．
45\％．RATTUL（CLNK）RLXI AU心TRINL゙心，Thomas 1921．Ann．Mag，Nat．Hist．9，VIII，p． 427.

Port Lincoln，S．Australia．
4\％o．RATTLS CLLMORLYI YOUNGI，Thomas 1926．Ann．Mag．Nat．Hist．9，XVIII，p． 309.

Moreton Island，Queensland．
${ }^{1}$ Preoccupied by No． 399 of this list．I therefore rename it pococki．
461. RATTUS SORDIDUS, Gould
1858. Proc. Zool. Soc. London, 1857, p. 242.

Darling Downs, S. Qucensland.
46z. RATTUS CONATUS, Thomas
1923. Ann. Mag. Nat. Hist. 9, XII, p. 159.

Annam River, Cooktown, N. Queensland.
463. RATTUS COLLETTI, Thomas
1904. Nov. Zool, XI, p. 599.
S. Alligator River, N. Australia.
464. RATTL'S WOODWARDI, Thomas
1908. Ann. Mag. Nat. Hist. 8, II, p. 374.

Lagrange Bay, N.-W. Australia.
465. RATTUS VILLOSISSIMIUS VILLOSISSINIUS, Waite
1898. Proc. Roy. Soc. Victoria, X (n.s.), p. 125.

Barcoo River, Central Australia.
Synonym: longipilis, Gould, 1854, Mamm. Austral. iii, p. 13 , preoccupied.
466. RATTUS VILLOSISSIMUS PROFUSUS, Thomas
1921. Ann. Mag. Nat. Hist. 9, VIII, p. 620.

Liverpool Plains, New South Wales.

## fuscipes-lutreolus Group

467. RATTUS ASSIMILLIS ASSIMILIS, Gould
468. Proc. Zool. Soc. London, 1857, p. 241.

Clarence River, New South Wales.
468. RATTUS ASSIMIILIS CORACIUS, Thomas
1923. Ann. Mag. Nat. Hist. 9, XI, p. 173.

Ravenshoe, N. Queensland.
469. RATTUS MANICATUS, Gould
1858. Proc. Zool. Soc. London, 1857, p. 242.

Port Essington, N. Australia.
470. RATTL'S GREY1 GREYI, Gray
1841. Journ. Two Exp. Australia (Grey), ii, app. pp. 404, 410.
S. Australia.
471. RATTL'S GREYI MLRRASI, Thomas
1923. Ann. Mag. Nat. Hist. 9, XI, p. 60 I.

Pearson's Island, S. Australia.
472. RATTUS FUSCIPES FUSCIPES, Waterhouse
1839. Zool. Voy. Beagle, Mamm. p. 66, pl. xxy.

King George's Sound, S.-W. Australia.
473. RATTU'S FUSCIPES GLAUERTI, Thomas
1926. Ann. Mag. Nat. Hist. 9, XVIII, p. 30 S.

Abrolhos Island, W. Australia.
474. RATTU'S MONDRAINEUS, Thomas
1921. Ann. Mag. Nat. Ilist. 9, YIII, p. +28 .

Mondrain Island, S.-W. Australia.

## RATTUS

475．RATTLS VELIEROSLS，（iray
$18+7$. Proc．Zool．Soc．London，p． 5.
Plains between Rivers Murray and Glenelg，S．Australia．
4\％6．RATTL＇S VEL，TTINL＇S，Thomas
1882．Ann．Nag．Nat．Jlist．5，1X，p． 415.
＇Tasmania．
Synonym：castameus，liggins \＆Petterd，1884，Pap．Proc．Roy．Soc． Tasmania， 1883 ，p． 183.
477．RA＇T＇L゙ LL＇TREOINX，Gray
1841．Journ．Two Exped．Australia（Grey），ii，app．pp．404， 409.
S．Australia．

## Subgenus Stochomys，Thomas

47S．RATTLTS LONGICALDATLS LONGICALDATLS，Tullherg
1893．N．Act．Upsala，3，XV1，Muriden aus Kamerun，p． 36.
Cameroons，W．Africa．
Synonym：sebastiamus，de Winton，1897，Ann．Mag．Nat．Hist．6．N1X， P． 463.
hypoleucus，Pucheran，Rev．Nag．Zool．2，V11，206， 1855. Not of Sundevall．
479．RATTL：LONGICALDATLSA ITLRICLIS．Thomas
1915．Ann．Mag．Nat．Hist．S，XVI，p．I49．
Medje，Upper Ituri．

Subgenus Praomys，Thomas
4io．RATTLS TLLIBERG；TLELBERGI，Thomas 1894．Ann．Mag．Nat．IIst．6，XIIl，p． 205.

Ankober River，Wasa，Ashanti，W．Africa．
Synonym：burtoni，Thomas， 2892 ，Ann．Hae．Nat．Hist．6，X゙，p． 182.
＋8i．RATTLS TUIIIBER（i\＆PLERONISCLS，Heller 1909．Smiths．Mise．Coll．LIl，4，p． 472.

Sotik，lienya．
482．RATTE＇S＇TLIßBERRC；JACKSONI，de Winton
1897．Ann．Mag．Nat．Hist．6，XX，p． 318.
Entebbe，Uganda．
483．RATTLE TLILBERGI NONTIS，Thomas \＆Wroughton 1910．Trans，Zool．Soc．London，XIJX，p． 503.

Ruwenzori，Uganda．
4ヶ4．RATTLS TLLIBERGI MILANOTLS，G．M．Allen \＆laveridge
1933．Bull．Mus．Comp．Zool．Harvard Coll．Lさ̌V，2，p． 106.
Porote Xountains，nortli－west of Lake Nyasa，Tanganyzia．
485．RATTLS TULLBERC；ROSTRATL心，MAller
1900．Proc．Washington Acad．Sci．II，p． 637.
Nt．Coffec，Liberia．
486．RATTLE TLIABERGII VIATOR，Thomas 19II．Ann．Mag，Nat．llist． 8 ，VII，p． 46 I ．

N．Nigeria．
487. RATTLS TULLBERGI IUKOLELAE, Hatt
1934. Amer. Mus. Nov. 708, p. 13.

Lukolela, Niddle Congo.
488. RATTUS TLLLBERGI MINOR, Ilatt
1934. Amer. Mus. Nov. 708, p, 11.

Lukolela, Middle Congo.
48\%. RATTLTS TULLBERGl DELECTORLM, Thomas
1910. Ann. Mag. Nat. Hist. 8, VJ, p. +30 .

Nlanje Plateau, Nyasa.
490. RAT'TUS TAITAE, Heller
1912. Smiths. Misc. Coll. LIX, 16, p. 9.

Taita Hills, lienya.
491. RATTUS MORIO, Trouessart
1890. Bull. Soc. Étud. Sci. D'Angers, p. 121.

Cameroon Mountain.
Synonym: maurus, Gray, 1862, Proc. Zool. Soc. London, p. 181. Preoccupied.
492. RATTUS BL'TLERI, Wroughton
1907. Ann. Nag. Nat. Hist. 7, XX, p. 503.

Bahr-el-Ghazal, Sudan.

Subgenus Hylomyscus, 'Thomas
493. RATTUS AETA AETA, Thomas
1911. Ann. Mag. Nat. Hist. 8, V11, p. 591.

Bitye, Ja River, Cameroons.
494. RATTTUS AETA LATICEPS, Osgood
1936. Field. Nus. Nat. Hist. Pub. Zool. ser. XV, p. 247.

South-west slope of Mt. Cameroons, Cameroon Mandate, British Nigeria.
495. RATTUS AETA W'EILERI, Lönnberg \& Gyldenstolpe
1925. Arkiv. Zool. Band 17B, no. 5, p. 3.

Mt. Mikeno, near Lake Kivu, Congo.
496. RATTUS AFTA SCHOUTEDENI, Dollman
1914. Extr. Rev. Zool. Afr. IV, fasc. I, p. 82.

Mambaka, Congo.
497. RATTC'S STELLA STELLA, Thomas
1911. Ann. Mag. Nat. Hist. 8, VII, p. 590.

Between Nawambi and Avakubi, Ituri, E. Congo.
498. RATTL'S STELLA K゙AINOSAE, HeHer
1912. Smiths. Nisc. Coll. LIX, 16, p. 7.

Kaimosi, Kakumega Forest, Kenya,
499. RATTCS DENNIAE DENNIAE, Thomas
1906. Ann. Mag. Nat. Hist. 7, XVII1, p. $1+4$.

Uganda, E. Ruwenzori.
Synonym: endorobae, Heller, 1910, Smiths. Nisc. Coll. LVT, 9, p. 3. 25 miles north of Eldoma Ravine, Ienya.
500. RATTL'S DENXIAE VLLCANORLM, Lönnberg \& Gyldenstolpe
1925. Arkiv. Zool. Band. 17B, no. 5, p. 4.

Nt. V゙arissmbi, Birunga Volcanoes, Congo.

501．RATTLS ©ARILLUS，Thomas
1904．Ann．Nag．Nat．Hist．7，XIJI，p， 4 IS ．
Pungo Andongo，N．Angola．
502．RAT＂＇L＇S ALLENI ALIENI，Waterhouse
IS37．Proc．Zool．Soc．London，p． 77.
Fernando Po．
503．R．ATVLS ALLENI SIALS，Allen \＆Coroldge
1930．Contr．Dep．Trop．Ned．Cambridge，Mass．5，II，p． 599. Liberia．

Subgenus Dephomy＇s，Thomas
50．4 RATTLS DEFLA，Miller
1900．Proc．Washington Acad．Sci．II，p． 635.
Mt．Coffee，Liberia．
Subgenus Myomy＇s，Thomas
505．RATTUS ALBIPES ALBIPLS，Ruppell
1845．Nus．Senckenberg，IJJ，p． 107.
Abyssinia．
Synonym：（？）rufidorsalis alettensis，Frick，1914，Ann．Carnegie Mus．9， p．I7．Aletta，Sidamo，S．Abyssinia．
（？）rufidorsalis ankoberensis，Frick，same reference，p． 18 ．
506．RATTL＇s ALBIPES FLSCIR（）STRIS，Wagner
1845．Arch．Naturg．P． 149.
Senaar，Anglo－Egyptian Sudan．
507．RATTLI BROCKMLAN1，Thomas
1906．Ann．Mag．Nat．Hist．7，XVIII，p． 298.
Upper Sheikh，British Somaliland．
508．RATTUS FCMATUS FLMLATLS，Peters
I878．Monatsb．K．Preuss．Akad．Wiss．Berlin，p． 200.
Ukamba，Kenya．
Synonym：niveizentris，Osgood，I9IO，Field．Mus．Nat．Hist．Zool． ser，X，2，p．12．Voi，Kenya．
ulac，Meller， 19 ェo，Smiths．Nisc．Coll．LVI，9，p．3．Ulu－ kenia Hills，Kenya．

50ッ．RATTLA FUALATLS SLBFLSCせS，Osgood
1910．Field．Mus．Nat．Hist．Zool．ser．X，2，p． 12.
Lake Elmenteita，Kenya．
510．RATTLA FLMLATLS TANA，True
1893．Proc．U．S．Nat Mus．XVI，p． 602.
Tana River，between coast and Hameye，Kenya．
511．RATTUS VERREAUXII，smath
1834．S．Afr．Quart．Journ．II，p． 156.
Near Cape Town．
512．RATTLS AVLNCLLLS，Thomas
1004．Ann．Mag Nat．Hist．7，XIII，p． 417.
Pungo Andongo，Angola．
513. RATTLS ANGOLENSIS, Bocage
1890. Jorn. Sci. Lisbon, 2, V, p. 12.

Mossamedes, Angola.
51\%. RATTUS SIORTRIDGEI, St. Leger
1933. Proc. Zool. Soc. London, p. 4 II.

Okavango-Omatako junction, Grootfontein district, S.-W. Africa.
515. RATTUS DALTON1 DALTONI, Thomas
1892. Ann. Mag. Nat. Hist. 6, X, p. 181.

Probably Fernando Po, IV. Africa.
516. RATTUS DALTONI INGOLDBY]

New name for saturatus, Ingoldby, Ann. Mag. Nat. Hist. ro, III, p. $511,1929$.
Kintampo, Ashanti, W. Africa.
Not Rattus saturatus, Lyon, 191 I.
517. RATTUS COLONUS, Brants
1827. Geslacht der Muizen, p. 124.

Algoa Bay, S. Africa.
Subgenus Mastomys, Thomas
(typical section)
518. RATTUS COUCHA COUCHA, smith
1836. App. Rep. Exp. Expl. S. Afr., p. 43.

Between Orange River and the Tropic, Bechuanaland.
Synonym: fuscus, Bocage, i890, Jorn. Sci. Lisbon, 2, V, p. 14. Angola.
519. RATTUS COLCHA MICRODON, Peters
1852. Reise nach Mossambique, Säugeth, p. 149.

Tette, Mozambique.
520. RATTUS COUCHA SILACEUS, Wagner
1842. Arch. Naturg. 1, p. II.

Albany district, Cape of Good Hope.
521. RATTTUS COUCHA PEREGRINUS, de Vinton
1897. Proc, Zool. Soc, London, p. 959.

Ras-el-Ain, Haha, Morocco.
Synonym: calopus, Cabrera, Bol. Real. Soc. Esp. Hist. Nat. p. 365, 1906. Mogador, Morocco.
522. RATYTUS COL'CHA GARDULENSIS, Frick
1914. Ann. Carnegie Mus. 9, p. 18.

Gardula, S. Abyssinia.
523. RATTUS COUCILA LATERALIS, Heuglin
1877. Reise N. Ost. Afr. p. 71.

Dembea, Abyssinia.
Synonym: tacaziena, Heuglin, same reference, p. 72. Takkaze River, Abyssinia.
524. RATTUS COLCHA NEUMANNI, Heller
1912. Smiths. Misc. Coll. LIX, 6, p. 8.

North Guaso Nyiro, Kenya.
525. RATTUS COLCHA DURUMAE, Heller 19tz. Smiths. Mise. Coll. LLX, 16, p. 9. Mazeras, Kenya.
520. RATTLS COLCHA TINC'TL゙A, Hollister 1918. Smiths. Misc. Coll. LXV111, 10, P. 1.

Kamosi, Kavirondo, Kenya.
527. RATTI'S COLCHA PANSA, lleller 1910. Smiths. Misc. Coll. LVI, p. 2. Athi Plains, Kenya.
528. RATTL'S © OLCHA HILDEBRANDT1. Peters 1878. Monatsb. K. Preuss. Akad. Wiss. Berlin, p. 200. Ndi, Taita, Kenya.
529. RATTL'S COLCHA EFFEC'TLS, Dollman 1914. Ann. Mas. Nat. Hist. S, VHI, p. 524.

Baringo, kenya.
Synonym: eqelyni, Dollman, 1911, Ann. Mag. Nat. Hist. 8, VH, p. 526. Baringo, Kenya.
530. RATTLS COLCHA CLNINGHANEI, Wroughton 1908. Ann. Mag. Nat. Ilist. 8, I, p. 256.

Chivi Islands, Lake Victoria Nyanza.
531. RATTLS COLCHA INMAIHIAE, Heller
1914. Smiths. Misc. Coll. LXIII, 7, p. 9.

Gondokoro, N. Uganda.
532. RATTLS COLCIIA PALI,IDA, Dollman
1914. Abstr. Proc. Zool. Soc. London, April 7th, p. 25 ; Proc. Zool. Soc. London, p. 314.

Lobor, Central Province, Uganda.
533. RATTLS COLCHA L'GANDAE, de Winton
1897. Ann. Mag. Nat. Hist. 6, XX, p. 317.

Entebbe, Uganda.
Synonym: someremi, Kershaw, 1923, Ann. Mag. Nat. Hist. 9, XI, p. 594.
Bugishu, Uganda.
534. RATTL'S COUCIIA VICTORIAE, Matschie 1911. Sitz. Ber. Ges. Nat. Fr. Berlin, p. 342.

Nwanza, Victoria Nyanza, Tanganyıka.
535. RATTLS COLCHA ITIGIENASIS, Hatt
1935. Amer. Mus. Nov. 791, I. 3.

Itigı, Tanganyika.
536. RATTL'S COLCIIA BRADFIELDI, Roburts
1926. Ann. Transv. Mus. XI, p. 257.

Okahandja, S.-IW. Africa.
Synonym: uzamboensis, Roberts, 1926, Ann. Transv. Mus. X1, 4, p. 258.
537. RATTLS COLCHA NATALENSIS, Smith
i849. I11. Zool. S. Afr. pl. 47, fig. 2.
Natal.
Synonym: zulucnsis, Thomas \& Schwann, 1905, Proc. Zool. Soc. London, r. 268. Unvolosi, Zululand.
illozoensis, Jentınk, 1g09, Beitr. Kentn. Faun. S. Afr. p. 248 . Lower Hloro, Natal.
538. RATTLS COLCHIA LIMPOPOENSIS, Roberts
1914. Ann. Transv. Mus. IV, p. 183.

Sand River, N.-E. Transvaal.
539. RATTLS COLCHA KONIATIENSIS, Roberts 1926. Ann. 'Transv. Mus. XI, p. 259.

Kiomati River, 'Transvaal.
540. RATILCS COLYCHA MARIKQUENSIS, Smith
1836. Ann. Rep. Ex. Expl. S. Afr. p. 43.

Rustenherg, Transvaal.
Synonym: socialis, Roberts, 1913, Ann. Transv. Mus. IV, p. 88. Transvaal.
breyeri, Roberts, 1915, Ann. Trans. Mus. V, p. 120. Moordrift, Transvaal.
54\%. RATTLTS COUCHA MACROLEPSIS, Sundevall
1842. Kungl. Siensk. Vet. Ak. Mandl. Stockholm, p. 218.

Senaar, Sudan.
Synonym: limbatus, Wagner, 1845, Arch. Nat. XI, p. 149. Senaar. azrek, Wroughton, 1911, Ann. Mag. Nat. Hist. 8, VIII, p. 460 . Roseires, Blue Nile.
kerensis, Heuglin, 1877, Reise N. Ost. Afr. II, p. 68. Ǩeren, Bogos, Eritrea.
542. RATTU'S COLCHA BLAINEI, Wroughton
1907. Ann. Mag. Nat. Hist. 7, XX, p. 502.

Bahr-el-Ghazal, Sudan.
543. RATTUS COLCIIA GAMBIANUS, Thomas
1911. Ann. Mag. Nat. Hist. 8, VIII, p. 122.

Gamon, Senegal.
544. RATTLS COLCHA ERYTHROLEUCUS, Temminck 1853. Esq. Zool. Côte de Guiné, p. 160.

Gold Coast, W. Africa.
545. RATTUS COUCHA HLBERTI, Wroughton
1908. Ann. Mag. Nat. Hist. S, I, p. 255.

Zungeru, N. Nigeria.
546. RATTUS RL'FIDORSALIS, Heuglin
1877. Reise N. Ost. Afr. II, p. 70.

Simien, Abyssinia.
(permamms Section)
547. RATTUS PERNANL'S, Kershaw 1921. Ann. Mag. Nat. Hist. 9, VIII, p. 568. Amala River, Kenya.

Subgenus Micaëlamys, Ellerman
548. RATIL'S GRANTI, Wroughton 1908. Ann. Mag. Nat. Hist. 8, I, p. 257.

Deelfontein, Cape Colony.
Subgenus Ochromys, 'Thomas
549. RATTU'S WOOSNAMI, Schwann
1906. Proc. Zool. Soc. London, p. 108.

Molopo, Bechuanaland, S. Africa.

The following species are not allocated to groups:
550. RATTL's gERMIAINI, Milne-Edwards
1874. Rech. Mamm. p. 289.

Cochin-China.
551. RATTL'S FABERI, Jentink 1883. Notes Leyden Mus. V, p, 176.
N. Celebes.
552. RATTITS BOCOLRTI, Milnc-Edwards 1876. Rech. Mamm. p. 291, footnote.

Siam.
553. RATTE'S C'ANNA, Swinhe 1870. Proc. Zool. Soc. London, p. 636. Formosa.
554. RATTL'S ENGANUS, Miller 1906. Proc. U.S. Nat. Mus. XXX, p. 821.

Engano Island, south of Sumatra.
The following are doubtful:
RAT'TUS AURATUS, Grandider
1899. Buil. Mus. Paris, V, p. 277.

Morondawa, W. Madagascar.
Probably an introduced rat of the rattus group
RATTUS (?) GALANUS, Heuglm
1877. Reise N. Ost. Afr. 1I, p. 75.

Wologala, N.-E. Africa. Perhaps based on a Gerbillus.

RATTUS (?) (or AETIIONYS) MUSCARDINUS, Wagner 1843. Schreber Säug. Suppl. 111, p. 430.
S. Africa,

## Australian

The following are not identified by Iredale \& Troughton:
letTerdi, Troucssart
1904. Cat. Mamm. Supl. fasc, ii, p. 373. Tasmania.

Synonym: tetragonurus, 1 liggins \& Petterd, 1884, Pap. Proc. Roy. Soc.
Tasmania, is83, p. 195.
BURTUN: Ramsay
I887. Proc. Linn. Soc. N.S.IV. 2, 11, p. 553. Derby, N.-W. Australia.
PACHYURUS, Huggins \& Petterd
1884. Pap. Proc. Roy. Soc. Tasmania, 1883, p. 182. Long Plains, Tasmania.

## Note

Since the above was completed, I have had opportunity of working through a large collection of Rattus Rats from Celebes, collected during the winter of 1938 by Mr. W. J. ©'. Frost. 'This collection indicates that some of the conclusions previously reached are erroneous.
'To the list of forms scen, above, add: raveni, tatei (new, described below), hoffmani, frosti (new, described below), tetricus, dollmani (new, described below), sericatus.
concolor group. R. raveni, Miller \& Hollister, appears to be a subspecies of $R$. concolor. The form eturous, described by these authors is probably synonymous, as specimens from Middle Celebes in the present collection do not seem to be distinguishable from North Celebes specimens.

Rattus tatei, sp. nov.
A large member of the concolor group; size about as in very large specimens of concolor, from which it differs in the abnormally broad molars, and relatively very long toothrow; teeth also broader than is usual in Celebes representatives of $R$. rattus, and about as broad as in $R$. hoffmani, from which the species differs in much smaller size.
'Type, no. 104, adult female, from 'Tamalanti, Middle Celebes. Skull with all the main characters of the rattus or concolor group; supraorbital ridges relatively weaker than usual in the two specimens examined; braincase very broad; zygomatic plate moderately projected forwards, not very strong. Palate long, extending slightly behind last molars. Bullae large, about 18 per cent of occipitonasal length. Palatal foramina long, extending between front molars. Molars excessively heavy, length of toothrow about 20.12 per cent of condylobasal length; greatest breadth of molars over 2 mm . M. 3 relatively large, but pattern of molars not abnormal. Head and body length, 130 mm . Fur soft; above dark brown, below grey. Tail slightly longer than head and body in the type specimen, slightly shorter in the other specimen, no. 215. The tail has 11-13 rings to the centimetre on the upper part, and is uniformly dark throughout. Hindfoot rather long, but broad, and with long fifth digit, as usual in rattus or concolor group.

Measurements of type: head and body, 130 mm .; tail, 140 ; hindfoot, 32.5 ; ear, 17; condylobasal length, 33.9 ; upper toothrow, 7 mm .; occipitonasal length, 36.4 ; bullae, 6.5 ; braincase breadth, $14 \cdot 6$; length of nasals, $1_{4}$; diastema, $7 \cdot 8$; palatal foramina, $6 \cdot 5$; least interorbital width, $7 \cdot 8$; greatest breadth, M.1, 2.3 mm .

The species seems clearly differentiated from all members seen of the Celebes rattus group (of which it could be a dwarf member) by its much smaller size, and from the concolor group by its unusually wide, heavy teeth, and longer toothrow. I name the species after Mr. G. H. H. 'Tate, whose work on Indo-Malayan Rats has proved so helpful.
rattus group. R. hoffmani seems very poorly differentiated from rattus Rats except by its broader molars, though regarded as the type of a separate group by Tate. Its mammary formula, $1-3=8$, turns up intermittently elsewhere, as in $R$. bagopus, from the Philippines, $R$. rogersi from the Andamans, etc. It suggests a direct derivative from the $2-3-10$ formula often present in rattus Rats. In all other main characters, as skull, and colour of tail, it seems essentially like rattus-group Rats.

However, the tail is most often shorter than the head and body in hoffman, which is not usual in rattus Rats, though sometimes occurring. vantlurus group. These Rats may in almost every case be at once distinguished from rattus or chrysocomus Rats by the colour of the tail, which is wholly dark basally, wholly light terminally, for a greater or lesser distance. This is constant in all senthorus Rats seen, but from descriptions is not present in $R$. pumians which has been referred to the group, and perhaps in R. hamatus. Willer and 'Tate refer the form callitrichus to the genus Lenomys. I have not seen the type of callitrichus; but forms hearing this name in the B.M., and including some specimens collected by Mr. Frost, are certainly not Lenomys, but definitely Rattus, in dental characters. Jentink's description is hopelessly inadequate. This Rat has no posterointernal cusp in $\lambda .1$ and I .2 , as Rattus; the fur is thicker and softer than in celebensis; the bullae appear to be smaller than is usual in vantlumus group Rats (not including dominator); the toothrow is about 19 per cent of the condylobasal length. The tail is longer than the head and hody (slightly), though not so in Jentink's description; but this seems a rather variable character. 'The palate reaches slightly behind the last molars; the molars are broad and heavy. 'lail coloured as usual in xanthurus. Rats. 'The ear is rather large. Until the type of callitrichus can be examined, the name must remain douhtful. Of the forms belonging to the group examined, xanthurus, marmosurus, which is, ] think, a subspecies of xanthurus, and bontanus have the palatal foramina long, extending to the anterior portion of toothrow, or beyond it. R. vanthurus (with marmosurns) differs from all other vanthmrus Rats seen in the quality of the fur, which has several long hairs interspersed; the molars are shorter than in bontanus. The remainder, callitrichus, frosti, and celebensis, have the palatal foramina shorter, not extending back to the front of molars. Of these callitiochus has unusually thick fur, and rather smaller bullat. $R$. chchensis has short fur and larger bullae; from frosti it differs in having longer palatal foramina and shorter toothrow.

> Rattus frosti, sp. nov.

Type, original number 30 , from Tamalanti, Widdle Celehes; young adult female. A member of the xanthurus group probably most nearly allied to celcbensis. Palatal foramina abnormally shortened, only 51 per cent of diastema. Upper toothrew long, about $19+$ per cent of condylobasal length. Bullae about 13.5 per cent of occipitonasal length. Skull with moderately weak supraorhital ridges; braincase rather broad; upper profile of skull differing from a specimen of celebensis from 'Ionsea, North Celebes, in the weaker supraorbital ridges, wider interorbital region, wider braincase, and shorter interparietal. Zygomatic plate seareely projected forwards anteriorly. Upper incisors more opisthodont than in celchensis, reminiscent of those of dominator. Palatal foramina extremely shortened, but not peculiar in form. Palate of
moderate width, extending posteriorly about to level of hinder part of third molars. Bullae moderately large and evenly inflated. Molars heavy; M1.3 not much reduced. Clear traces present of the fourth inner cusp on the second lamina of M.ı and M.2, as characteristic of $R$. hellwaldi.

Fur thicker than is usual in celebensis, but not excessively so. I Iindfoot apparently with six plantar pads, the foot broad and heavy, as is usual in the group, very different from the narrow specialized formation of chrysocomus, musschenbroeki, or hellwaldi groups. Tail rings about i1 to the centimetre on the upper part; the tail wholly black for just over a third of its length basally, white for the rest of its length except the terminal 55 mm . on which the white marking is less apparent. Under surface of body and limbs white. Above grey.

Measurements of type, head and body, 185 mm ; tail, 220 ; hindfoot, 45; ear, 30 ; condylobasal length, 4377 upper toothrow (crowns), 8.6; occipitonasal length, 47.3 ; bullae, 7.6 ; least interorbital width, 7.4 ; diastema, 11.4 ; palatal foramina, 5.8 ; breadth braincase, 19 ; length of nasals, 15.7 ; width of M.1, 2.9 ; length from front of incisors to back of palate, $25 \cdot 2$. This species is differentiated from celebensis by its relatively longer toothrow and shorter palatal foramina; the only other species of the group, from descriptions, with such unusually short palatal foramina seems to be microbullatus, which according to descriptions seems to present many features reminiscent of dominator, and may belong with that species.
R. frosti differs from $R$. arcuatus, Tate \& Archbold, in its longer palatal foramina, and the skull is not specially arched, as described for that species; also the bullae appear a little larger. In addition to the type, No. ${ }^{4} 2$ from Tamalanti belongs to the new species; two specimens from Rantekaroa, numbers 64 and 170 , which are too young for certain identification, also appear to belong here. I take pleasure in naming the species after the collector.
dominator group. Though currently referred to the wanthurus group, the conclusion has been reached that $R$. dominator represents a thoroughly distinct species. It may represent Tate's miilleri group; or it may be a group type. Characters distinguishing dominator from xanthurus Rats are the unusually small bullae, about $12-14$ per cent of occipitonasal length; the unusually short palatal foramina (only approached by frosti in B.M. Celebes material) and the unusually heavily thrown forward zygomatic plate, which is present in an exaggerated degree in all but a very few specimens.
chrysocomus group. All described members of this group appear to represent one species only, or very probably so. The foot structure will usually separate a chrysocomus Rat from those groups just dealt with, while the more rattus-like cranial characters such as normally inflated bullae, normally formed palatal foramina, five-rooted X. I, rather large М. 3 , and relatively long palate separate them from musschenbrocki and hellwaldi,
the only C'elebes representatives I have seen of 'Tate's progressive division of Rattus, which is very sharply distinguished in Celebes from the more rattus-like primitive division. A form from Tamalanti, Mid Celebes, may represent a new race, evidently nearest leimrichi, hat with larger bullae and smaller molars. However, in the absence of knowledge of characters of many of the races not represented in London, I prefer not to name it yet.
musschenbroeki group. From the few specimens of this species I had seen previously I thought this species might be a very distinct representative of the confuciamus group. A large series in the Frost collection proves this suggestion to be incorrect. R. musschentroeki may be a representative of the rajal group, but it is rather small for a member of that group; the tail is usually shorter than the head and body, which suparates it from confucianus group, as does the hindfoot structure which seems to be just as in rajali Rats. M1.1 is four-rooted in some specimens of the present series, differing from all Celebes Rats I have examined on the point, including representatives of all the seven gronps represented in the Frost collection, except $K$. hellwaldi. 'The form tetricus appears to be a very well-marked race.
hellwaldi group. 'This species, treated above, following 'Tate, as a member of the rajah group, cliffers from other Rats of Celebes in the abnormat number of rings of the tail to the centimetre, roughly $15-17$ in the upper portion; more than zo to the centimetre on the terminal portion; therefore making a decicled approach to the condition found in Rattus bartelsi from Java (a smaller animal), and supporting my assumption that bartelsi cannot, until the whole genus is revised, be regarded as forming a genus on this character. (Another species I suspect shares the character of the unusually large number of rings to the tail is macleari from Christmas Island.) R. hellwaldi has a four-rooted M.1. The extra cusp, situated on the second lamina of XI. i and M. .2, on the inner side, proves an absolutely constant character in $3^{6}$ specimens. From all other species (examined) from Cclebes except musschenbrocki, which has a normal number of rings to the tail, simple teeth, and is of smaller size, hellwouldi may be at once distinguished by the following characters: small, flattened bullae, with tube-shaped anterointernal portion; roots of N.. less than 5 ; palate shortened, not extending to hinder part of toothrows; NI .3 more reduced; and hindfoot specialized as described above for the rajal group. Whether the characters of the tail should separate this species from the rajah group I am not able to check at the moment.

Ruthus hellzwaldi dollmani, subsp. nov.
A specimen collected at Rantekaroa, Quarles Mountains, Middle Celebes, has the tail 120 per cent of head and body length instead of the percentage of (normally) under 100 per cent, rarely up to 102 per cent in our series, up to 107 per cent in 'Tate's measurements (excepting a specimen of Tate's from South-east Celebes with the rather remarkable
measurements of head and body 138 (too small for hellwaldi), tail 210 ; to this measurement Tate adds a footnote: "Note that discrepancies exist in body measurements as taken by the collector"). The ventral surface is coloured differently from all other specimens seen, being more slategrey. The supraorbital ridges are proportionately weak. 'The specimen has the two inner roots of M.1 coalesced, so that apparently only three roots are present; the condylobasal length is shorter and the occipitonasal length proportionately shorter than any adult typical hellwaldi in the collection from North Celebes; the toothrow is relatively long. (Condylobasal length, $36 \cdot 6$; not under 38 in other adults measured.) Type no. 65 ; teeth considerably worn; locality, Rantekaroa, Quarles Mlountains, Middle Celebes. Measurements of type: head and body, 75 mm .; tail, 210; hindfoot, 38 ; ear, 25 ; condylobasal length, $36 \cdot 6$; occipitonasal length, $41 \cdot 2$; upper toothrow, $6 \cdot 2$; bullae length, $7 \cdot 7$; least interorbital width, 7 ; diastema, ro; palatal foramina, 5.7 ; length from front of incisors to back of palate, 18.5 ; breadth of braincase, 16.2 ; zygomatic width, circa 19. The type is female.

This race is named after Captain Guy Dollman of the British Museum.
Miller's race cereus does not appear to be well marked and may be a synonym of the typical race, as most of his measurements for this race are covered by individual specimens in the present collection from Tonsea, North Celebes.

```
List of Rats collected by Mr. Frost in Celebes in 1938
                (Forms marked * are new to B.\J.)
                    *Rattus concolor razeni 2I
*Rattus tatei 2
*Rattus hoffmani 19
    Rattus dammtermani 3
    Rattus xanthurus marmosurus 10
*Rattus frosti 4 (2 juvenile)
    Rattus celebensis 5
    Rattus callitrichus 2
    Rattus dominator 17
    Rattus chrysocomus fratrorum 41
*Rattus chrysocomus scricatus 6
    Rattus musschenbroeki 34
*Rattus musschenbroeki tctricus }
    Rattus hellwaldi 34
*Rattus hellwaldi dollmani 1
*Eropeplus canus 2
*Echiothrix leucura brevicula 1
```

Specimens provisionally identified as sericatus are from Rantekaroa, Quarles Mountains.

In addition to these, a good collection of Hyosciurus heinrichi was obtained,
as noted elsewhere; some specimens of Sciurillus murinus, also noted elsewhere; and a few specimens of Callosciturts rubrizenter; as well as several Porcupines (IIystrix and Thecurus) from Flores, Java, Sumatra, etc., including a specimen of Thecurus sumutioe from Sumatra which has unusually thick heavy quills and probably represents a new race.

Note on earliest names for two of the Groups: 'The oldest name for the concolor group is apparently Rattus exulans, ]'eale, from Fiji. Rümmler, 1938, treats concolor as a race of exulans. These Rats are apparently House-Rats to a certain extent, which would explain their unusually large range. Doubtless most of the named forms will be races of exulans.

The oldest name for the confucianus group appears to be Rattus micizenter, Hodgson, from the Himalayas. This Rat is stated by Bonhote to be very near confuciames, and schwarz has treated confucianus as a race of nizerzenter. R. rubricosa, Anderson, is according to Bonhote a member of the rattus group, and not of the nizeirenter-confuciunus groun as it is tisted here. According to Osgood, the species $l$ mong is a race of fulcescens, and ling is very likely based on young specimens of huang. $K$. indosinicus, here listed in this group, appears more allied to the cremorizater group.
R. zocifcrans, Miller, and its numerous races (edzardsi group) may be treated as races of sabamus (Robinson 太 Kloss, 1919).

## Genus 39. GYOMIS, Thomas

1910. Gyomys, Thomas, Ann. Mag. Nat. Hist. 8, VI, p. 607.

Type Species.- Tus nozachollandiae, Waterhouse.
Range,-Australian: Queensland, New South Wales, Victoria, Central Australia, South Australia.
Number of Forms.-Nine.
Rfmarks.-This was originally proposed as a sulgenus of Psetdomys by Thomas; ] do not think it is sufficiently specialized to be included in that genus. Actually it is barely distinguishable from Ruttus, though very distinct indecd from Australian Rattus. It is retained mostly for convenience.

Characters.-Skull with broad braincast, considerable interorbital constriction, no supraorhital ridges. Bullae rather small. Incisive foramina medium. Pterygoid region as in Leggadina. (But there are species of Rattus which come near this formation.) 'Teeth normal, rather of simplified Rattus type; M1.3 medium; no extra lamina (or traces of it) in front of foremost lamina of M.I. T.3, the anteroexternal cusp of M.I, is almost suppressed.

Fur very soft; tail subequal in length to head and hody; size small, 68-115 mm . ( $70-105$ in B...l. specimens); digits normal. Coronoid process of mandible strongly reduced in all seen. Pectoral mammae suppressed (?).

Forms scen: alhucinereus, glaucus, nozuhollandiue, squalorum.

## List of Named Forms

1. GYOMYS GLAUCUS, Thomas
2. Ann. Nag. Nat. Hist. 8, VI, p. 609.
S. Queensland.
3. GYOMYS BERNEY1, Troughton
4. Nem. Queensland Mus. Brisbane, 11, p. I5.

Barcarolle station, 135 miles south of Longreach, Queensland.
3. GYOMY'S PUMILLS, Troughton
1936. Mem. Queensland Mus. Brisbane, 11, p. 16.

Byfield, 25 miles north of Yeppoon, near Rockhampton, Coastal Queensland.
4. GYOMYS FUMELS, Brazenor
1934. Mem. Nat. Mus. Victoria, VIII, p. 158.

Turton's Pass, Otway Forest, Victoria.
5. GYOMIYS NOVAEHOLLANDIAE, Waterhouse
1843. Proc. ZooI. Soc. London, I842, p. Iq6.

Upper Hunter River, New South Wales.
6. GYOMYS APODEMOIDES, Finlayson
1932. Trans. Proc. Roy. Soc. S. Australia, LVI, p. 170. Combe, N.-E. district of S. Australia.
7. GYOMYS DESERTOR, Troughton
1932. Rec. Austr. Mus. XVIII, p. 293.

Wycliffe Creek, Central Australia.
8. GYOMYS ALBOCINEREUS ALBOCINEREUS, Gould
1845. Proc. Zool. Soc. London, p. 78.

Moore's River, W. Australia.
9. GYOMI'S ALBOCINEREUS SQUALORUM, Thomas
1907. Proc, Zool. Soc. London (1906), p. 776.

Bernier Island, Shark's Bay, W. Australia.

## Genus 40. LEPORILLUS, Thomas

1906. Leporillus, Thomas, Ann. Mag. Nat. Hist. 7, XVII, p. 83.

Type Species.-Conilurus apicalis, Gould.
Range.-Australian: South Australia, New South Wales, Franklyn Island.
Number of Forms.-Three.
Characters.-Much like Conilurus, but with no well-marked posterointernal cusp in the first and second upper molars. Supraorbital ridges evidently absent. Incisive foramina large, well open, reaching toothrows. Bullae large. Zygoma sloping upwards rather sharply anteriorly, to a high level. Molars heavy, M. 3 little reduced. So few skulls are present in London that it is not possible to give a detailed account of the dentition; in old age the cusps are obliterated and the original spaces between the lamina arc isolated as enamel islands, and a young specimen presents a dentition rather like that of a very angular $R$. lutreolus; with heavy cusps (but evidently
developing in a Rattus-like manner, i.e. tending to fuse into each other, at least in the outer and centre rows). N1.3 relatively large.

Fur thick, soft. Ear large. 'Tail shorter than head and body, so far as seen; very well haired. Hindfeet not much lengthened, length and proportion of digits about as in normal Rattus. Size rather large (up to 200 mm . head and body, or perhaps more).

I have not seen $L$. conditor, which appears to have much larger bullae than in the type, as figured by Wood Jones. From his measurements, the interorbital region of the skull appears to be somewhat extremely constricted, in the genus, averaging under i3 per cent of "greatest lengtb," which appears to be about as in Stenocephalemys and other genera with extremely constricted frontals, but two of our skulls exceed this measurement. The zygomatic plate is not concave anteriorly (compare Pseudomys). Coronoid process very low.

These Rats are stated to build elaborate "houses."
Forms seen: apicalis, jonesi.

## List of Naned Forms

[^5]
## Genus +1. PSLEDDOMIS, Gray

1832. Pseudoniys, Gray, Proc. Zonl. Soc. London, XVT, p. 39.
1833. Thetomys, Thomas, Ann. Nag. Nat. Ilist. S, V1, p. 6o6. (Mus nanus, Gould.) Valid as a subgenus.

Type Species.-Pseudomys australis, Gray.
Range.-Australian: Queensland, New South Wales, South Australia, Western Australia, Tasmania.
Number of Forms.-Thirteen.
Remarbs.-In igio, 'Thomas divjded the more Rattus-like Rats of Australia, or those which were not included in Conilurus, Notomys, Leporillus and Mesembriomys, into two genera, Rattus ("Epimys") and Pseudomys, for which he gave the following characters. Pectoral mammae believed to be always absent in Pseudomys $(0-2=4)$, present in Rattus. P'terygoids variable in Pseutomps, normal in Rattus. Skull without supraorbital ridges in Pseudomys, these present in Rattus. Pseudomys contained four subgenera, Pseudomys, Thetomys, Gyomys, and Leggadina. But as subsequently noted by Thomas, supraorbital ridges are not always present in Rattus, and it is the Australian hranch of the genus in which these ridges are more often not developed. Also,
even if pectoral mammae are always suppressed in Australian Rattus (which is not the case according to Tate) they are not always suppressed in Indo-Malayan Rattus. It becomes clear that this genus, if retained, will have to be based on characters other than those of Thomas. AII Thomas's subgenera have been given full generic rank recently. I do not think that the groups typified by Gyomys and Leggadina are congeneric with the present genus.

Characters.-Generally the skull is more constricted in the frontal region than is the case in Rattus, being most constricted in $P$. australis, which gives a percentage against the occipitonasal length of only in per cent, or lower than any other species of the present section measured. While this is general, it does not appear to be absolutely constant. Front edge of zygomatic plate concave, then sharply cut back above. Infraorbital foramen narrowed in appearance. Incisive foramina large. Bullae medium. Nlolars not far removed from Rattus, but peculiar; T. 3 in M.I much reduced (in the type of oralis, an extremely hypsodont form, there is not a trace of this cusp). N. 3 not much smaller than M.2. Cusps originally heavy, well marked. In the subgenus Thetomys there is a clear and quite large cusp present in front of the anterior lamina of M.r. But this is too variable a character for the group to be given generic rank, as has been done, as traces of this often occur elsewhere, not only in other Australian genera, but in Rattus, such as some specimens seen of R. norvegicus; besides, it may be present or absent in Indian Mus (subgenus Leggadilla).

Fur soft. Tail well haired, the hairs more or less concealing the scales. Ear often enlarged. Hindfoot not abnormal, but in some cases more lengthened than is usual. In the subgenus Thetomys, the ear is relatively shorter, and the hindfoot less lengthened than in Pseudomys; but very few specimens bearing measurements are available.

The main constant character separating this genus from Rattus is the specialized condition of the anterior border of the zygomatic plate, which so far as seen never occurs in Rattus, and is very rare in the Rattus section of the subfamily, occurring only in Dasymy's, IIadromys, and sometimes in Aethomys and Thallomys namaquensis. But taken altogether, the skull and molars and external characters of the group seem to be distinct from Rattus and other genera.

Forms seen: auritus, australis, ferculinis, gouldi, gracilicaudatus, higsinsi, lineolatus, minnie, murinus, namus, oralis, praeconis, shortridgei.

## List of Named Formis

Subgenus Pseudomys, Gray

1. PSEUDOMYS AUSTRALIS AL'STRALIs, Gray
2. Proc. Comm. Zool. Soc. London, p. 39.

Liverpool Plains, New South Wales.
Synonym: lineolatus, Gould, 1845 , Proc. Zool. Soc. London, p. 77. Darling Downs, New South Wales.
murimus, Gould, 1845, Proc. Zool. Soc. London, p. 78. Mamoi Plains, New South Wales.
2. PSELDOMIS ACSTRALIS ORAIJS, Themas
1921. Ann. Mag. Nat. Hist, 9, Vlli, p. 621.

Coast of New houth Wales.
3. PSELDOMIS MINNIE MINNIE, Troughton
1932. Rec. Austral. Mus. XVIII, p. 287.

Minnie Downs, north-east of S. Australia.
4. PSELDOMISS MINNIE F1 AVESCTNS, Troughton 1936. Mem. Queensland Mus. 11, p. 19.

Barcarolle Station, I 35 miles south of Longreach, (2ueensland.
5. PSELDOMIYS RAWLINNAI: Trousthtort
1932. Rec. Austral. Mus. XVIII, p, 280.

Rawlinna, IV: Australia.
6. PSEUDOMYS AlRITLS, 'Thomas 1910. Ann. Mag. Nat. Hist. S, Vi, p. 607.

Lake Albert, S. Australia.
7. PLELDOMY太 SHORTRIDGFI, Thomas 1907. Proc. Zool. Soc. London, 1906, p. 765.

Woyalina, S.-W. Australia,
8. PSELDOMIS HIGGINSJ, Trouessart 1897. Cat. Mamm. I, p. 473.

Lentishbury, 'l'asmania
Synonym: lewcopus, Higgins \& Petterd, 1882, Pap. Proc. Roy. Soc. Tosmania, p. 17t.

## Subgenus Thetomys, Thomas

9. PSFLDOONYS GRACIIICALDATLS, Gould
10. Proc. Zool. Soc. London, p. 77.

Darling Downs, S. Queensland.
10. PSELDOMIS GOULDII, Waterhouse
1839. Zool. Voy. Beagle, 1, Mamm. p. 67.

New South Wales.
11. PSELDOMYS NANLS, Gould
1858. Proc. Zool. Soc. London, 1857 , p. 243.

Victoria Plains, New South Wales.
12. PSELD(1)AIS PRAE(ONIS, Thomas
1910. Ann. Mag. N゙at. Hist. S, VI, p. 608.

Shark's Bay, W. Australia.
13. PSELDOAIYS FERCLIANLS, Thomas
1902. Ann. Mag. Nat Hist. 7, X, P. 491.

Barrow Island, W. Australia.

Genus 42. APOMIYS, Mearns
1905. Afomys, Mearns, l'roc. U.S. Nat. Mus. XXVIII, p. $455^{\circ}$

Type Spferfs.-.Apomy's hylocoetes, Vearns.

Range.-Philippine Islands.
Number of Forms.-Nine.
Characters.-Molars exactly as in Melomys, third molar reduced in a similar manner; cusps obliterated; last lamina of M. i broad.
Mammae $0-2=4$, as in Melomys. Skull like that of Paramelomys, also showing some approximation to the Rattus verecundus group. Size rather small; foot longer than is usual; tail as Rattus. The genus connects Melomys with Rattus so closely that probably both Apomys and Melomys should be referred to Rattus. The palate is a little longer posteriorly than in Melomys. In the genus I include Rattus datae, which cranially and dentally seems indistinguishable from $A$. insignis. 'The zygomatic plate is straight anteriorly.

Forms seen: datae, insignis.

## List of Named Forms

1. APOMYS DATAE, Meyer
2. Abh. Mus. Dresden, VII, 7, p. 25.

Lepanto, N. Luzon, Philippine Islands.
2. APOMYS BENGUETENSIS, Hollister
1913. Proc. U.S. Nat. Mus. XLVI, p. 323.

Benguet, Luzon, Philippines.
(Described as near datae.)
3. APOMYS HYLOCOETES, Mearns
1905. Proc. U.S. Nat. Mus. XXVIII, p. 456.

Mt. Apo, S. Mindanao, Philippines.
4. APOMIYS INSIGNIS INSIGNIS, Mearns
1905. Proc. U.S. Nat. Mus. XXVIII, p. 459.

Mt. Apo, S. Mindanao, Philippines.
5. APOMYS INSIGNIS BARDUS, Miller
191. Proc. U.S. Nat. Mus. XXXVIII, p. 402.

Mt. Bliss, Mindanao, Philippines.
6. APOMYS PETRAEUS, Mearns
1905. Proc. U.S. Nat. Mus. XXVIII, p. 458.

Mt. Apo, Mindanao, Philippines.
7. APOMY'S MAJOR, Miller
1911. Proc. U.S. Nat. Mus. XXXVIII, p. 402.

Mt. Santo Tomas, Baguio, Benguet, Luzon, Philippines.
8. APOMYS MUSCULUS, Miller
1911. Proc. U.S. Nat. Mus. NXXVIII, p. 403.

Baguio, Benguet, Luzon, Philippines.
9. APOMYS MICRODON, Hollister
1913. Proc. U.S. Nat. Mus. XLVI, p. 327.

Biga, Cataduanes, Philippines.
8-Living Rodents-II

Genus 43. MELOMIS, Thomas
1922. Melonys, Thomas, Ann. Mag. Nat. Hist. 9, IX, p. 261.
1936. Pogonomelomy's, Rümmler, Zeitschr. für Säugetierk. 11, p. 248. (Melomys maveri, Rothschild \& Dollman.)
1936. Paramelomys, Rümmler, Zeitschr. für Säugetierk, 1I, p. 2.48. (Uromys levipes, Thomas.) Valid as a subgenus.
1922. Solomys, Thomas, Ann. Mag. Nat. Hist. 9, 1X, p. 261. (Uromys sapientis, Thomas.) Valid as a subgenus.
1935. Unicomys, Troughton, Rec. Austral. Mus. XIX, 4, p. 259. (Unicomy's ponceleti, Troughton.) Not seen. (=Solomy's, fide Rümmler.)

Type Species.-Uromy's mifescens, Alston.
Ravge.-Australasian: Talaud Island, Obi 1sland, New Guinea, Ceram, Solomon Islands; Queensland, Northern Territory (Australia), Melville Island.

Number of Forms.- As here understood the genus contains about fiftythree forms.

Characters.-Before dealing with the characters, a few remarks are necessary on the status of the Lromys genera, from which genus the present group was originally divided, and the several subgeneric or generic names which have been given to forms included in the series. The genus Lromys was erected by Peters, with a short note to the effect that it was very closely related to "Mus" ( - Rattus, this about the clearest part of the genus diagnosis), but differed in the seales of the tail not being similar, and the skull, which had small bullae and small incisive foramina. While this is true for typical Uromys, a host of smaller intermediate forms have been described, referred firstly to Lromys and then to the present genus, in which the bullae are certainly not smaller than in some Rattus, nor are the incisive foramina.

Flower $\mathbb{E}$ Lydekker summarized Lromys by saying that it was like . Ins, but the "scales of the tail not overlapping, but set edge to edge, so as to form a sort of mosaic work." But this character though it may be constant in Melomys, is certainly not unknown in Rattus, the complex-toothed $R$. mativittatus for instance being quite as in Lromys so far as its tail structure shows; and I am not persuaded that this character alone will not have intermediate forms, both in Rattus, and apparently to a certain degree within Melomys. As regards dentition, Tate states that "an attempt has been made to choose some definite characters for distinguishing the Lromss Rats from the Rattus Rats, but the results are disappointing, as the two groups overlap in almost every character ... in no characters of the tecth is the demarcation between the two sets of genera absolute." It appears therefore that Melomys is not distinguishable from Rattus except on average characters, and that Liromys is very closely connected with Rattus through Melomys, and, that bearing this in mind, the fewer genera admitted in this branch of the subfamily the better. It may be noted that whereas the tail of lromys is strictly naked in all cases, it is not so in Melomys; Tate shows that several forms of Mclomys retain three hairs per scale
(moncktoni and mayeri quoted, p. 590, also muscalis, lutillus and sevia), which is frequently the case in Rattus).

Rümmler in his revision of the genus states that Melomys is just as nearly allied to Rattus and "Stenomys" as to Uromys, but gives no detailed generic characters.
" 'l'he palate ridges, where known, consist of five or six interdental ridges, as well as simple predental ridges" (Thomas; compare Uromy's). Lower incisors not deep in proportion to their breadth. Rostrum rather heavy. Zygomatic plate with anterior border slightly cut back above. Supraorbital ridges weak or absent; braincase usually rather broader than Uromy's. Back of palate sometimes broadened, terminating about at posterior part of M.3, or slightly in front of it. The dentition is of the Uromys type, strictly simple throughout life apparently; the cusps on each lamina fuse together, and in no case, so far as examined, are clearly marked. $\mathbf{~ M . 3}$ is strongly reduced, and with wear sometimes becomes simple ring-shaped. M.i appears four-rooted in a few specimens examined. Lower molars with the terminal heel of M.i and M.2 large, sometimes nearly appearing as an extra lamina; there is a tendency for the front lamina of lower M.i to be strongly reduced, or even to disappear. The breadth of the posterior lamina in M. (upper series) in many specimens suggests that in this tooth the posterointernal cusp is not fully suppressed. The bullae normally are strongly reduced.

Feet, in the typical subgenus, of Uromys type, rather heavy, with D. 5 relatively long; arboreal in appearance. Tail usually as in Uromys; but, as indicated above, the hairiness is in some forms more apparent than in the majority, in which the tail is mostly naked. Size always smaller than Uromys.
"Pogonomelomys" was based, as a subgenus, on those forms in which the scales of the tail are six-sided, and the molars slightly narrowed; but slightly narrowed or slightly broadened molars will occur side by side in any large genus. The character of the "six-sided" as against "four-sided" tail scales is altogether too slight for subgeneric recognition. It must be noted that in Tate's figures, mollis and lutillus both appear to have the scales more or less six-sided, as well as mayeri. Yet according to Rümmler, lutillus is a Melomys s.s., mollis a Paramelomy's, and mayeri a Pogonomelomys.

Paramelomys differs from true Melomys in the longer, more pointed rostrum (becoming transitionary towards Apomys), with nasals projecting more anteriorly; the hindfoot is long and narrow, though with the usual arrangement of digits. It should perhaps be regarded as a specific group rather than as a subgenus. So far as scen, M. 3 is usually ringshaped in adult, in this group.

Solomys has rather large bullae (for the genus); the size is larger than in Melomys and Paramelomys (about 250 head and body) (ponceleti to 330, according to Rümmler); the anterior zygomatic plate is nearly straight, the supraorbital ridges quite well developed; small squamosal crests are suggested in the few skulls seen; palate length and lower incisors agreeing with Melomys rather than Lromys. Rümmler refers this to Melomy's as a subgenus, though Tate is inclined to regard it as a subgenus of Uromys. It does not seem quite typical in either, and in many characters is intermediate between the two.

So far as known, the mammary formula of Melomys is $0-2=+$.
Forms seen: aerosus, arcium, arfakiamus, arfakiensis, australis, banficldi, bruinnii, calidior, caurinus, cerzinipes, clarus, dollmani, chorens, fraterculus, fulgens, fuscus, gracilis, intcrmedius, lanosus, lexipes, lorentzii, lutillus, meyeri, mecki, melicus, mollis, moncktoni, murimus, muscalis, naso, obiensis, porculus, platyops, rattoides, rubex, rubricola, rufescens, rutilus, sapientis, shazmayeri, stalkeri, talaudium.

In some forms of Mclomys the toothrow appears to be longer than is usual in Rattus.

In the sulgenus Melomys (including "Pogonomelomys"), M. porculus stands apart from the others on account of its large size (head and body 220).

The narrow-toothed forms referred by Rümmler to Pogonomelomys are listed below as bruijnii group.

List of \amed Formis
(The classification of Rümmler, 1936 , is followed in part.)
Subgenus Paramelomys, Rümmler

1. MELOMYS AEROSL'S, Thomas
2. Ann. Mag. Nat. Hist. 9, VI, p. 428.

Mt. Manusela, Ceram.
2. MELOMIYS LEVIPES LEVIPES, Thomas
1897. Ann. Mus. Civ. Stor. Nat. Genova, 2, XVIII, p. 617.

Haveri, British New Guinea.
3. MELOAIYS LEVIPES LORENTZII, Jentink 1908. Nova Guinea, 9, p. 8.

Rest Camp, yoo m., Noord River, Dutch New Guinea.
Synonym: naso, Thomas, 1911 , Ann. Mag. Nat. Hist. 8, VII, p. 386. Kafari Rıver, S.-W. New Guinea.

+ NIELOMYS LIEVIPES RATTOIDES, Thomas 1922. Ann. Mag. Nat. Hist. 9, IX, p. 263.

Mamberano River, Dutch New Guinea.
5. BELOAIS LEVIPES ARFAKIANLS, Rummler
1935. Zeitschr. für Säugetierk. 10, p. 107.

Arfak Mountains, Dutch New Guinea.
6. MELONIYS LEVIPES WEYLANDI, Rummier
1935. Zeitschr. für Säugetierk. 10, p. 107.

Kunupi, Weyland Range, Dutch New Guinea.
7. MELONIS LIEVPES (LARAE, Rummier
1935. Zeitschr. für Wäugetierk. 10, p. 10\$.

Sumuri, Weyland Range, Dutch New Guinca.
8. Melomys Lhitipes mollis, Thomas
ret 3. Ann. Mag. Nat. Hist. S, XiI, p. 2 ro.
Utakwa River, Dutch New Gumea.

1) MELOAYS LIEVIPES ME1K1, Rummer
1935. Zeitschr. für Säugetierk. 10, p. 108.

Ilead of Aroa River. British New Gumea.
10. MELOMY'S LEVIPES STEVENSI, Rümmler 1935. Zeitschr. für Säugeticrk. 10, p. 109.

Morobe, Mt. Misim, E. New Guinea.
11. MELOMYS LEVIPES SHAWMAYERI, Rümmler 1935. Zeitschr. für Säugetierk. 10, p. 109. Buntibasa district, Kratke Mountains, New Guinea.
12. MELOMY'S LEVIPES LANOSUS, Thomas 1922. Ann. Mag. Nat. Hist. 9, IX, p. 263.

Doormanpadbivak, Mamberano River, Dutch New Guinea.
13. MELOMI'S MONCKTONI MONCKTON1, Thomas 1904. Ann. Mag. Nat. Hist. 7, X1V, p. 399.
N.-E. British New Guinea.

Synonym: platyops, Thomas, 1906, Ann. Mag. Nat. Hist. 7, XVII, p. 327. Head of Aroa River.
14. MELOMYS MONCETONI INTERMEDIUS, Rümmer 1935. Zeitschr. für Säugetierk. 10, p. 110.

Camp 3, Utakwa River, Dutch New Guinea.
15. MELOMY゙S MONCKTONI FLSCUS, Rümmler 1935. Zeitschr. für Säugetierk. 10, p. IIO.

Prauwen-bivak, Idenburg Range, New Guinea.
16. MELOMYS MONCKTONI ARFAKIENSIS, Rümmler 1935. Zeitschr, für Säugetierk. 10, p. III.

Arfak Mountains, Dutch New Guinea.
17. MELOMYS MONCKTONI STEINI, Rummler 1935. Zeitschr. für Säugetierk. 10, p. III.

Sumuri, Weyland Range, Dutch New Guinea.
18. MELOMYS MONCKTONI SHAWI, Tate \& Archbold 1935. Amer. Mus. Nov. 803, p. 2.

Weyland Range, Dutch New Guinea.
19. MELOMY'S MONCKTONI RETILLS, Rümmler 1935. Zeitschr. für Säugetierk. 10, p. 112.

Utakwa River, Camp 9, Dutch New Guinea.
20. MELOMYS MONCKTONI TAFA, Tate \& Archbold 1935. Amer. Mus. Nov. 803, p. i.

Mt. Tafa, British New Guinea.
21. MELOMYS MONCKTONi ALLENI, Rümmler 1935. Zeitschr. für Säugetierk. Io, p. 112 .

Morobe, Mt. Misim, E. New Guinea.
22. MELOMY'S MONCKTONI CLARL'S, Rummler 1935. Zeitschr. für Säugetierk. 10, p. 113 .

Buntibasa district, Kratke Mountains, New Guinea.
23. MELOMY'S MONCKTONI STRESEMANNI, Rümmler 1935. Zeitschr. für Säugetierk. 10, p. 113 .

Kulungtufu, Saruwaged Range, New Guinea.
24. MELOMY'S MONCKTONI POIIIEI, Rummer
1935. Zeitschr. für Säugetierk. 10, p. 114 .

Hunstein Mountains, New Guinea.
25. NELOMIS MONCKTONI RLBLX, 'Thomas 1022. Ann. Mag. Nat. Hist. 9, IX, p. 263.

Doormanpadbivak, Mamberano River, Dutch New Guinea.
26. NELONIS MIONCKTONI JOBIENSIS. Rummber 1935. Zeitschr. für Säugetierk. 10, p. 114 .

Mountains of Japen Island, New Guinea.

> Subgenus Melomys, 'Thomas
> porculus (iroup
27. NLLLOMYS PORCLLLS, Thomas 1904. Ann. Mag. Nat. IIist. 7, XN, p. 400.

Aola, Guadalcanar, Solomon Islands.
cemimipes (iroup)
28. MELOMVS LUTLLLLS FUTHLILS, Thomas 1913. Ann, Mag. Nat. Hist, S, XII, p. 216.

Angabunga River, S.-E. New Guinea.
20. MH1.OMIS LLTHLLIS MLSCALIS, Thomas 1913. Ann. Mag. Nat. Hist. 8, XII, p. 217.

Fly River, S . New Guinea.
30. MELOMVS LLT1LIU\& H1NTONI, Rummet 1935. Zeitschr. für Säugetierk. 10, p. Io6.

Lake Sentani, New Guinea.
31. MELOMIS LLTHLLL $\rightarrow$ MLRINLS, Thomas 1913. Ann. Mag, Nat. Hist. S, XII, p. 216.

Murray Island, Torres Straits.
32. MELOMIY: LLTTLLL $\$$ ALSTRALIL $\&$, Thomas 1924. Ann. Mag. Nat. Hist. 9, XIII, p. 298.

Prara, Cape York, N. Queensland.
 1877. Proc. \%oul. Suc. London, P. 124 .

Duke of Iork Island, between New Britain and New Ireland.
Symonym: stalkeri, Thomas, 1004 , Ann. Mag. Nitt. Hist. 7, XIV, p. 202. Gira River, Britısh New Guincal.
stalkeri calidior, Thomas, 1911, Amm. Mag. Niat. Hist. S, VII, F. 387 . Amika River, Dutch New Gumea.
muscrora, Ramsay, tí77, Proc. Imn. Aoc. N. S. Wales, II p. 16. Duke of York Island.
sexplicatus, Jentink, 1907, Nova Gumea, 5, P. 366. Sentani Lake, New Guinea.
bougainville, Troughton, 1936, Ree, Austr. Mus. 19, p. 344. Buir distrtet of Bouganville, Solomon Islands.

```
    34. MEEONIYS RUFESCENS GRAClLIS, Thomas
mgoh. Ann. Mag. Nat. Hist. 7, XVII, p. 328.
            Angabunga Rwer, S.-E. New Guinea.
    *5. N1FLONIYS RLFESCENS DOLLAIAN1, Rummler
1935. Zeitschr. für Säugetierk. 10, p. IO6.
                        Buntibasa district, Kratkc Mountains, N'ew Gumea.
```

36. MELOMYS LEUCOGASTER LEUCOGASTER, Jentink 1908. Nova Guinea, 9, p. 9.

Alkmaar, Noord River, Dutch New Guinea.
Synonym: latipes, Tate \& Archbold, 1935, Amer. Mus. Nov. 803, p. 3. Baroka, Central disttict, Papua.
37. MELOMYS LEUCOGASTER ARCIUM, Thomas
1913. Ann. Mag. Nat. Hist. 8, XII, p. 214.

Russell Island, Louisdale Archipelago.
38. MELOMYS LEUCOGASTER FLLGENS, Thomas
1920. Ann. Mag. Nat. Ilist. 9, VI, p. 726.

Teloeti Bay, Ceram.
39. MELOMYS LELCOGASTER TALAUDIUMI, Thomas 1921. Treubia, II, p. 112.

Liroeng, Talaud Islands.
40. MELOMYS LEUCOGASTER CALRINLS, Thomas
1921. Treubia, II, p. 112.

Talaud Islands, between Gilolo and Mindanao.
41. MELOMYS OBIENSIS, Thomas
1911. Ann. Mag. Nat. Hist. 8, VII, p. 208.

Obi Island, Moluccas.
42. MELOMY'S CERVINIPES CERVINIPES, Gould
1852. Mamm. Austr. pt. IV, vol. HII, pI. XIV.

Stradbroke Island, Moreton Bay, S. Queensland.
Synonym: (?) mixtus, Troughton, 1935. Rec. Austral. Mus. XIX, 4, p. 257. Groote Eylandt, Gulf of Carpentaria.
43. MELOMIS CERVINIPES LITTORALIS, Lönnberg
1916. K. Svenska Vet. Akad. Handl. Stockholm, 52, 2, p. 5.

Russell River, N. Queensland.
Synonym: littoralis insulae, Troughton \& Le Socuf, 1929, Austr. Zool. V1, p. 96. Hinchinbrook Island, N. Queensland. cervinipes pallidus, Troughton \& Le Soeuf, 1929, Austr. Zool. VI, p. 97. Hinchinbrook Island, N. Queensland. limicauda, Troughton, 1935, Rec. Austral. Mus. XIX. 4, p. 255. Hayman Island, Whitsunday Group, ㅊ. Queensland.
4. MeLomys cervinipes melicus, Thomas
1913. Ann. Mag. Nat. Ilist. 8, XII, p. 215.

Melville Island, N. Australia.
45. MELOMYS CERIINIPES BANFIELDI, de Vis 1907. Ann. Queensland Mus. VII, p. 8.

Dunk Island, Queensland.
46. MELOMIYS CERIINIPES FBOREL'S, Thomas
1924. Ann. Mag. Nat. Hist. 9, XIII, p. 297.

Ravenshoe, N. Queensland.
47. MELOMYS CERVINIPES RLBICOLA, Thomas 1924. Ann. Mag. Nat. Hist. 9, XillI, p. 298.

Bramble Key, Torres Straits, N. Australia.
bruijnii Group
t*. MELOMY's MAYERI, Rothschild \& Dolman 1933. Proc. Zool. Soc. London, p. 214.

The Gebroeders, Weyland Range, Dutch New Guinea.
t! Dllidomys BRUIJNH, Peters \& Doria
1876. Ann. Mus. Civ. Stor. Nat. Genova, VIII, p. 336. Salawatti, New Guinea.
50. MELOONYS SEVIA, Tate \& Archbold
1935. Amer. Mus. Nov: So3, p. 3.

Cromwell Mountains, Mandated Territory, New Guinea.
51. MELOMIYS FRATERCLLE'S, Thomas
1920. Ann. Mlag. Nat. Hist. 9, VI, p. 428.

Ilt. Manusela, Ceram.

## Subgenus Solomys, Thomas

52. MELOMIS SAPIENTIS, Thomas
53. Ann. Mag. Nat. Hist. 7, IX, p. 446.

Solomon Islands.
Synonym: salcbrosus, Troughton, 1936, Rec. Austr. Mus. 19, p. 346. Bougainville Island, Solomons.
According to Tate, this species should be known as salamomis, Ramsay, 1883, Proc. Linn. Soc. New South Wales, V11, p. 43. Solomon Islands; sce also remarks under Uromys, no. 10. This name should be regarded as unidentifiable.
53. NIELONVS PONCELETI, Troughton
1935. Rec. Austral, Mus, XIX, no. 4, p, 260. Bougainville, Solomon 1slands.

## Genus 44. UROMYS, Peters

1867. Uromys, Peters, Monatsb. K. Preuss. Akad. Wiss. Berlin, p. 343.
1868. Grimomiss, Gray, Proc. Zool. Soc. London, p. 597.

19ro. Cyromys, Thomas, Ann. Mag. Nat. Hist. 8, V1, p. 507. (Mus imperator, Thomas.)
'T’ype Species.-Mus macropus, Gray = Hapalotis caudimaculatus, Krefft.
Rangf.-Australasian : New Guinea, Waigeu Island, Solomon Islands, New Britain, Aru lslands, Kei Islands, Queensland.
Number of Forms.-Ten are recognized by Rümmler.
Charactars.- Uromys as restricted by Thomas contains the larger species of the group. The skull is as a rule not unlike that of larger species of Rattus. 'The supraorbital ridges are, however, very weak in proportion to the size of the animal. 'The braincase relatively narrow. Anterior portion of zygomatic plate slightly cut back above. Zygoma normal, with short jugal; rostrum moderate. Sometimes the frontal region shows signs of inflation. Posterior part of palate broad, ending just behind N.3. Bullae very small
indeed in all cases, so far as seen (9 per cent or 10 per cent of occipitonasal length, or perhaps less). Incisive foramina situated far in front of toothrows and strongly shortened (constant in all forms seen). "Palate ridges where known twelve or more, besides the usual predental ones" (Thomas; it may be noted that Tullberg gives three anterior, five posterior ridges for Rattus rattus and R. norvegicus). Lower incisors deep in proportion to their breadth.

Molars of all seen strictly simple, the cusps obsolete and merged into each other on each lamina; the laminae, however, are curved to a degree. Even in very young specimens, more or less cutting, the cusps are not much more developed than in adult. M. 3 reduced. Lower molars with large terminal heel present in M.1 and M1.2. The anterior lamina of first lower molar usually narrowed and reduced. M.i appears three-rooted, or four-rooted in one case. M. i originally with traces of what might be taken as a vestigial posterointernal cusp, as in Melomys. 'l"ate suggested that "Cyromys" may be synonymized with Uromys; and Rümmler has synonymized it. This classification appears correct. Small squamosal crests are suggested in the species (imperator and rex) referred to the group by Thomas. In U. neobritannicus (not seen), as figured by Tate, there are large well-developed squamosal processes.

Nammae $0-2=4$. Externally large, to 355 mm . head and body length. Claws large; feet of all species seen of arboreal type, heavy and broad, with D. 5 hindfoot relatively long. D. 4 sometimes slightly longer than D.3. 'Tail almost entirely devoid of hair, and the scales not overlapping, but always of mosaic pattern so far as seen.

Three groups might be recognized in this genus (basing the classification on that of Rümmler):
ncobritannicus group, with squamosal crests well developed (very large form).
caudimaculatus group, without squamosal crests, ears longer (Rümmler), colour of back brown; anak (larger), and caudimaculatus (smaller).
imperator group, without large squamosal crests; ears shorter (Rümmler); colour of back grey; imperator (larger), and rex (smaller).
Forms seen: anak, aruensis, ductor, imperator, macropus, multiplicatus, nero, prolixus, rex, rothschildi, scaphax, sherrini, siebersi, zalidus.

## List of Named Forms <br> neobritannicus Group

1. LROMY'S NEOIBRITANNICLS, 'Tate \& Archbold 1935. Amer. Mus. Nov. 8o3, p. 4.

New Britain.

## candimaculatus Group

2. L'ROMI'S ANAK゙, Thomas
3. Ann. Mag. Nat, Hist. 7, XX, p. 72.

Ifogi, Brown River, N.-E. New Guinea.
Synonym: rothschildi, Thomas, 1912, Nov, Zool. NIX, p. 91. Rawlinson Mountains, Iuon Peninsula, New Guinea.

3．LTRONIS CALDIMACULATUS CALDIMACULATUS，Krefft
1867．Proc．Zool．Soc．London，p． 316.
Cape York，N．Queensland．
Synonym：macropus，Gray，i866，Proc．Zool．Soc．London，p．22I， Port Albany，Cape Vork．Not of Hodgson．
exilis，Troughton \＆Le Soeuf，1929，Austral．ZooI．VI，p． 98．Hinchinbrook Island，N．Queensland．
4．UROMIS CALDIMACLLATL＇VAL．IDL - Peters $\&$ Dorra
t内人if．Ann．Mus，Civ．Stor，Nat．Geneva，1，XVI，p．7oz．
Katau River，New Guinta．
Synonỵn：papuamus，Mever，tifo，Ann．Mag．Nat．Hist．XVII，p． 145．（nom．nud．）．
multiplicatus，Jentınk，1007，Nora Guinea，5，p． 367. Sentani Lake，New Guinea．
waigeuensis，Frechkop，1932，BuII．Mus．R．Hist．Nat．Belge， 8，no．28，p．il．Waigiou．
nero，Thontas 1913，Ann．Mag．Nat．Hist．S，N11，p． 208. Camp 3，Utakwa River，Dutch New Guinea．
scaphax，Thomas，1913，Ann．Mag．Nat．Hist．8，X11，p． 209．Lower Setakwa River，Dutch New Guinea．
prolixus，Thomas，1913．Ann．Mag．Nat．Ilist．S，XII， p． 21 3．Haveri，British New Guinea．
5．LROMIS CALDINACLIATL：BARBATC゙ヶ，MIne－Edwards
1900．Bull．Mus．Paris，V1，p． 167.
Aroa River，New Guinea．
Synunym：ductor，Thomas，1913，Ann．Mag．Nat．Hist．8，X11，p． 213. Avera，Aroa River，British New Guinea．
6．LR（）NIY（ALDIALACLLATLS SHERRINI，Thomas
1923．Ann．Nag．Nat．Hist．9，II，p． 171.
Ravenshoe，N．Queensland．
7．EROMIS CALDIMACLLATLS ARLENSAS，Gray
1873．Ann．Mag．Nat．Hist．4，XII，p． 418.
Aru Islands．
8．LROAIV CALDIMACULATLA SIEBERSI，Thomas
Ig23．Treubia，III，p．422．
Gunung Daab，Great Kiei，K゙ei Islands．

## imperatur Group

4．LROMIY：IAIPERATOR，Thomas
1888．Ann．Mag．Nat．Hist．6，I，p． 157.
AoIa，Guadalcanar，solomon IsIands．
10．LROMIY：REX，Thomas
1888．Ann．Nag．Nat．Hist．6，I，p． 157.
Aola，Guadalcanar，Solomon Islands．
According to Rümmler this species should be known as salamonis， Ramsay， 1883 ，Proc．Linn．Soc．N．S．Wales，VII，p．43．See remarks under Ielomys，number 52 ．

> Genus 45. COLLOXIVS, Thomas

1915．Coelomys，Thomas，Journ．Bombay Nat．Hist．Soc．XXilli，p． 414.
Type Species，－Coelomys mayori，Thomas．

Range.--Ceylon.
Number of Forms.-Two.
Characters.-This genus appears to me to be generically separable from Rattus on account of its very strongly reduced $\mathrm{NI}_{3}$, though it may be that certain species of Rattus might overlap it. Skull with little interorbital constriction, rather long rostrum and heavy braincase, very weak supraorbital ridges, not unlike that of Rattus verecundus group; zygomatic plate cut back above. Bullae rather small. Palatal foramina relatively long. The pattern of the upper molars is moderately simplified, and not unlike that of many Rattus; but M. 3 is nearly vestigial, more reduced than in some Mus, often scarcely larger than the small posterior lamina of M.2. The anterointernal cusp of M.1 shows no signs of excessive inward distortion. Lower teeth not abnormal; M. 3 very small. Externally with no special peculiarities; head and body roughly 100 mm .

Forms seen: mayori, bicolor
List of Named Forms

1. COELOMYS MAYOR1, Thomas
2. Journ. Bombay Nat. Hist. Soc. NXIII, p. 415. Pattipola, Highlands of Central Ceylon.
3. COELOMY'S BICOLOR, Thomas
4. Journ. Bombay Nat. Hist. Soc. XXIV, p. 49. Kottawa, S. Province, Ceylon.

## Genus q. MALACOMY'S, Milne-Edwards $^{6}$

1877. Malacomys, Milne-Edwards, Bull. Soc. Philom. Paris, 6, VII, pt. 2, p. 10.

Type Species.-Malacomys longipes, Milne-Edwards.
Range.-Central and Western Africa: Liberia; Gaboon, Congo.
Number of Forms.-Four.
Characters.-Skull long and narrow, with long rostrum. Braincase not much wider than rostrum; interorbital constriction little
marked. Supraorbital ridges barely traceable. Zygomatic plate not narrowed, slightly cut back above. Incisive foramina short, well open, usually not approaching toothrow. Bullae small. Toothrows strongly reduced. M.ı threerooted. Cheekteeth not essentially different from a specialized Rattus; in adult the cusps of each lamina merge into one another; teeth narrow; Nl .3 moderately reduced. M.r with eight cusps; M. 2 with six. Lower teeth not abnormal; terminal heel of M1.1 and M. 2 well developed. Cusps usually obsolete in adult.

Mammae $1-2=6$. Ear large. Tail long, poorly haired, almost naked in some specimens. Hindfoot narrow, rather long, but so far as ascertainable less lengthened than in Colomy's (twenty-six specimens average hindfoot 24.68 per cent of head and body length); D. 5 quite long; hallux longer than is normal; metatarsals with the same peculiarity as those of Colomys.

This genus appears to be closely allied to Rattus; it is probable, though not certain, that the character of the metatarsals does not occur in Rattus. 'The toothrow is considerably shortened; averaging $1+8$ per cent of the condylobasal length in a few specimens measured, which is usually, but not always, under the measurement for Rattus. The highest are over 15 per cent; the lowest, a specimen of cdwardsi, is only 12.6 per cent, an unusually low measurement, overlapping Macruromys.
'Two species are recognized by Hayman, the type, and edwardsi, which has a considerably narrower interorbital region.

Forms seen: centralis, edwardsi, tongipes, wilsoni.

## List of Named Forms

1. MALACOMI'S LONGIPES LONGiPles, Milne-Edwards
2. Bull. Soc. Philom. Paris, 6, XIII, p. 9.

Gabon, W. Africa.
2. MALACOMIY'S LONGIPES CENTRAIJS, de Wintm
180)7. Ann. Mag. Nat. Hist. 6, NIN, p. 465.

Tingası, Monbuttu, N.-E. Congo.
3. MALACOMIYS LONGIPES WILAON1. Thomas
1916. Amn. Mag. Nat. Hist. 8, XVItI, p. 238.

Inkongo, Sankuru River, Belgian Congo.
4. MALACOMYS EDIVARDSI, Rochebrune
1885. Bull. Soc. Philom, Paris, 7, 1N, p. 87.

River Mellacore, Liberta.
Genus 47. HAEROMYS, Thomas
1911. Haeromys, Thomas, Ann. Mag. Nat. Hist. 8, V1I, p. 207.

Type Species.-Mus margarettue, Thomas.
Range.-Borneo and Celebes.
Number of Forms.-Three.
Charactrrs.-Pygmy Mice, with the hallux said to he opposable (though its claw is not entircly suppressed); described by Thomas as like Chiropodomys, but lacking the posterointernal cusp. Braincase very broad and round. Kostrum relatively short. Anterior zygomatic plate straight. Bullae not large. Teeth evidently not abnormal. 'Toothrow rather short; incisive foramina not long. Feet arboreal; the claw of the hallux is becoming very small; D. 5 nearly as long as D.2. Nammae $\mathrm{I}-2=6$ (type species). Hindfoot averaging about 27 per cent head and body length, so far as ascertainable. Head and body, so far as known, not exceeding 77 mm .

Forms scen: margarettae, minalussed, pusillus.

## List af Named loorms

1. HAEROAFS MARCAARF'TAA M.AR (r,ARLD"FAE, Fhomas
2. tnn. Nar, Nat. Hist. G, NI, p. 34f.

Pentisen Mills, Sarawak, Borneo.
2. HAEROMY'S MARGARETTAE PUSILLUS; Thomas
1893. Ann. Mag. Nat. Hist. 6, XII, p. 232.

Mt. Kina Balu, N. Borneo.
3. HAEROMIS MINAHASSAE, Thomas
1896. Ann. Mag. Nat. Hist. 6, XVIII, p. 247.

Rurukan, Minahassa, N. Celebes.
Tate suggests that the genus may be an offshoot of the Rattus cremorizenter group; but the species are so very much smaller than any Indo-Malayan Rattus that this seems questionable; Haeromy's must be one of the smallest members of the whole Order.

Genus 48. CHIROMYSCUS, Thomas
1925. Chiromyscus, Thomas, Proc. Zool. Soc. London, p. 503.

Type Species.-Mus chiropus, Thomas.
Range.-Burma, Annam.
Number of Forms.-One.
Characters.-Like Rattus, but hindfoot with hallux clawless, and fully and widely opposable. Supraorbital ridges strong; braincase broad; bullae small; palatal foramina long; zygomatic plate more or less straight anteriorly; interparietal much enlarged. Dentition like that of a moderately simple-toothed Rattus; M .3 is reduced. Hindfoot with large digit pads, D. 5 moderately long, and hallux as described above. Tail relatively well-haired, faintly pencilled, longer than head and body. Fur bristly. Head and body up to 160 mm . (in our material).

The genus was included in Haeromys by Wroughton, in the Indian Nammal Survey, but docs not appear to be allied to that group of Pygmy Mice, and when fresh specimens were obtained in 1925, Thomas formed a new genus for the species. The hallux appears as fully specialized as in Hapalomys, Chiropodomys and others; I have never seen this character fully developed in any species of Rattus, though it is likely that in some of these the hallux will be partly opposable. The mammary formula in Chiromyscus is $2-2=8$ (Osgood).

Forms seen: chiropus.

> List of Named Formis

1. CHIROMYSCU'S CHIROPC'S, Thomas
2. Ann. Mus. Civ. Stor. Nat. Genova, 2, 1, p. 884. Karin Hills, Burma,

## Genus 49. ZELOTOMIS, Osgood

1910. Zelotontys, Osgood, Field Mus. Nat. Hist. Publ. Zool. ser. X, 2, p. 7.

Type Spectes.-Mus hildegardeae, Thomas.
Range.-African: Kenya, Congo (Uelle region), North Rhodesia, Angola.
Number of Formis.-Five.

Characters.--Skull with considerable interorbital constriction, no supraorbital ridges; brainease rather short; interparietal relatively small. Palatal foramina very long, penetrating between front molars. Bullate medium. Anterior part of zygomatic plate more or less straight, as a rule.

Upper incisors long, strongly pro-odont. Mulars strongly cuspidate, with the outer row well developed, and projecting strongly out wards, and the laminae rather hroad in appearance. M.z about as broad as long, or broader than long. M. 1 longer than M. $2+$ M.3. M. 3 strongly reduced, narrower than M.z. There is no inward distortion of 'T.s in M.I. M.I with eight eusps, M.2 with six. Lower teeth not abnormal; M.3 small. Lower incisor root showing more on outer side of mandible than is usual.

Externally with no special peculiarities; digits normal; tail shorter than head and body; moderately haired; mammae $3-2=10$.

From all allied Ruttus-type or Arricanthis-type Rats from Africa, this genus is well distinguished by its pro-odunt incisors, compared with a rather peculiar dentition which is not easy to define, but quite apparent. From the few species of Rattus with pro-odont incisors (berdmoreigroup) it is distinguished by its more cuspidate, less simple checkteeth pattern, the cusps being in the berdmorei group, so far as ascertainable, much less well marked, the teeth relatively much narrower, the general effect simpler, and the thothrow relatively considerahly shorter (14-16 per cent of condylobasal length as against 18 or 19 per cent in Zelotomis).

Forms seen: hildegardeae, instans, kuzelaiensis, shortridgei.
The species are very closely allicu, and may later be regarded all as races of the type.

## List of Named Forms

1. ZELOTONIYK HILDE $A A R D E A E$ HHLDEGARDEAE, Thomas
igoz. Ann. Mag. Nat. Hist. 7, IX, p. 219.
Machakos, Kenya.
2. ZELOTOMI: HILDEGARDEAE VINACELS, Heller
3. Smiths. Misc. Colf. LIX, no. i6, p. Io.

Ndi, 'Tanta Hills, Kienya.
3. ZELOTOMY'S INSTANS, 'Thomas
1915. Ann. Mar Nat. Hist. 8, NVI, p. 480.

Poko, Epper Welle, Conso.
4. ZLLOTONIS SHORTRIDGFI SHARTRIDGEI, Hinton
1920. Ann. Mar. Nat. Hist. 9. V', p. 242.

Ndola, N. Rhodesia.
5. ZELOTONIY SHORTRHDGEI KLTELAIENSHE, St. Leger
1936. Ann. Mag. Nat. Hist. Io, XV'll, p. 470.

50 km . above Mupa, Kurelai River, Mossamedes, Anцola.
Genus 50. 1IYLENOMIS, Thomas
1925. Hyenomys, Thomas, Amn. Mag. Nat. Hist. 9, XV. p. 667.
'Type Spferfs-IIy/cnomys callezuerti, 'lhomas.

Range.-Described from Lulnabourg, South Congo.
Number of Forms.-One.
Characters.-(One skull only seen.) Infraorbital foramen no wider above than below. Supraorbital ridges very faint. Zygomatic plate less angular than in Mus. Mandible slender, with coronoid process very low, and ascending ramus low. Incisive foramina narrow and very long. Upper cheekteeth as in most specialized species of Mus; T.r in M.r excessively distorted inwards, and M. 3 vestigial. M. 3 lower vestigial.

Tail relatively short; hindfoot narrow, with fifth digit strongly shortened. Head and body 95.

The upper ineisors are pro-odont, though not much lengthened.
Forms seen: callewaerti.

List of Named Formis

1. HYLENOMY'S CALLEWAERT1, Thomas
2. Ann. Mag. Nat. Hist. 9, XV, p. 668.

Luluabourg, Kasai, S. Congo.

Genus 51. MURICULUS, Thomas
1902. Muriculus, Thomas, Proc. Zool. Soc. London, p. 314.

T'ype Species.-Mus imberbis, Rüppell.
Range.-Abyssinia.
Number of Forms.-Two.
Characters.-Like species of Mus with moderately specialized toothrow, but upper incisors strongly pro-odont. Braincase rather broad; zygomatic plate and infraorbital foramen as far as ascertainable not abnormal (one damaged skull seen only); M. 3 has two laminae traceable, and M.i has T.s not extremely distorted inwards. The ascending ramus of the mandible much higher than in Hylenomys. External with no special peculiarities; tail rather short; a faint middorsal stripe can be present.

Thomas regarded the genus as near Lophuromys; but St. Leger places it in the neighbourhood of Mus, where it scems to belong.

Forms seen: imberbis.
List of Named Forms
r. midriculus iniberbis imberbis, Rüppell
1845. Mus. Senckenberg, III, p. IIO.

Simien, Abyssinia.
2. M1'RICULL'S IMBERBIS CIIILALOENSIS, Osgood
1936. Field Mus. Nat. Hist. Publ. Zon!. ser. XX, p. 245.

Mt. Albasso, N.-E. Chilalo Mountains, Arusi, Abyssinia.

## Genus 52. MUS, Linnaeus

1758. NI s, Limacus, syst. Nat. ioth ed. I, p. 59.
1759. Leggada, Gray, Charlesworth's Mag. Nat. Hist. I, p. 586. (1Mus boodugu, Gray.) 1917. 'Taurates, Kluss, Journ. Nat. H1st. Soc. Siam, 11, p. 279. (Tantatus thai, Kloss.)
18,6. Nannomys, Peters, Monatsh. Ki. I'reuss. Akad. Wiss. Berlin, p. tio. (Mfus (Namumys) setulosus, Peters.)
iSoto. P'sEcdoconomys, Rhoads, Proc. Acad. Nat. Sci. Phladelphia, p. 531. (Mus (Pscudoconomys) proconodon, Rhoads.)
1760. Drynomys, 'Tschudi, Fauna Peruana, p. 178. (D. parzulus, Tschud -o Mus musctulus, Linnatus.)
1761. Legcadilla, Thomas, Journ. Bombay Nat. Hist. Soc. XXII, p. 68z. (Mus platythrix, Bennett.) Valid as a subgenus.
'Type Species.- Mus musculus, Linnacus.
RaNge.-Palaearctic (musculus group only): throughout Europe, C'entral Asia, Siberia, most of China, including Mlongolia, Japan; Kashmir, Afghanistan, Persia, Egypt, Morocco.

Indo-Malayan (musculus, booduga and platythix groups): Peninsular India and Ceylon; Sikkim, Nepal, Assam, Burma, Yunnan and Southern China. Siam, Annam. Philippine Islands.
(Races of Mus musculus, perhaps introduced, from Java, Celebes, and other islands; also in Australasian area (New Guinea, etc.).)

African (musculus, triton and minutoides groups): Arabia; Sudan, Abyssinia, Somaliland, Kenya, Tanganyika, Uganda; Gold Coast, Nigeria, Cameroons, Congo, Angola; Mozambique and Southern Africa generally, to Cape Province.

Mus musculus has also been introduced, and gained a footing, in America.
Number of Forms.- About a hundred and thirty.
Characters.-"In general like Epimys (--Rattus), but mechanical scheme of molars modified by clongation of crown of anterior tooth until it forms the main portion of toothrow; M.I with three roots, its crown decidedly longer than those of two succeeding teeth combined, its first lamina much distorted by the displacement backward of T. 1 into line with 'T.5 and T.6; N1.3 small and tending to disappear, in some species without trace of first lamina; upper incisor compressed, set at such an angle that a subapical noteh is normally cut in its outer side by action of lower tooth" (Miller). The genus Mus was originally restricted to the musculus group, and the "Leggadu" species by Miller, on the above characters, and if it is to be retained as distinet from Kattus (which it can be) it must be on these characters of the toothrow. It should be mentioned that I believe in some cases M. 1 may not always be "decidedly longer" than $\mathbf{M . 2}+\mathrm{M} .3$; also that rarely in Rattus this character can be present ; also that rarely, species of Rattus or closely allied genera may have a very reduced M .3 ; but the general effect of the "Mus type" of toothrow is easily recognized. It must also be stated that the genus cannot be based on size, many species of Rattus may be considerably smaller than some of the larger species of M/us.
'The skull is light, usually rather flat, with supraorbital ridges, in the typical subgenus, very faint, or absent; the muzzle is most often rather short; the infraorbital foramen normal. Zygomatic plate not narrowed, and with its upper border cut back above. A small masseter knob usually present for museleattachment on its lower border. Incisive foramina long, usually penetrating between front molars, but not always, as for instance the Indian Mus pahari. Bullae not enlarged, without peculiarities. Pterygoids tending to vary in the different species, rarely highly abnormal, but in the African tenellus and deserti the space bounded by the hamulars is unusually narrow, and the pterygoid fossae are much flattened, the structure comparable to that of Millardia gleadowi. Incisors thin, not pro-odont.

Checkteeth: 'I'. I of M.i much distorted inwards, or distorted to a greater or lesser degree. 'This tooth with eight cusps. M. 2 with usually six cusps, T.r being all that remains of the front lamina, though a small 'T. 3 may appear. N. 3 strongly reduced; in the musculus group and some others traces of two laminae are usually present, but in many forms, particularly the pygmy African minutoides group, the tooth is ring-shaped in adult, and exceedingly small. According to Taylor it may be absent in the Philippine species castaneus (not seen). The anterior root of M. I often points far forwards. In this tooth, T. 4 is usually distorted backwards, as well as 'T.r. The lower molars are without special peculiarities; M. 3 may be minute, particularly in minutoides group.

Externally, small, as a rule under 100 mm . head and body; some Indian and African forms are extremely small, and are probably some of the smallest living Rodents. Tail variable in length in the different species, and in the case of Mus musculus, individually. Hindfoot narrow as a rule, the outer digits tending to be shortened, D. 5 longer than the hallux. Fur may be soft, harsh, or more or less spiny. Mammae $3-2=10$ in the type species.

Leggadilla is proposed as a genus by Thomas, mainly on the grounds of the presence of well-marked supraorbital ridges; but this is a character which is much too variable in other groups to be regarded as of generic value here, and certain species of Mus or "Leggada" may have these ridges faintly present. There is in some forms, or specimens, a well-marked cusp present immediately in front of 'T.2, in M.I; but this character is also variable elsewhere, particularly in Australian genera. The fur may be spiny, as in M. shortridgei, which is about the largest species of the genus (head and body to 120). Nammae $3-2=10$ or $4-2=12$.

As pointed out by Miller, there are no characters which distinguish "Leggada" (tropical species) from Mus (musculus group). Leggada was revived by Thomas on the grounds that the muzzle in the tropical species is usually longer, but he shows that it cannot be taken as constant. "The length of the nasals in Mus is generally about equal to the distance from the external edge of one toothrow to the outer side of the zygoma on the opposite side in Legoada the nasal length generally decidedly surpasses these two distances . . . every individual skull will not answer to each of these tests, but on the whole there is rarely a case where one is doubtful as to which of the two groups a species should be placed in . . . the most doubtful are the short-tailed Nice
knewn ass algirns and spicilegus, which more approach Leggada, and have less of the muscrlus specialization. But on the whole they are best referred to Mus, in whose geographical area they occur."
"Tautatus," Kloss, was erceted for a species from Siam. After reading the original genus description, the amended description published later, and comparing the species with other members of Mrus, I have come to the conclusion that it is an ordinary member of the booduga group. This has already been shown by Osgood, Ficld. Mus. Nat. Ilist. Publ. Zool. ser. XVIII, 1932, p. 314.

Nor in my opinion is there the slightest nced to regard Leggald as anything but a synonym of Mus. Mus and "Legochla" together, as pointed out by Miller many years ago, form a perfectly natural genus.

## Groups

The musculus group, containing all the Palacarctic forms, are as atove indicated rather short-nosed types; the teeth are not extremely specialized, in the manner described above; $\mathrm{Nl}_{3} 3$ is less vestigial than in some pygmy species from the tropics.

Russian authors regard all forms previously regarded as races of spicilegus, zagnoin, bactriamus, cte., as races of musculus, which seems to be correct. Certainly Miller's characters for spicilegus as a distinct species as given in the 'Catalogue of the Nammals of Western Europe,' based on length of tail, do not convince me that this type of Mouse can be regarded as a species; tail length being apparently a highly variable character within musculus. The numerous named races of musculus are here listed without comment; how many of them are valid, and how many are based on slightly abnormal individual house-mice, I am not in a position to say. The last remarks do not apply to the field-dwelling bactrianus-spicilegus members of the group.
The booduga group, containing the Indian forms without clear supraorbital ridges, tend as indicated above to be slightly longer-nosed than in the musculus group. The teeth may be a little more specialized (NI.r more distorted, X1.3 more recluced), though not so in every case. Mus puhari secms to be a distinct species, with shorter palatal foramina than is normal, and a rather gencralized toothrow.
The platyflwix group (subgenus Leggadilla) contains a number of Indian forms foossessing quite well-marked supraorbital ridges; the bodily size becomes largest for the genus; the molars are on the whole least Mus-like of all forms in the genus, M. 3 being never vestigial, and ' 1 '. 1 in M. 1 only moderately distorted.
The bufo group, containing also tritom, from Africa, seem to be rather larger than the majority of the African species of Nus, and X.ı has usually less distortion inwards of the anterointernal cusp. M1.3 is strongly reduced.
The minutoides group, widely distributed in Africa (containing bellus, gratus, musculoides, ctc.), contains as a rule very small forms with very
highly specialized toothrows, the teeth being the most extreme seen in the genus.
The tenellus group is like the last, but apparently with the abnormal pterygoid specialization as described above.
Forms seen: abbotti, algirus, annamensis, azoricus, bactrianus, bahadur, belhus, borealis, booduga, bufo, caroli, cervicolor, cinderella, cooki, "darjilingensis," decolor, deserti, "dubius," dunni, famulus, fernandoni, fors, funcreus, gallarum, gentilis, gcntilulus, gerbillus, gondokorue, grahami, gratus, gurkha, hannyngtoni, haussa, hispanicus, homourus, hortulanus, induta, jacksoniae, jalapae, kusaica, lusitanicus, mahomet, manchu, "manei," marica, minutoides, molossinus, "modestus," mongolium, muralis, murilla, musculoides, musculus, nagarum, ncazei, nitidulus, orientalis, pahari, palnica, pasha, "pachycercus," platythrix, popueus, ramnadensis, sadhu, setulosus, shortridgei, sibylla, sorelhus, spretus, spicilegus, suahclicus, surkha, tencllus, "terricolor," tomensis, triton, umbratus, "urbanus," vicinus, wagneri.

## List of Named Formis

Subgenus Mus, Linnaeus
3. ML'S MUSCLILUS MLSCELUS, Linnaeus
1758. Syst. Nat. 1, roth ed., p. 62.

Upsala, Sweden.
Synonym: minor, Klein, 1751, Quadr. disp., p. 57.
sorex, Brisson, 1762, Regn. Anim., p. IIg.
poschiartinus, Fatio, i 869. Faune. Vert. Suisse, 1, p. 207. Switzerland.
parvulus, Tschudi, 1844, Fauna Peruana, p. 179. Peru.
musculus nudoplicatus, Campbell, 1907, Zoologist, London, ser. 4, 11, p. 1.
simsoni, Higgins \& Petterd, 1883 , Papers Proc. Roy. Soc. Tasmania, 1882, p. 175. Tasmania.
albertisi, Peters \& Doria, i88o, Ann. Mus. Civ. Stor. Nat. Genova, XVI, p. 702. New Guinea.
adelaidensis, Gray, 184 I , Journ. Two Exped. Australia, Grey, II, app. pp. 404, 410. Adelaide.
modestus, Wagner, I $8+2$, Arch. Naturg. I. p. 14. South Africa.
hrevirostris, Waterhouse, 1837, Proc. Zool. Soc. London, p. 19. Uruguay:
(?) musculus jalapae, Allen \& Chapman, i897, Bull. Amer. Mus. Nat. Hist. IX゙, p. 198. Jalapa, Vera Cruz, Mexico. musculus albus, Bechstein, iSor, Gemeinn. Naturgesch. Deutschl. i, 2nd ed., p. 955. Germany. musculus flurus, Bechstein, same reference. musculns mactlatus, Bechstein, same reference. musculus niger, Bechstein, same reference.
musculus striatus, Billherg, Syn. Fauna Scandinaviae, p. 6, 1827. Sweden.
musculus albicans, Billberg, same reference.
musculus nizcus, Billberg, same refcrence.
nusculus helvolus, Fitzinger, Sitz. Ber. Kais. Akad. Wiss. Wien. Math. Nat. Cl. LX1, i, p. 70, 1867.
musctulus varius, Fitzinger, same reference.
(Mus musculus musculus) musculus cincreomaculatus, Fitzinger, same reference.
musculus flavescens, Fischer, Zool. Garten, 1872, X11I, p. 223. Berlin.
zignaudi, Prevost, 1845, Voy. Lefebvre Zool., p. 24. Abyssinia.
orientalis, Cretzchmar, r928, Rüppell Atlas, p. 76, pl. 30, Massawa, Ethiopia. Not of Desmarest, 1819. See G. M. Allen.
(?) practextus, Brants, 1827 , Muizen, p. 125. peruvianus, I'eale, 1848 , U.S. Expl. Exp., p. 5 I.
2. MUS MhsCLLUS JAMESON1, Krausse
1921. Arch. Naturg. Berlin, 87, 6, p. 40.

North Bull Island, Dublin Bay.
3. MUS MLSCLLUS FAEROINSIS, Clarke
1904. Proc. Roy. Phys. Soc. Edinburgh, XV, pt, II, p. 163.

Nolsoe, Faroe Islands.
4. MLS MUSCLILS MURALIS, Barrett-Hamilton
1899. Proc. Zool, Soc. London, p. $\$_{1}$.

St. Kilda, Outer Hebrides, Scotland.
5. MUS ML'SCLLUA AZORICL'S, Schinz
1845. Synops. Mamm. II, p. 161.

Azores Islands, E. Atlantic.
Synonym: mollissimus, Dehne, 1855, Allgem. Deutsche Nat. Zeitschr. Dresden, 1, p. 443. Italy.
6. MUS MUSCLLL'A SLBCARERLLES, Fntsche
1928. Zeitschr. für Säugetierk. 3, p. 307.
N. Germany.
7. NuS Muscllue CAlDatus, Martino 1935. Zap. Russk. Nauch. Inst. Belgrade, io, p. 85.

Bistra Mountains, W. Macedonia, Greece.
8. MLS MUSCLLC's SFRGII, Valch
1927. Trav. Soc. Nat. Charkov, 50, no. 2, p. 49.

Lkraine, S. Russia.
(1) MLS MLSCLLE'S BOREALIS, Oqnes
1924. Rodents of N. Caucasus, p. 52.

Village Upta, Kem subdistrict of Government of Archangelsk.
10. MUS MUSC(LIL'S FLNFRELS, Ognes
1924. Rodents of N. Caucasus, p. 52.

Station Shatilov, Govt. of Tula.
y. MlU's MLES'l'LL'S HORTCLANLS, Nordmann
1840. Archiv. Naturg. 1, p. 330.
N. Caucasus Mountains, Russia.
 1930. Zool. Anz. 89, p. 5.

Daghestan, Caucasus, Russia.

1934. Folia Zool hydrob. 6, p. 23.

25 km . north of Kisljar, N. Caucasus.
14. MUS MUSCULUS TATARICUS, Satunn 1908. Mitt. Ḱaukas Mus. Tiflis, 4, pp. 61, 113.

Bankovsky Promysel, Caspian Sea.
15. MUS MUSCLLUS ABBOTTI, Waterhouse 1837. Proc. Zool. Soc. London, p. 77.

Trebizond, Asia Minor.
16. MUS MUSCULU'S SEVERTZOWI, Kashkarov 1925. Trans. Sci. Soc. Turkistan, Tashkent, 2, p. 55.

Turkestan.
17. MUS MUSCULUS DECOLOR, Argyropulo 1932. 'Trav. Inst, Zool. Acad. Sci. U.R.S.S. p. 226. Almatinsk, Semirechyia, Central Asia.
18. MUS MUSCULUS TOMENSIS, Kastschenko 1899 . Results Zool. Exped. to Altai in 1898, p. 46.

Village of Cherga, Tomsk Gouv, Altai,
Synonym: musculus tomensis, natio amurensis, Argyropulo, 1932, 'Trav. Inst. Zool. Acad. Sci. U.R.S.S. p. 225.
musculus tomensis morph rufieentris, Argyropulo, 1932, same reference.
19. MUS MUSCULUS VARIABILIS, Argyropulo 1932. Trav. Inst. Zool. Acad. Sci. U.R.S.S. p. 225.

K゙aton-Karagai, i,ooo m. alt., Altai.
20. MUS MUSCULUS RADDE1, Kastschenko 1910. Ann. Mus. Zool. St. Petersb. 15, p. 278.

Transbaikal district.
21. MUS MUSCULUS VINOGRADOVI, Argyropulo 1932. Trav. Inst. Zool. Acad. Sci. U.R.S.S. p. 223.

Yakutsk, Siberia.
22. MUS MUSCULUS FAR, Cabrera
1921. Mem. Real. Soc. Esp. Hist. Nat. Tomo del $50^{\circ}$ aniversario, p. 46.

Mogador, Morocco.
23. MUS MUSCULUS CAROLI, Bonhote 1902. Nov. Zool. IX, p. 627.

Liukiu Islands.
24. MUS MUSCULUS HOMOL'RL'S, Hodgson
1845. Ann. Mag. Nat. Hist. XV', p. 268.

Nepal, Himalayas.
Synonym: dubius, Hodgson, 1845, Ann. Mag. Nat. Hist. NV, p. 269. Ncpal.
urbanus, Ilodgson, 1845 , Ann. Mag. Nat. Hist. XV', p. 269. Nepal.
tytleri, Blyth, 1859, Journ. Asiat. Soc. Bengal, XXVIII. p. 296.
manei, Gray, 1852 , Kelaart, Fauna Zeyl., p. 64. Ceylon. rama, Blyth, i865, Journ. Asiat. Soc. Bengal, XXXIV, p. 194. nipalensis, Hodgson, 1841, Journ. Asiat. Soc. Bengal $\lambda$ p. 915.
riculorum, Anderson, Zool. Yunnan, 1878, p. 308.
25. \It's MU'SCLILL's SINICLS, Cabrera
1022. Bol. Real. Soc. Esp. Jist. Nat. XXI1, p. 166. Ning-po, S. China.
26. MILS MLSCCLLSOUWNSI, Kloss
1922. Treubia, II, P. I20.

Probolingo, E. Java.

1933. Ann. Mag, Nat, I fist, ro, XII, p. +3 S.

Poso, Middle Celebes.
2s. NL'S MUSCLLUSS fiENTILIs, Brants
1827. (ieslacht Jer Muzen, p. 126.
S. Erypt.

Synonym: pallescens, Ifeuglin, Reise N. Ost. Afr. ii, p. 72, 1877.
20. MLS MUSCLLLA GENTILLILLS, Thomas
1919. Journ. Bombay Nat. Hist. Soc. JXVI, p. 241. Aden, S. Arabia.
30. NIUS MLSCLLATS ALGIRUS, Pomel
1856. C.R. Acad. Sci. Paris, XL11, p. 654.

Algeria.
31. MIt's MUSCLIL'S SPRETC'S, Lataste 1883. Act. Linn. Soc. Bord. SXXVII, p. 17.

Algeria.
32. NLS ML'LCLI.L'S CANACORUTM, Revallod 1914. Sarassin \& Roux, Nova Caledonia Zoologie, 1, p. 364. New Caledonia.
33. ML'S MILC(LIL' TAITIENSIS, Fitzinget
1868. Reise Novara. p. 26.

Taiti Islands, Polynesia.
34. MLS MUtic(1)しゃ(?) MoHRI

New name for ", Mus mystacimus," Mohr, 1926, Witt. Zool. Staatsin. Zool. Mus. Hamburs, 40, p. 77. Not of Danford \& Alston.
New Britain.
35. MLUS MUSCLILC'S(?) DUNCKERI. Mohr
1926. Mitt. Zool. Staatsin, Zool. Mus. Hamburg, to, p. 77.

St. Mlatthias Jsland, Bismarck Archipelago.

18S2. Termeszetrajzi Fuzetek, Budapest, V. p. 114.
Hungary.
Synonym: acerzator, acervifex, canicularins, caniculator, all of Petenyi, same reference.
(The following nine races were described as races of spicilegus, or have recently been regarded as such.)
37. MUS MLTACLLU LU'SITANICL $\lesssim, ~ M i l l e t ~$
1909. Ann. Mas. Nat. Mist. \&, Ill, p. 422.

Cintra, Portugal.

## MUS

38. MUS MUSCULUS HISPANICUS, Miller
39. Ann. Mag. Nat. Hist. 8, 1II, p. +21.

Silos, Burgos, Spain.
39. MUS MUSCULUS CAOECII, Krausse
1921. Archiv. für Naturg. Berlin, 89, p. 95.

Sardinia.
+0. Muts musculus heroldif, Krausse 192t. Archiv. für Naturg. Berlin, 88, p. 137. Swinemunde, Pomerania, E. Germany.
41. MUS MUSCULU'S GERMANICUS, Noack
1918. Zeitschr. Forst. u. Jagdwesen Berlin, 50, p. 308. Eberswalde, near Berlin, Germany.
42. MUS MUSCULU'S HAPSALIENSIS, Reinwaldt
1927. Act. Com. Univ. Tartu, 12, p. 50. N.-W. Estonia.
43. MU'S MUSCLLUS LYNESI, Cahrera 1923. Bol. Real. Soc. Esp. Hist. Nat. XXIII, p. 430. Jebala, Morocco.
44. MUS MUSCLLUS RIFENSIS, Cabrera 1923. Bol. Real. Soc. Esp. Hist, Nat. XXIII, p. 431 . Melilla, Morocco.
45. MU'S MUSCULUS MOGREBINUS, Cabrera 1911. Bol. Real. Soc. Esp. Hist. Nat. XI, p. 556.

Taguidert, W. Morocco.
46. MUS MUSCULUS WAGNERI, Eversmann
1848. Bull. Nat. Moscou, 1, p. 19 r.

Turkestan.
Synonym: zcagneri rotans, Fortuyn (Waltzing Mice), De cytoarchitect der groote hescnehschors van eenige knaagdiern, Amsterdam, p. 169, 1911. Japan.
pachycercus, Blanford, 1875, Journ. Asiat. Soc. Bengal, 2, p. 108.
(The next three races were described as subspecies of zagneri, or have recently heen regarded as such.)
47. ML'S MU'SCULUS SAREPTANICL'S, Hilzhemer
1912. Acta Soc. Fauna \& Flora Fenn. 34, 1911 , p. 14.

Sarepta, Lower Volga, Russia.
48. MU'S MUSCLLU'S MONGOLIUMI Thomas
1908. Proc. Zool. Soc. London, p. 106.

Mongolian Plateau, 100 miles north-west of Kalgan.
49. MUS MUSCLLUS MANCHU, Thomas
1909. Ann. Mag. Nat. Hist. 8, IV, p. 502.

Chu Chia Tai, Kirin Province, Manchuria.
so．MLS MLSCLILS siLBTASIIs，BTanford 1879．Yarkand Niss．Namm．p． 5 t ．

Tankse，west of Pandong Lake，Ladak．
51．入US 入ILSCLLE BACTRIANLS，Blyth
IS46．Journ．Asiat．Soe．Bengal，XV，p． 140. Kandahar，Atghanistan． Synonym：gerbillinus，BIyth， 1853 ，Joum．Asiat．Soc．Bengal，XXII， p． 410.
theobaldi，Blyth，1853．same reference，p．583．I＇unjab．
（The next four races were described as subspecies of bactriamus，or have been recently regarded as such．）

```
    52. \LLS MLS(CLCS YAMANIlINAI, Kureda
1934. Journ. Manm. Baltimore, 15, p, 234.
                                    Mloppo, S. Korea.
```



```
1903. Ann. Mus. St. Petersb. VII, p. 564.
                            Tschortentan, Kansu.
    54. N[L& NLSCLL&& TAN'THLLUL&,G, M, NHe%
1927. Amer. Nus. Nov. 270, p. 9.
        Wanhsien, Szechuan, China.
    55. ML'S MUSCLLじS K゙AKH\NNENSIS, Anderson
1878. Zool. Res. W. Yunnan, p. 307.
    Ponsee, S.-VV. Iunnan.
    5%. NILS MLSCLLL& MOLOS.INL&, Temmmok
1843. Fauna Japonica, p. 5I, pl. 15, figs. 2-4.
                            Japan.
```

                (The following three races were described as races of molossinus.)
    57. MLA MLSCLLLS YFSOMIs, Kuroda
    192S. Journ. Mamm. Baltimore, 9, p. I47.
Uinai, Iburi, Hokkaido, Japan.
58. MLS MLSCLLL® ©RII, Kuroda
1924. On New Mammals from Ritukiu Islands, p. 7. Tokyo.
Riukiu Isiands.
59. NUS NUTC(UI,L Y YONAKLNI, Kuroda
1924. On New Mammals from Rıukiu Islands, p. S. T'okyo.
Riukiu 1 slands.
to ML's KURIIENSIS, Kuroda
1924. Joum. Mamm. Baltimore, 5, p. 119.
Shimoshire, Central Kurile Islands.
（Vinogradov，Rodents of C．S．S．R．，quotes a form M．musculus bioolor，from lower part of Ural River．The reference to this has not been traced．）

## booduga Group ${ }^{1}$

61. MUS BOODUGA, Gray
62. Charlesworth's Mag. Nat. Hist. I, p. 586.
S. Mahratta, India.

Synonym: lepidus, Elliot, 1839, Madras Journ. Linn. Soc. X, p. 216.
terricolor, Blyth, 1851 , Journ. Asiat. Soc. Bengal, XX, p. 172.
albidiventris, Blyth, 1852 , Journ. Asiat. Soc. Bengal, XXI, p. 35 I .
dunni, Wroughton, 1912, Journ. Bombay Nat. Hist. Soc. NXI, p. 339. Amballa, Punjab.
fulvidiventris, Blyth, 1852 , Journ. Asiat. Soc. Bengal, XXI, p. 351 .
darjilingensis, Hodgson, 1849, Ann. Mag. Nat. Hist. 2, III, p. 203.
beazanii, Peters, Proc. Zool. Soc. London, 559, 1866.
6z. MUS FAML'LU'S, Bonhote
1898. Journ. Bombay Nat. Hist. Soc. XII, p. 99.

Coonoor, Nilgiri Hills, S. India.
63. MUS NITIDULUS N1TIDULUS, Blyth 1859. Journ. Asiat. Soc. Bengal, NXVIII, p. 294. Shwe Gyen, Burma.
64. MUS NITIDLLUS POPAEUS, Thomas
1919. Journ. Bombay Nat. Hist. Soc. XXVI, p. 420. Mt. Popa, dry zone of Burma.
65. MUS NITIDULUS ANNANENSIS, Robinson \& Kloss
1922. Ann. Mag. Nat. Hist. 9, IX, p. 99.

Dalat, Langbian Plateau, S. Annam.
66. MUS COOKI COOKI, Ryley
1914. Journ. Bombay Nat. Hist. Soc. XXII, p. 664. N. Shan States, Burma.
67. MUS COOKI MEATOR, G. M. Allen
1927. Amer. Mus. Nov. 270, p. 6.

Taipingpu, Yunnan.
68. MUS PALNJCA, Thomas
1923. Journ. Bombay Nat. Hist. Soc. XXIX, p. 87. Palni Hills, S. India.
69. MUS LEPIDOIDES, Fry
1931. Journ. Bombay Nat. Hist. Soc. XXXIV, p. 921. Mt. Popa, Burma.

[^6]70. \It's CERTIL()],OR. Hodgson
1845. Ann. Nlag. Nat. Hist. XV, p. 268.

Nepal.
Synonym: strophiatus, Hodgson, 1845 , same reference.
cunicularis, Blyth, Journ. Asiat. Soc. Bengal, XXIV, p. 72 r , I855.
71. MLiS PAHARI PAHARI, Thomas
1916. Journ. Bombay Nat. Hist. Soc. XXIV, p. 414.

Sikkim, Himalayas.
72. MLS PAHARI GAIRDNERI, Kloss
1920. Journ. Nat. Hist. Soc. Siam, IV, p. 60.

Me Taw, 40 miles north-west of Raheng, siam.
73. NU'S JACKSONIAE, Thomas
1921. Journ. Bombay Nat. Hist. Soc. SXVII, p. 596.

K゙hasi Hills, Assam.
74. NLS NAGARUN, Thomas
1921. Journ. Bombay Nat. Hist. Soc. XXV1I, p. 597.

Naga Hills, Upper Assam.
75. MLS TH.AI, Kloss
1917. Journ, Nat. Hist. Soc. Siam, 1I, P. 280.

Raheng, W. Siam.
76. MLS RAHEXVGİ, Kloss
1920. Journ. Nat. Hist. Soc. Siam, IV, 2, p. 6i.

Me Taw, to miles north-west of Raheng, Siam.
bufo-triton Group
77. NIL's TRITON TRITON, Thomas
1909. Ann. Mag. Nat. Hist. 8, IV, p. 54 S.

Kirui, . It. Elgon, Uganda.
Synonym: naizashae, Heller, 1910, Smiths. Misc. Coll. 1.1V, no. 1924 , p. 2. Naivasha, Kenya.
78. NILS TRITON MILRILLA, Thomas
1910. Ann. Mag. Nat. Hist. 8, V, p. 91.

Machakos, Kenya.
79. MUS TRITON FORS, Thomas and Wroughton
1910. Trans Zool Soc. London, XIX, p. 506.

Butagu Valley, W. Ruwenzori.
so. MLS TRITUN SORELJLA, Thomas
1909. Ann. Nag. Nat. Ifist. S, IV, p. 54 S.

Kirus, Nlt. Eleon, Leanda.
si. NLS BUFO BLFO, 'Thomas
1906. Ann, Mag. Nat. I Hist. 7, XVIll, p. 145.

East Ruwenzorr.
S2. MLS BLFG WAMBUTTI, Lomberg \& (iyldenstolpe
1925. Arkiv. Zool. Bd. 17B, no. 5, p. 4.

Ituri Forest, E. Congo.

## minutoides Group

83. MU'S BELJU'S BELLL'S, Thomas 1910. Ann. Mag. Nat. Hist. 8, V, p. 87. Machakos, Kenya.
84. Mu's bellus vicinus, Thomas 2910. Ann. Mag. Nat. Hist. 8, V, p. 88.

Takaungu, near Mombasa, Kenya.
85. MUS BELLU'S PETILU'S, Hollister
1916. Smiths. Misc. Coll. LXVI, no. 10, p. 3.
S. Guaso Nyiro, Kenya.
86. MUS' BELLUS GALLARUM, Thomas
1910. Ann. Mag. Nat. Hist. 8, V, p. 88.

Harar, S.-E. Abyssinia.
87. MU'S BELLU'S GONDOKORAE, Heller
1911. Smiths. Misc. Coll. LVI, no. 17, p. 8.

Gondokoro, N. Uganda.
88. ML'S BELLUS ENCLAVAE, Hefler 1911. Smiths. Misc. Coll. LVI, no. 17, p. 8. Rhino Camp, Lado Enclave.
89. MU'S BELLUS KASAICUS, Cabrera
1924. Bol. Real. Soc. Esp. Hist. Nat. XXIV, p. 222. Luluabourg, Kasai, S. Congo.
90. MUS BELLL'S SIBYLLA, Thomas 1918. Ann. Mag. Nat. Hist. 9, II, p. 484. Usolo River, Benguella, Angola.
91. MU'S BELLL'S MARICA, Thomas 1910. Ann. Mag. Nat. Hist. 8, V, p. 88.

Beira, Portuguese E. Africa.
92. MUS BELLUS INDLTT'S, Thomas 1910. Ann. Mag. Nat. Hist. 8, V, p. 89.

Molopo, Bechuanaland.
93. MUS GRATUS GRATLS, Thomas \& Wroughton 1910. Trans. Zool. Soc. London, p. 507.
E. Ruwenzori, Mubuku Valley.

Synonym: gratus sumgarae, Heller, 1911 , Smiths. Misc. Coll. LVI, no. 17, p. 7. W. Kenya Forest Station.
9+. MUS GRATU'S SORICOIDES, Heller
1914. Smiths. Misc. Coll. LXIlI, no. 7, p. 10.

Mt. Mbololo, Kenya.
95. MUS MNUTOIDES MINUTOIDES, smith
1834. South Afr. Quart. Journ. 2, p. 157.

Cape Town.
Synonỵm: minimus, Peters, 1852 , Reise nach Mossambique: Säugerh. p. 153. Nozambique. Not of White, 1789 (a Micromys).
un ML－MINLTOIDES U \IBRATA，Thomas
1910．Ann．Mag．Nat．Hist．8，V，p． 86.
Wakkerstroom，S．－E．Transvaal．
97．MES MINLTOIDES ORAXGIAE，Kobert
1926．Ann．Transw．Nus．S］，p． 251.
Viljoen＇s Drift，Orange Free State．Status fide G．M．Allen．
có NIUS MIDLTOIDES NJ．AVEI，Thomas
1910．Ann，Mag．Nat．Hist．8，V，p． 90.
E．Loangwa district，N．－E．Rhodesia．
49．MLS MLACULOJDES MLSCLLOIDES，Temminck
1853．Esq．Zool．Côte Guiné，p， 161.
Gold Coast．
Synonym：setulosus，Peters，IS76，Monatsb．K．Preuss．Akad．Wiss． Berlin，p． 480, pl．2．Victoria，Cameroons．

```
    100. N1LS MILSCLTOHDES F\\IEsi, Heller
```

1911. Smiths. Misc. Coll. LVI, no. I7, p. 5.
Nabula Muliro, Uganda.
roi, ML's PALLINA, Thomas
1912. Ann. Nag. Nat. Hist. 9, II, p. 485.
Bitye, Ja River, Cameroons.
102. MU'S MIAHOMET, Rhoads
1913. Proc. Acad. Nat. Sci. Philadelphia, p. 532.
Sheikh Nahomet, WV. Somaliland.
203. MUS PROCONODON PROCONODON, Rhoad
1914. Proc. Acad. Nat. Sci. Philadelphia, p. 531.
Sheikh Husein, W. Somaliland.
104. NUS PROCONODON PASH.A, Thomas
1915. Ann, Nag, Nat. Hist. 8, V, p. 89.
Monbuttu, E. Congo.
105. ML's HALSsis, Thomas \& Hmton
1916. Nov. Zool. 27, p. 319.
K゙ano, N. Nigeria.
106. MUS GERBILLLS, G. MI. Allen \& Loveridge
1917. Bull. Mus. Comp. Zool. LXXV, z, p. 112.
Dodoma, Tanganyika.

## tenellus Group

 1903．Proc．Zool．Soc．London，p． 298.

Roseires，Blue Nile，Sudan．
108．NLS TENELLUS SLAFHELICL゙S，Thoma
1910．Ann．Mag．Nat．Hist．S，VI，p． 312.
Taveta，near Mt．Kilimanjaro．
109．JIC $九$ TENELLL\＆ACHoLI，Heller
1911．Amiths．Misc．Coll．LVI，no．17，p． 6. Rhino Camp，Lado Enclave．

1o. MUS WAMAE, Heller
19t1. Smiths. Misc. Coll. LVI, no. 17, p. 5. Kapiti Plains, Kenya.
11. MLS DESERTI DESERTI. Thomas
1910. Ann. Mag. Nat. Hist. 8, V, p. 90.

Molopo, Bechuanaland.
112. MLS DESERTI VALSCIIENSIS, Roberts 1926. Ann. Transv. Mus. XI, p. 251. Bothaville, Orange Free State.
113. MUS DESERTI PRETORIAE, Roberts 1926. Ann. Transv. Mus. X1, p. 252. Pretoria, Transvaal.

## Not seen and not allocated to Group

114. ML'S Matschiel, Wettstein 1916. Anz. Akad. Wiss. Wien, 53, p. 161.
S. Kordofan.
115. MUS BIRLNGENSIS, Lönnberg \& Gyldenstolpe 1925. Arkiv. Zool. Bd. 17B, no. 5, p, 5. Mt. Mikeno, Birunga Volcanoes, Congo.
116. ML'S FORMOSANLS, Kuroda
117. Dobuts Zasshi, 37, no. 435, p. 16.

Formosa.
117. MUS CASTANELS, Waterhouse
1843. Ann. Mag. Nat. Hist. XII, p. 134.

Philippine Islands.
Synonym: commissarius, Mearns, 1905, Proc. U.S. Nat. Mus. XXVIII, p. 449. Davao, Mindanao.

## Subgenus Leggadilla, Thomas

118. MU's PLATYTHRIX PLATYTHRIX, Bennett
119. Proc. Zool. Soc. London, p. 121.

Dukhun, India.
Synonym: spinulosus, Blyth, 1854 , Journ. Asiat. Soc. Bengal, XXIII, p. 734. Punjab.
119. ML'S PLATYTHRIN SADHL, Wroughton 1911. Journ. Bombay Nat. Hist. Soc. XX, p. 100.

Virawah, Sind.
120. MU'S CINDERFLLA, Wroughton 1912. Journ. Bombay Nat. Hist. Soc. NXI, p. 770.

Bhuj, Cutch, W. India.
121. MU'S RAMINADENSIS, Bentham
1908. Rec. Indian Mus. II, p. 386.

Ramnad, Madura, Madras, S. India.
122. MICS PHILLIPSI, Wroughton
1912. Journ. Bombay Nat. Hist. Soc. XXI, p. 772.

Nimur district, Central Provinces, India.
123. WIL's sl'RKHA, Wroughton \& Ryley 1913. Journ. Bombay Nat. Hist. Soc. NXII, p. 17. V'ijayanagar, Bellary, India.
124. MILS B.AHADIRR, Wroughton \& River 1913. Journ. Bombay Nat. Hist. Soc. XXII, p. 18. Karwar, Kanara, India.
125. NILS SIVA. Thomas \& Ryley 1913. Journ. Bombav Nat. Hist. Soc. SXII, p. 242. Sivasamundram, S. Dysore, India.
12h. オHL \& (;RAHAMII, Ryley
1913. Journ. Bombay Nat. Hıst. Nic. NXII, p. +34 Wotekolli, S . Coorg, India.
 1913 . Journ. Bombay Nat. Hist. Soc NX1l, p. 435. Makut, s. Coorg, India.

12S. NLS FERNANDONI, Phillips 1932. Spolia Zevlan, 1 f. p. 325. Central Province, ('eslon.
129. NL'S GLRKH.1, Thomas
1914. Journ. Bombay Nat. Hist. Linc. SX1II, p. 200. Jerna, Ramnagar. Kumaon, N. Indaa

I30. Sll S SHORTR1DGil:I, Thomas 1914. Journ. Bombay Nat. Hist. Hoc. SXIII, p. 30. It. I'spa, Burma.

For liey to species of suhgunus Leeggadilla see Wroughton, Indian Mammal Surver, Journ. Bombay Nat. Jlist. Goe. XXII, 1920, p. 955.

## Genus 53. MFCTEROMIS', Robinson \& Kloss

1916. ()romis, Rohmson \& Kloss, Journ. Str. Br. Rus. Asiat. Soc. LXSIII, p. 270.
(Not of Leedyy,
1917. Nycterumis, Rohmson \& Kloss, Journ. Fed. Nalay States . Ius. VIII, p. 57.
'Typf Spectes.-Oromys crociduroides, Rohinson $\mathbb{E}$ Riloss.
Ravge.-Sumatra and Jaca.
Neaber of Formas-Two.
('haracters.-.Skull with little interorhital constriction, long rostrum, and no supraorbital ridges, the general effect not like that of a Mus, but rather as in certain sections of the genus Rattus, as zerecundus group. Braincase heavy. Incisise foramina narrow, hut not approaching toothrows. Bullae small. Zygomatic plate considerably narrowed, straight anteriorly. Mandible relatively thin and weak, coronoid process much reduced. Lower incisors narrow, much lengthened, the upper ones short.

Cheekteeth of specialized Mus type; MI. vestigial. M.I large, with T.i noticeahly distorted inwards.

Ear rather large, Tail longer than head and body. Feet not abnormal, rather narrow: Fur soft.
'This genus appears to be a specialized offshoot of the Mus series, which actually has few characters of generic value to distinguish it from Mus, though the appearance of the skull is very different.

Forms seen: crociduroides.

## List of Named Forms

1. MYCTEROMIS CROCIDUROIDES CROCIDUROIDES, Robinson \& Kloss 1916. Journ. Str. Br. Roy. Asiat. Soc. LXXIII, p. 271. Korinchi Peak, W. Sumatra.
2. MYCTEROMIYS CROCIDLROIDES VLLCANI, Robinson \& Kloss
3. Ann. Mag. Nat. Hist. 9, IV, p. 378.

Kadang Badak, Mt. Gedeh, W. Java.

## Genus 54. LEGGADINA, Thomas

1910. Leggadina, Thomas, Ann. Mag. Nat. Hist. 8, VI, p. 606.

Type Species,--Mus forresti, Thomas.
Range.-Australian: Queensland, South Australia, Northern Territory and Central Australia.

Number of Forms.-Nine.
Characters.--This genus parallels the Mus series of genera in essential dental arrangement, so far as enlargement, distortion of M. i is concerned, and reduction of M.3; but like several other Australian genera which parallel more generalized Old World Murines in dental arrangement, it is much more simplified in teeth characters than Mus and its immediate allies. Thus, the cusps are not strong, so far as seen, and the whole of the outer row in the upper molars is becoming vestigial, and fused with their neighbours on the centre row. The genus was originally proposed by Thomas as a subgenus of Pseudomys, but as I have remarked elsewhere, it seems to have little to do with that group, and it has subsequently been given generic rank.

Skull small, delicate; supraorbital ridges absent; pterygoids described by Thomas as with "the parapterygoid fossae broad and very shallow, scarcely hollowed at all, the ectopterygoids bordering it externally low, flat, not or scarcely raised above the level of its floor; entopterygoids also much lower and less projecting than is usual"; but this structure does not seem to me to be very different from that found in some species of $M u$, and even some species of Rattus. Bullae variable in size, not extreme.

Alolars with a well-marked extra cusp in front of the anterior lamina of M.1 present, as often in Australian genera, and also as in many species of . Wus; this tooth large, usually slightly more than half the toothrow; the anterointernal cusp very strongly distorted backwards, as in Mus; in line with T. + and T.5. The extra front cusp is largest in $L$. forresti, which species seems to have the most enlarged M.1; all outer cusps in $\ 1.1$ and M. 2 tend to become nearly
obliterated, particularly in M.2. M. 3 is strongly reduced. Lower molars not abnormal.

Size usually very small; forresti appears to go up to 100 mm ., but delicatula, patrius and hermamshurgensis, from skins available, appear to be about $50-78$ mm . only, and have a proportionately longer hindfoot, perhaps correlated with their smaller size. 'Tail well haired, in most cases subequal in length to head and body; fur soft; D. 5 hindfoot not reduced. Mammae probably o-2 $=4$.

Forms scen: delicatula, forresti, hermannsburgensis, messorius, patrius.

## List of Named Forms <br> forresti Group

1. LEGGADINA FORRESTI, Thomas
2. Abstr. Proc. Zool. Soc. London, 32, p. 6: Proc. Zool. Soc. London, p. 538.

Alexandria, N. Territory, Australia.
delicatula Group
2. LEGGADINA MESSORIUS, Thomas
1925. Ann. Mag. Nat. Hist. 9. XV, p. 670.

Spencer Gulf, S. Australia.
3. LEGGADINA DELICATULA DELICATLLA, Gould
1842. Proc. Zool. Soc. London, p. I3.

Port Essington, N. Australia.
4. LEGGADINA DELICATULA Minllea, Thomas
1926. Ann. Mag. Nat. Hist. 9, XVII, p. 634.

Groote Eylandt, Gulf of Carpentatia, N. Australia.
5. LEGGADINA HERMLANNABLRGENSIS HERMANNSBURGENSIS, Wate
1896. Rep. Horn Exp. Centr. Austr. Zool. ii, p. 405.

Hermannsburg, Central Australia.
6. LEGGADINA HERMANNSBURGENSIS BOLAMI, Troughton
1932. Rec. Austr. Mus. XVIII, p. 292.

Ooldea, Trans-Australian Railway, S. Australia.
7. LEGGADINA PATRIC's, Thomas \& Dollman
1909. Proc. Zool. Soc. London (1908), p. 791.

Inkerman, Qucensland.
8. LEGGADINA FIELDI, Warte. (2ot seem
1896. Rep. Horn. Sci. Exp. Centr. Austr. Zool. ii, P. 403.

Alice Springs, Central Australia.
9. LEGGADINA WAITEI, Troughton. (Not seem)
1932. Rec. Austr. Mus. XVIIJ, p. 290.

Alice Springs area, Central Australa.

Genus 55. COLOMIS', Thomas \& Wroughton
1907. Colomys, Thomas \& Wroughton, Ann. Mag. Nat. Hist. 7, XIX, p. 379.

Type Species.-Colomys goslingi, Thomas.

Range.-African: Cameroons, Congo, Kenya.
Number of Forms.-Three.
Ciaracters.-The hindfoot is longer than is usual in Ratus Rats, and is apparently specialized for a life in swamps; "feet much lengthened, especially in metatarsal region; metatarsi apparently somewhat loosely bound together, as though they might splay out from each other in walking on swampy soil" (Thomas). Twenty specimens available average 29 per cent, hindfoot against head and body length, with an extreme of 32 per cent, which overlaps the lowest measurement for the specialized saltatorial genus Notomys (Australian).

In addition to this, the skull of the genus is considerably specialized, compared with the majority of Rats of the section.

Braincase broad, round, heavy: frontals considerably constricted. Infraorbital foramen unusually large, and zygomatic plate much narrowed, with its front border nearly straight (it is strongly tilted upwards). Zygoma narrow: No supraorbital ridges. Incisive foramina long, reaching toothrows, and tending to be abnormal, owing to the shape of their dividing septum. Bullae small. Palate broad. Toothrow set rather far forward in skull. Cusps of molars originally rather prominent; the general dental effect suggestive of Zelotomys, though less extreme than in that genus. 11.3 rather strongly reduced.

Fur very soft. Tail longer than head and body, scaly, rather poorly haired. Forefoot with four rather long digits; hindfoot long, and very narrow; D. 5 longer than is usual, though shorter than the central three digits; hallux also longer than is usual. Mammae $2-2=8$.

Remarks.-St. Leger groups this genus with Malacomys, on the character of the hindfeet. The metatarsal character, which is used to divide these two genera off from the remainder in the key, is not a character which can be guaranteed in a large assemblage like Rattus; but it must be noted that this genus is very much more distinct from normal Rats than is Malacomys. The hindfoot is here on average more elongated than Malacomys; and the skull and tecth both appear to make the genus quite distinct. However, it may he that with more specimens the measurement percentage given here would become lower.

Forms seen: bicolor, denti, goslingi.

## List of Named Forns

1. COLOMIS GOSIINGI GOSLINGI, Thomas \& Wroughton
2. Ann. Mag. Nat. Hist. 7, KIK, p. 380.

Gambi, Uelle River, Belgian Congo.
2. COLOMY'S GOSLINGI DENTI, St. Letger
1930. Ann. Mag, Nat. Hist. ro, VI, p. 527.

Elburgon, near Naivasha, Kenya.
3. COLOMY'S GOSIINGI BICOLOR, Thomas
1912. Ann. Mag. Nat. Hist. 8, X., p. 682.

Bitye, Ja River, Cameroons.

- Living Rodent:-II

Genus 56. NESOROMYS, Thomas
1922. Nesoromys, Thomas, Ann. Mag. Nat. 9, IX, p. 263.
'Type Species.-Stenomys ceramicus, Thomas.
Range.-Island of Ceram (west of New Guinea).
Nlaber of Fordis,-One.
("haracters - Skull in general like that of the "Stenomys" section of Rattus, with long rostrum and supraorbital ridges scarcely traceable. Infraorbital foramen enlarged, ahnormal, scarcely narrowed below. Bullae moderate. Palate highly abnormal, much broadened, and carried far behind the toothrows, quite different from any Rattus seen. Incisive foramina considerably in front of toothrow, narrowed anteriorly, and relatively short. Pterygoid fossae apparently very low.

Dentition of Rattus type, not abnormal. Fur thick. llindfoot narrow, the digits normal. Tail slightly longer than head and body. Head and body 135 mm . (type).

Remarks.-Rümmler in 1938 has considered this genus a synonym of Stenomys ( $=$ Rattus). But the characters of the infraorbital foramen and more particularly of the palate scparate this species very clearly as a well-marked genus from all allies, and indicate a much more specialized stage. It is not well represented in the British Museum, and more material would be welcome. Until intermediate forms are discovered between this genus and Rattus in characters of the palate, it must stand as a very distinct genus. The zygomatic plate is much narrowed.

Forms seen: ceramicus.
List of Named Forms

1. NESOROMIS CERAMICUS, Thomas
2. Ann. Mag. Nat. Hist. 9, VI, p. 425.

Mount Manusela, Ceram.

Genus 57. CRLNOMIS, Thomas
 p. 393 .
'Type Species.-Crumomys fallax, Thomas.
Ravge.-Philippine Islands: Luzon and Mindanao.
Number of Forms.-Two.
Remarks.-'Jhis genus, based originally on one skull only with much-worn tecth, was placed in the subfamily llydromyinae by 'Thomas. Later he described another species, melanins, also based on one skull, with lessworn tecth, the upper series of which are not in the least like typical Ilydromyinae. Writing of this species, Thomas states: "The characters of this
remarkable species are a great puzzle, and only add to the difficulty of assigning a proper position to the type of the genus, $\dot{C}$. fallax. The single specimen of the latter is very old, and in the worn-down state of the teeth it was not clear whether they were or were not of Hydromyine structure. The teeth of the present animal are certainly not typically Hydromyine, but rather Murine, while at the same time it is possible that in wearing down they might acquire the slight resemblance to Ilydromyine teeth shown by C. fallax . . . but until younger specimens of $C$. fallax or older ones of the present form are available for examination, it would be advisable not to express any definite opinions as to the systematic position of either." According to Tate, Rümmler is of the opinion that Crunomys should be referred to the Murinae. Although the matter cannot be solved until more specimens come to hand, there is too much doubt on the relationships of the genus to place it in a group of rather extreme genera like the Hydromyinae, and I am provisionally referring it to the Murinae. It seems to me to be a genus which makes the retention of the subfamily Hydromyinae a matter for convenience only.

Characters.-Skull with extremely broad interorbital region, and no marked constriction apparent in superior aspect. No supraorbital ridges; braincase heavy and large. Zygoma narrow; zygomatic plate very narrow, the anterior border straight, and sharply tilted upwards, the effect like that of normal Hydromyinae, and like the Murine Macruromys. Incisive foramina short. Toothrow set far forward in skull. Infraorbital foramen not much narrower below than above, but generally rather narrow throughout. Bullae not large in melanius, missing in the type skull. The upper cheekteeth are in the type of fallax too worn for definite notes, though perhaps not highly ahnormal. In melanius they are not far from a specialized (simplified) Rattustype; the outer row is becoming obsolete; cusps merged into each other and not well marked, but traces of eight in M.1, and five in $\mathbf{~} 1.2$ (the posterior lamina of this tooth reduced). M. 3 very small. Lower molars evidently quite normal simple type in melanius. Externally with no special peculiarities; small; fallax has the fur faintly spiny; tail shorter than head and body, moderately haired; hindfoot narrow, the digits normal.

The incisors are narrow; particularly in the type the lower ones appear relatively long.

Forms seen: fallax, melanius.

## List of Named Foris

1. CRLNOMY FALLAX, Thomas
2. Abstr. Proc. Zool. Soc. London, June 15 ; Trans. Zool. Soc. London, 1898, XIV, p. 394 .

Isabella Province, N. Luzon, Philippine Islands.
2. CRLNOMI'S MF1,ANICS, Thomas
1907. Abstr. Proc. Zool. Soc. London, no. 39, p. 5 ; Proc. Zool. Soc. London, 1907. p. 141 .

Mt. Apo, Davao, Mindanao, Philippine 1 slands.

## Genus 58. MACRUROMISS, Stein

1933. Macruromys, Stein, Zeitschr. für Säugetierk. 8, p. 94.

Type Species.- Macruromys elegans, Stein.
Range.-New Guinea.
Numbfr of Formis.-Two.
Characters.-The genus is represented in London by one skull only, type of major; these notes are based solely on that species. The chief character is that in this genus the toothrow is abnormally reduced. The braincase is heavy, the rostrum relatively long, with nasals projecting forwards anteriorly. Bullae very small. Incisive foramina well open, broad, but in front of toothrow. Zygomatic plate very narrow, reminiscent in appearance of the Ilydromyine type. Infraorbital foramen of moderate size. Checkeceth evidently not normal in pattern, but too worn in the one skull seen for definite notes; M. 3 ring-shaped, very small. A subsidiary cusp traceable in M.r on inner side between 'T.I and T.4. 'T.4 in M.r and M.z seems to be separated from T. 5 and 6. Toothrow set far forward in skull. Palate broad, but not extending much behind toothrows. 'Tail in the one skin seen much longer than head and body (head and body 225 mm ., tail 340); it is poorly haired, and with large scales. Hindfoot rather narrow, claws large; ear short. Evidently Tate regards the genus as not far removed from Rattus, so I have retained it in the present section. According to this author there are two paits of inguinal mammae.

The toothrow apparently is about 13.7 per cent or slightly less of condylobasal length.

The genus 1 am inclined to think is one of the several Indo-Australian types, such as Crumomys, that are on the borderline hetween Murinae and Ifydromyinae.
'Two species are admitted, differing in size (elegans apparently about 150 mm . head and body, major as above).

Forms seen: majur.

## List of Named Formis

```
    3. MA(RLRROMIY'& ELEGANS, Stem
1933. Zeitschr. für Säugetierk. S, p. 95.
            Weyland Range, Dutch New Gumea.
    2. NLA(RLROMIY'N NAJOR, Rummler
1935. Zeitschr.für Süugetierk. Io, p. 105.
        Buntihasa district, Kratke Nountains, New Guinea.
```


## Genus 59. LOPIILROMY', Peters

I So6. Lasiomiss, Peters, Monatsber. K. Preuss. Mkad. Wiss. Berlin, p. for. (Not of Burmenster.)
1874. Lophtreniys, l'eters, Monatsber. K. P'reuss. Akad. Wiss. Berlin, p. 234.

Type Spechs-Lasiomys afer, Peters.

Range.-African: Abyssinia, Ǩenya, Uganda, 'Tanganyika, Gold Coast, Cameroons, Congo, Gaboon.
Number of Forms.-About twenty-one.
Characters.-An aberrant genus, with peculiar cranial and external characters; the teeth tending to vary in detail individually to a larger extent than in any other genus seen.

Skull with almost no interorbital constriction apparent in superior aspect, or this so little marked that the interorbital region appears wider than the rostrum, and is not modified by the constriction. Rostrum varying in length, not extreme. Skull relatively broad and short in appearance; supraorbital ridges rarely or not developed; if ridges are present, they are usually on the parietals, rather than the frontals. Zygomatic plate often extremely narrow; sometimes scarcely tilted upwards, and coming very near the abnormal condition found in Deomys. Infraorbital foramen unusually widened, large, and rounded. Zygoma with relatively long jugal. Toothrow set unusually far forwards in skull. Palate relatively broad; bullae variable in size, not extreme. Palatal foramina long, penetrating between toothrows and sometimes very broad. Incisors thin, sometimes slightly pro-odont. The cheekteeth are strongly cuspidate, and very variable in both elements and appearance of pattern. This variation seems to me to be an individual character rather than a specific or racial one. M.r has all cusps but 'T. 7 (the posterointernal), which is normally suppressed, but in rare cases may appear as a low connecting ridge, as in Grammomy's. M. 2 has all cusps present except 'T. 2 and 'T. 7 (which may appear); 'T. 3 is usually vestigial, and T.i most often large. 11.3 is constantly reduced through the genus, and is bilaminate. M.r appears four-rooted. All rows of cusps moderately well developed on the upper molars. Sometimes T.i may be distorted inwards, nearly as in Mus. In the type of ansorgei this is the case, and a vestigial posterointernal cusp is present, but other specimens of this species have a quite normal dentition. The cusps are extraordinarily raised up in the type of naso, and there is a strong extra outer cusp between T.6 and T.9, almost as high as either. Sometimes the upper molars are extremely broadened, but this is not a constant character so far as I have seen through any species. In some forms, as rubecula (the type), zaphiri (the type), and flavopunctatus, the cusps are less raised up than is usual, and ' ${ }^{2} 3$ in M .1 is narrowed and quite reduced, though this feature may appear elsewhere in the genus. L. woosnami appears to have broader teeth than these, with the cusps more angular and projecting; these types seem to represent the extremes of the genus (other than naso), but specimens of sikapusi may agree with either, and intermediate forms between both are frequent. Dentitions characteristic of other genera seem covered by specimens in this genus to a bewildering degree. The lower molars appear in the majority of cases not highly abnormal; . l .3 is rather reduced.

Fur rather thick and of a peculiar quality. Hindfoot with the three centre digits long, the two outer digits subequal in length and strongly reduced; the foot is rather short. Forefoot with D. 5 much shortened. The foreclaws may become rather large. Tail normally much shorter than head and body; but in
aroosnami and prittiez it may be slightly longer, or subequal to that measurement: prittici shows more suggested constriction of the interorbital region than other species. The hindfoot is relatively short.

Forms seen: ansorgei, aquilus, brezicaudus, brumenes, flazopunctatus, laticeps, major, manteufcli, muso, mudicandus, prittiei, vita, mbecula, simensis, sikupusi, woosnami, zaphiri, zcna.

Apart from zoosnami and prittici appearing very distinct from the remainder on length of tail, the genus docs not divide satisfactorily into groups, most of the species being distinct from each other on colour, sometimes rather vaguely so. The dentition appears too variable a character on which to base even species in this genus.

List of Named Forms<br>zoosnami Group

r. LOPHLROAIYS WOOSNANH, Thomas
1906. Ann. Mag. Nat. Hist. 7, XVIII, p. 146
E. Ruwenzori, Uganda.
2. LOPHLRONIYS PRITTIEI, Thomas
1911. Ann. Mag. Nat. Hist. S, VIII, p. 377.

Kigezi, S.-W. Uganda.
sikupusi Group
3. LOPHLROMIYS AQUILUS AQUTLUS, True
1892. Proc. U.S. Nat. Mus. XV, p. 460.

Mt. Kilimanjaro, Tanganyika.
Synonym: rubccula, Dollman, 1909, Ann. Mag. Nat. Hist. 8, IV, p. 551. Elgonyi, Elgon. Status fide Hollister.
4. IOPHLROMY: AOLILUS MARGARETTAE, Heller
1912. Smiths. Misc. ColI. LIX, no. 16, p. 7.

Mr. Gargues, Kenya.
5. LOPHLROMIS AQL'ILLE CHRY'SOPL'S, Usgood
1936. Field Mus. Nat. Hist. Pub. Zool. ser. XX, p. 242.

Allata, Sidamo, Abyssinia.
6. LOPHLRONIS AOLILLAS LATICEP\&, Thomas \& Wroughton
1907. Ann. Mag. Nat. Hist. 7, XLX, p. 383.

Lake Kivu, Belgian Congo.
7. I, OPHLROAIY'S AQLILLS ZEXA, Dollmam

1gog. Amn. Mag. Nat. Hist. \&, IV, p. 550.
Near Nyeri, Kenya.
8. LOPHLROAIS RITA, Dollman
1910. Ann. Mag. Nat. Hist. 8, V, p. 179.

Lulupa River, Katanga, S. Congo.
(). IOPHCROAIS MAJOR, Thomas \& Wroughton
1907. Amn. Mag. Nat. Hist. 7, NIX, p. 382.

Bwanda, L'banghi River, Belgian Congo.
10. LOPHLROXIY' FLAVOPIVCTATL'S FLAVOPLNC"TATLS, Thomas
1888. Proc. Zool. Soc. London, p. I4.

Probably Ankober, Shoa, Abyssinia.
11. LOPLIUROMYS ILLAVOPUNCTATUS SIMENSIS, Osgood
1936. Field Mus. Nat. Hist. Pub. Zool. ser. XX, p. 238.

Ras Dashan (Mt. Geech), Simien Mountains, N.-E. Abyssinia.
12. LOPIUUROMY'S FLAVOPUNCTATUS ZAPHIRI, Thomas
1906. Ann. Mag. Nat. Hist. 7, XVVIII, p. 304.

Walamo, east of Upper Omo, S. Abyssinia.
13. LOPIIUROMYS ELAVOPUNCTATUS BRUNNEUS, Thomas
1906. Ann. Mag. Nat. Hist. 7, XVIII, p. 305.

Manno, Jimma, S. Abyssinia.
(Status see Osgood, 1936.)
4. LOPHUROMIS BREVICAUDUS, Osgood
1936. Field Mus. Nat. Hist. Pub. Zool. ser. XX, p. 24 r.

Mt. Albasso, Chilalo Mountains, Arusi, Abyssinia.
8. LOPHUROMYS NUDICAUDUS, Heller igif. Smiths. Misc. Coll. LVI, no. 17, p. 11.

Efulen, Bulu, Cameroons.
16. LOPHUROMYS NASO, Thomas 1918. Ann. Mag. Nat. Hist. 8, VII, p. 381.

Gaboon.
17. LOPHUROMYS LUTEOGASTER, Hatt
1934. Amer. Mus. Nov. 708, p. 4.

Medje, Ituri, E. Congo.
18. LOPHUROMIYS SIKAPUSI SIKAPUSI, Temminck
1853. Esq. Zool. Côte de Guiné, p. 160.

Dabocrom, Gold Coast.
Synonym: (?) afer, Peters, 1866, Monatsber. K.. Preuss. Akad. Wiss. Berlin, p. 409. tullbergi, Matschie, Sitz. Ber. Ges. Nat. Fr. Berlin, p. 337, 1911.
19. LOPHUROMIS SIKAPUSI MANTEUFELI, Matschie
1911. Sitz. Ber. Ges. Nat. Fr. Berlin, p. 335.

Mwanza, Victoria Nyanza, Tanganyika.
20. I.OPHUROMYS SIKAPUSI ANSORGEI, de Winton
1896. Proc. Zool. Soc. London, p. 607.

Mumias, Kavirondo, Kenya.
21. LOPHUROMY゙S SIKAPUSI PYRRHUS, Heller
1911. Smiths. Misc. Coll. LVI, 17, p. ro.

Rhino Camp, Lado Enclave.

## Genus 60. NOTOMI'S, Lesson

1842. Notomys, Lesson, Nouv. Tabl. Regn. Anim. Mamm. p. 129.
1843. Thylacomys, Waite, Proc, Roy. Soc. Victoria, new ser. X, pt. 2, p. 121. Preoccupied. (Hapalotis cervinus, Gould.)
1 898. Podanomales, Waite, Proc. Roy. Soc. Victoria, new ser, X, pt, 2, p. 11\%. (Hapalotis longicaudatus, Gould.)
1844. Ascopharynx, Waite, Ann. Mag. Nat. Hist. 7, V, p. 223. (To replace Thylacomys.)
'Type Species.- Dipus mitchelli, Ogilby.
Racge,- Australian: Queensland, New South Wales, South Australia, Western Australia, and Northern 'ferritory.
Number of Forms.-Twelve.
Characters,-Skull of Pseadomys type, but without extreme interorbital constriction. Braincase often rather round and heavy. Rostrum relatively long. No supraorbital ridges. Anterior border of zygomatic plate concave, then sharply cut back above. The whole outer side of zygomatic plate strongly ridged and prominent, the upper zygomatic root hroadened. Zygoma narrow, rising abruptly anteriorly to considerable height, as in Leporillus. Bullae usually relatively very large. Palate tending to be broad, but not extending behind the toothrows. Incisive foramina long and often broad. J.i three-rooted. Upper cheekteeth normal; 'T. 3 much reduced in M.ı; the inner row of cusps well developed, and distorted inwards to a degree; the outer row becoming reduced. N. 3 rather small. I vestigial cusp in front of formost lamina of MI.1 may sometimes be traced. In age, the pattern wears down and tends to become laminate. Lower teeth tending to become a series of transverse plates in the adult; originally with no special peculiarity except that the terminal heel of M. I and $\$ .2$ is strongly reduced, and is often absent. M!. 3 rather small.

External form highly specialized, more or less Dipodide. Tail long, usually moderately to well haired, and tufted terminally. Bars latge. Nanus relatively small, digits normal. Hindfoot extremely lengthened, and very narrow, evidently fully modified for saltatorial life, the plantar pads reduced to four or three; D. 3 the main digit, 1). 4 and D. 2 very slightly shorter; D. 5 extremely reduced, though longer than hallux; not reaching hase of D.4; hallux very short indeed. Sole naked, so far as seen. 'This type of saltatorial hindfoot is not known elsewhere in the subfamity. It is nearly as specialized as that of Dipodomys (Heteromyidae). 'The fur is soft.

The genus was formerly split into two genera, Votomys and Ascopharynx, for those species which possessed a gular pouch, and those which did not. Recently these Rats have been revised by Brazenor, Mem. Nat. Mus. Victoria, V111, I93t, P. 74, and Ascopharymx is suppressed is shown to be based on a form which agrees in this character with the majority of the genus, but Podanomalns is reinstated for the forms which differ from . Votomys " mainly by the absence of a gular glandular area, and the presence, in the male animal only, of an oval slightly swollen presternal gland directly between the forelegs." Thomas was not prepared to admit generic difference on these characters, and it seems that, as Brazenor has not examined four of the species yet, it is premature to do so, apart from the question of these characters being valid for generic purposes, which I very much doubt.

In our materiak, longicaudutus and sturti stand apart from the others on atcount of large size (hindfoot $4^{2} \mathrm{to}+5 \mathrm{~mm}$. as against $30-40$ of the mitchelli group). V. astomi, not seen, agrees with longicoudatus in the absence of the gular area; these forms are referred to Podanomalus by Brazenor; I prowisionally
include sturti in this group on account of its resemblance to longicaudatus, though the character above mentioned is not known in this species. As in many Australian genera, the genus is not well represented in London.
'I'wenty-eight specimens bearing measurements give an average of hindfoot 343 per cent of head and body length, or over a third of this length; in our material, the percentage does not go below 29 per cent.

Forms seen: alexis, aquilo, cervimus, gouldi, longicaudatus, macropus, macrotis, mitchelli, mordax, richardsoni, sturti.

## List of Named Forms

(The mitchelli group bclow represents the restricted Notomys of Brazenor. In the longicaudutus group, aistomi is apparently a much smaller species than the remainder.)

## mitchelli Group

t. NOTOMYS Mitchelli Mitchesll, Ogilby
1838. Trans. Linn. Soc. London, XVIII, p. 130.

Junction of Murray and Murrumbidgee Rivers, New South Wales.
2. NOTOMY'S MITCHELLI MACROPUS, Thomas
1921. Ann. Mag. Nat. Hist. 9, VIII, p. 540.

Port Lincoln, S. Australia.
3. NOTOMYS MTCHELLI ALUTACEA, Brazenor
1934. Mem. Nat. Mus. Melbourne, no. 8, p. 79.

OoIdea, S. Australia.
4. NOTOMYS MORDAX, Thomas
1922. Ann. Mag. Nat. Hist. 9, IX, p. 317.

Darling Downs, S. Queensland.
5. NOTOMYS AQU1LO, Thomas
1922. Ann. Mag. Nat. Hist. 9, XVIII, p. 540.

Cape York, N. Queensland.
6. NOTOMI'S MEGALOTIS, Iredale \& Troughton
1934. Memoirs Austr. Mus. VI, p. 84.

Moore's River, W. Australia.
Synonym: macrotis, Thomas, 1921, Ann. Mag. Nat. Hist. 9, VIII, p. 538 . Name invalid.
7. NOTOMYS RICHARDSONI, Gould
1851. Proc. Zool. Soc. London, p. 127.
S.-W. Australia.

Synonym: gouldi, Gould, 1863 , Mamm. Austral. iii, Introduction, p. xxxv. W. Australia.
8. NOTOMYS ALEXIS, Thomas
1922. Ann. Mag. Nat. Hist. 9, IX, p. 316.

Alexandria, N. Territory, Australia.
Synonym: fuscus, Jones, Rec. S. Austr. Mus. III, p. 3, 1925. Ooldea, S. Australia.
9. NOTOMYS CERVINUS, Gould
1851. Proc. Zool. Soc. London, p. 127.

Interior of S. Australia.

## longicaudatus Group

10. NOTO.JIS I,ONGICALDATUS, (inuld
11. Proc. Zool. Soc. London, p, IO4.

Moore's River, W. Australia.
11. NOTOMİ STLRTI, Thomas
1921. Ann. Nag. Nat. Hist. 9, VIII, p. 537.

Interior of New S. Wales, Lower Darling Region.
12. N(OTOMYS AISTONI, Brazenor
1934. Nem. Nus. Nelbourne, no. 8, p. 84.

Mulka, east of Lake Eyre, S. Australıa.

## Genus 61. MASTACOMIS, 'Thomas

18S2. NAstacomys, Thomas, Ann. Mlag. Nat. Hist. 5, 1X, p. 413.
Type Species.-Mastacomys fuscus, Thomas.
Range.-Tasmania; also known from South Australia, but from skulls only.
Number of Forms.- Two are named, the South Australian one has not been taken alive.
Characters.-Skull with extreme interorbital constriction, which is continued far backwards, so that the braincase is shortened, as in Pseudomys. Anterior zygomatic plate high, concave, and sharply cut back above. Incisors hroad, rostrum not long. Supraorbital ridges weak. Incisive foramina long, very narrow, especially posteriorly. Palate excessively narrowed. Bullae relatisely small. Toothrows extraordinarily broadened and heavy, more so than in any other Rat examined.
'The inner row of cusps of the upper molars point sharply inwards and are raised and enlarged to a degree; the centre row has the cusps much raised and enlarged; the outer row is reduced. M. i has only six cusps; two on the anterior lamina owing to the complete disappearance of the anteroexternal cusp T.3. The second lamina has three cusps; the third one only: M. 2 with a large T.1, a very large T. 5 and T. 8 (centre row), and a small 'T. 6 and moderate 'T.4. N1.3 with two rows only, as in Golunde, but rather less abnormal than in that genus, the centre posterior cusp not vestigial.

Lower teeth with, in those examined, no terminal heel in M.r and M.z, the teeth extremely broadened; six cusps in M.I, the front pair smallest; four in M .2 ; three in M .3 owing apparently to the posterior lamina heing formed as a transverse plate. The teeth are much heavier and broader than in Golunda and Mylomys, the only other genera in the group with this extreme type of dentition present. In the lower teeth, the inner row of cusps is larger than the outer row. The British Museum possesses two complete skufls only of this genus, the type and a young one in which the teeth appear to be cutting in an exactly similar pattern to that of the adult.

Fur thick. Ilindfoot with the digits of normal proportions. Tail welt haired, shorter than head and body: Nammae +
forms seen: fuscus, mordicus.

## List of Named Forms

t. MASTACOMIYS FUSCUS, Thomas 1882. Ann. Mag. Nat. Hist. 5, IX, p. 413.<br>'Tasmania.<br>2. MASTACOMIYS MORDICUS, Thomas<br>1922. Ann. Mag. Nat. Hist. 9, X, p. 551.<br>Mt. Gambier district, S. Australia. (Extinct ?)

## Genus 62. GOLUNDA, Gray

1837. Golunda, Gray, Charlesworth's Mag. Nat. Hist. 1, p. 586.

Type Species.-Golunda ellioti, Gray.
Range.-Peninsula of India, north to North-West Frontier, Punjab and Sind. South to Ceylon. East to Bhutan and Nepal.
Number of Forms.-Eleven.
Characters.-Skull of Arvicanthis type, with considerable interorbital constriction, much shortened rostrum, strong supraorbital ridges, largish bullae, robust zygoma. Anterior border of zygomatic plate cut back above. Upper incisors broad, one-grooved. Lower incisors plain. Palate relatively narrow, palatal foramina long, tending to be narrow posteriorly.

The molars very broad; upper series with centre row much enlarged, and also the inner row, particularly in M. 2 and M.3, much enlarged, the general effect abnormal, the rows of cusps crowded together. In M.1, T. 9 is reduced, and T. 3 is small; the main cusps are much raised up. In M.2, T. I is much raised and very large, as is T. 4 (the two main inner cusps); the centre row is similar; the outer cusps moderate. M. 3 is peculiar; all traces of the outer row have gone, the pattern consisting of four cusps, the two inner ones extremely enlarged and raised up, the posterior centre cusp small, but the anterior one large. M. 2 is like M.1, but without T. 2 ; there is a minute T. 3 present. Even in old age the pattern is quite clear; a further peculiarity is that in much-worn teeth M.i actually tends to become the smallest tooth sometimes, a very rare character in the subfamily; it is always relatively small, not much Iarger than M.2, though the elements of the latter are as usual reduced. Laminae of Iower molars $3-2-2$, as usual; each lamina with two large prominent cusps except the posterior one on M. 3 which has one permanent cusp only. The cusps clearly defined, the terminal heel of M.I and M.2 strongly reduced.

Form thickset and heavy. Tail rather shorter than head and body, relatively well haired. Hindfoot with the three centre digits long, the two outer digits nearly equal to each other in length, and very short, a character shared with Mylomys and Arvicanthis. D. 5 manus strongly reduced. Nammate 8 (Wroughton). Head and body up to 140 mm . in B.NI. material.

Forms seen: bombax, coenosus, coffaeus, coraginis, ellioti, gujerati, limitaris, myothrix, newera, paupera, watsoni.

## List of Named Forms

1. (;o)1.L'NDA E1LIOTI ELLIO'T'I, (iray

1内37. Charlesworth's Nag. Nat. IJ1st. 1, p. 586.
Dharwar, India.
Synonym: hirsutus, Ellint, 1839. Madras Journ. X, p. 213.
2. (;OLINDA ELLIOT] LINIITARIS, Thomas
1023. Journ. Bombay Nat. Hist. Soe XXIX, p. 373.

Kohat, ‥W. Fronter, … India.
3. (io).L'NDA ELLIOTI PALPERA, Thomas
1923. Journ. Bombay Nat. Hist. Soc. NXIX, p. 374.

Handisera, near Ambala, P'unjab.

+ (;()lC NDA ELLIOT1 WATK(NNI, Blanford 1870. Proc. Asiat. Soc. Bengal, p. 181.

Kirtar Range, sind.
5. G()LLNDA ELLIOTL (;LIERATL, Thomas

Iy23. Journ. Bombay Nat. Hist, Soc, NXIX, p, 374 .
Palanpur, Gujerat, IV. Inclia.
6. GOLLNDA ELLIOTI BOMIBAX, Thomas 1923. Journ. Bombay Nat. Hist. Soc. XXIX, p. 375. Andheri, Salsette Island, Bombay:
7. GOLL NDA ELIJOT1 CORAGilNlS. Thomas 1923. Journ. Bombay Nat. Hist. Soc. XXIXX, p. 375. W'utekolli, si. Coorg.
\&. G(OLLNDA ELLIOTI COFFAELS, Kelaart 1850. Journ. Asiat. Soc. CeyJon, V, p. 327. Ceylon.
9. GOLINDA ELLIOTI NEWERA, Kiclaart 1850. Journ. Asiat. Soc. Ceylon, V, p. 327. Newera Eliya, Ceylon.
10. G()LLNDA ELLIOTI MOOTHRLX, Hodgson I $8_{45}$. Ann. Mar, Nat. Hist. XV, p. 267. Kahulia I'owa, Nepal.
11. GOJL'NDA ELLIOTI CONENAA, Thomas 1923. Journ. Bombay Nat. Hist. Soc. NXIX, p. 376. Hasimara, Bhetan Duars.

## Genus 63. EC'HIO'THRIX, Gray

1867. Echlothrix, Giray, Proc. Zool. Soc. London, p. 599.

1Sig6. Crallrothrix, 'lhomas, Ann. Mag. Nat. llist. 6, NVIII, p. 246 ; new nathe to replace Eichiothrix under the impression that it was preoccupied.
Type Spectis.-Fchiothrix lencura, Gray.
Ravge.--Celebes.
Number of Forms-Three.

Charactrrs.-Skull extremely abnormal, like that of Rhynchomys. Rostrum greatly lengthened, narrow, and tending to take up nearly half length of skull. Interorbital constriction apparent; braincase broad, heavy. Nasals turned up anteriorly at the tip. Occiput not well ridged, but noticeably high. Upper incisors short, but not vestigial as in Rhynchomys. Zygomatic plate narrow, and slanting backwards above; infraorbital foramen large, little narrowed below. External pterygoids suppressed as in Rhynchomys. Bullae medium. Incisive foramina far forward in front of toothrow, but quite long, and well open. Zygoma narrow. Mandible with coronoid process vestigial, and incisor root forming rather a prominent process. Lower incisors large and highly abnormal, diverging widely from each other; it is difficult to see how they can function, as they close on either side of the premaxillae, more or less, and evidently do not touch the upper incisors at all. On the upper incisors (two skulls seen only) are traces of several faint grooves. Upper molars of normal Murine type, though much worn in those seen; cusps poorly marked (due to age ?); the laminae rather broadened, and suggesting the type found in Zelotomys. M. 3 simple and rather reduced. Lower teeth apparently not abnormal, the third molar quite well developed. Mammae $1-2=6$ ('Tate). Tail very naked, hairs short, poorly developed, scales large. Fur rough, nearly spiny. Feet evidently narrow.

Thomas transferred this genus to the Rhynchomyinae; but its molars and incisors are not abnormally reduced as they are in Rhynchomys, while the cranial characters could have been evolved independently in the two genera owing to similar diet or habits. Tate regards it as an offshoot of the Rattus xanthurus group; but this seems one of the few genera in the subfamily with simple teeth that is clearly and definitely not only distinct from Rattus but about as far from Rattus as it can be. That it may have been derived from Rattus appears beside the point; probably every living simple-toothed member of the group was. But that it is very far removed from that genus to-day there can be little doubt.

Forms seen: leucura, brevicula.

## List of Named Forms

1. ECHiothrix leucura leucura, Gray
2. Proc. Zool. Soc. London, p. 600.
(?) N. Celebes.
3. EChiothrix leucura Centrosa, milier \& Hollister
4. Proc. Biol. Soc, Washington, XXXIV, p. 67.

Winatoe, Middle Celebes.
3. ECiIIOThRIX LeUCURA brevicula, Milier \& Hollister 1921. Proc. Biol. Soc. Washington, XXXIV, p. 67. Pinedapa, Gulf of Tomini, Middle Celebes.

Genus 64. ACOMIYS, Geoffroy
183S. Acomys, Geoffroy, Ann. Sci. Nat. Paris, ze ser. X, zool. p. 126.
Type Species.-Mus cahirinus, Gcoffroy.


Fig. 14. Acomys dimidiatus, Cretzchmar.
B.M. No. 23.5.29. I, ${ }^{2}$; 2 $2 \frac{1}{2}$.


Fig. 15. Acomys dinidiatus, Cretzchmar.
B.M. No. 23.5.29.1, © ; • $2 \frac{1}{2}$.

Range.-Africa and Southern Palaearctic. Crete; Cyprus; Palestine, Egypt, Tripoli, Morocco; Sind (North-west India); Arabia. Sahara (Asben), Sudan, Abyssinia, Somaliland, Kenya, Uganda; North Nigeria; Rhodesia, Mozambique, 'Transvaal and Cape.

Numbrr of Forms. - About thirty-eight.
Characters.-Skull with broad braincase, very large interparictal, strong supraorbital ridges generally, and rostrum moderately long. Zygomatic plate slightly cut back above. Infraorbital foramen well open, scarcely narrowed below. Zygoma rather broad anteriorly, and jugal rather long as a rule. Palatal foramina long, well open, and extending between the toothrows. Size of hullae variable, but never extreme. Mesopterygoid fossa


Fig. 16. Acomys dimidiatus minous, Bate. Cheekteeth; $\times$ ro.
roofed in by bone anteriorly-"anterior half of mesopterygoid fossa closed by plate-like outgrowth from the palatines, which meet and form a distinct longitudinal ridge in median line, the open part of fossa thus reduced to a small triangular space bounded chiefly by the hamulars" (Miller). Hamulars joining bullae. Upper cheekteeth: 'T.r in M.s somewhat distorted inwards, as in Mus; all cusps present in this tooth except 'Г.7; T. 6 tending to project outwards. M. 2 with T. 1 and T.3, three cusps on second lamina, T. 8 and 9 on posterior lamina. M. 3 moderate in size, more or less bilaminate, but originally with traces of the front lamina. M.i three-rooted. Lower teeth evidently with the usual elements, the terminal heel of the first two molars small, and the outer subsidiary cusps vestigial, as a rule. Mandible with very small coronoid; the lower incisor root forms no process on its outer side (compare I ranomys). Upper incisors never pro-odont, often opisthodont.

In the few skulls seen of $A$. subspinosus, the teeth are abnormally narrowed (for the genus), and M. 3 is strongly reduced.
lur always densely spiny. Ear may be large. Tail relatively well clothed
with bristle-like hairs. Hindfoot broad; the digits not reduced; the foot proportionately strongly shortened. Nammac +-inguinal (Shortridge, South-west Atrican species).

Forms seen: ablutus, aegyptiacus, airensis, albigena, argillaeens, brockmami, calivimus, dimidiatus, enid, flacidus, homericus, hunteri, ignitus, johannis, kempi, louisae, minons, mullah, nesiotes, mubilus, percerali, pulchellus, sabryi, selousi, subspinosus, umbratus, viator, wilsoni, witherhyi.

This genus, like many desert-dwelling genera of Southern Palaearctic and Ifrican Thuridae, is not in a clear state of revision, and it seems there are far too many forms standing as distinet species.
subspinosus group. A. subspinosus, from South Africa, is absolutely distinct from all other species examined on the dental details already noted.
cohirims group. 'This contains the rest of the genus, and in the material secis, the following sections seem to be recognizable:
A. russatus section: containing the Golden Spinymice from Sinai and logypt. This species (russatus) differs from all others in its black hands and feet. The spines are powerfully developed.
B. wilsomi section: containing weilsomi and races only, from Kenya, Sudan, Uganda. Small densely spiny species with short tail and proportionately very short hindfoot. Head and body $8_{3} \mathrm{~mm}$. or less.
C. cathininus section: all other forms. There is surprising lack of distinetion between many of the "species." A. dimidiatus is according to Flower \& Aharoni a subspecies of cahirimus; but, as has been pointed out by Morrison-Scott, in the B.N. material calirinus is quite distinct. It is darker than the remainder, except pereezali from Kenya, which appears to be its East African representative, and differs in its paler belly.

Of the remainder, broekmani is paker than most; the spiny covering appears weaker in selousi, mullah and lomisae than in the majority, but this may be an age character, or a variable character. Nany of these forms may be ultimately regarded as races of dimidiatus, together with ignitus, ziator, johamnis, etc. Members of this section are typically though not always larger than zeilsomi: up to about in9 mm . at extreme development.

List of Nimien Formis
cahirinus Group
(russafus Section)

1. AcoMIS RUSSATUSRUSSATLS, Wagner
2. Abh. Akad. Munich, III, p. 195, pl. 3, fig. 2.

Sinai.
2. Atwnis RUssatus AEGYPTIACL'S, Bonhote
1912. Proc. Zonl. Soc, London, 0230 .
Wadi Hof, near Helwan, Eyypt.
Synonym: affinis, Gray, List. Spee. Mamm. Brit. Mlus. 108, 1843.

## (Typical Section)

3. ACOMI'S PERCEVALI, Dollman
4. Ann. Mag. Nat. Hist. 8, VIII, p. 126.

Chanler Falls, N. Guaso Nyiro, Kenya.
4. ACOMYS CAHIRINL'S, Desmarest
1819. Nouv. Dict. Ilist. Nat. XXIX, p. 70.

Cairo, Esypt.
Synonym: (cahirinus, Geoffroy, 1812 , Descr. Egypt, 11, pl. 5, nom. nud.) sabryi, Kershaw, 5922, Ann. Mag. Nat. Hist. 9, X, p. 107. Helwan, Egypt.
5. ACOMY'S CINERACEUS, Fitzinger \& Heuglin
1867. Sitz. K. Akad. Wiss. Wien. Math. Nat. Cl. 54, pt. 1, p. 573.

Doka, E. Scnaar, Sudan.
Synonym: acitherbyi, de Winton, 1901, Nov. Zool. VIIl, p. 400. El
Kawa, south of Khartoum. Status fide G. M. Allen. cinerascens, Heuglin, 1877, Reise N. Ost. Afr. II, p. 70.
6. ACOMYS DIMIDDIATUS DIMIDIATLS, Cretzchmar
1826. Rüppell, Atlas, p. 37, Taf. 13, fig. a.

Sinai.
Synonym: hispidus, Brants, 1827, Muizen, p. 154. megalotis, Lichtenstein, 1829, Darstell. pl. 37, fig. 2.
7. ACOMYS DIMIIDIATUS HOMERICUS, Thomas
1923. Ann. Mag. Nat. Hist. 9, XII, p. 173.

El Khaur, Aden district, S. Arabia.
8. ACOMYS DIMIDIATUS FLAVIDUS, Thomas 1917. Journ. Bombay Nat. Hist. Soc. XXV, p. 205.

Laki Hills, Sehwan, Sind, N.-W. India.
9. ACOMYS DIMIIDIATUS NESIOTES, Bate
1903. Ann. Mag. Nat. Hist. 7, XI, p. 565.

Kernyia Hills, near village of Dikomo, Cyprus.
10. ACOMY'S DIMIDIATUS MINOUS, Bate
1905. Proc. Zool. Soc. London, p. 321.

Kanea, Crete.
11. ACOMYS IUUNTERI, de Winton
1901. Nov. Zool. Vlli, p. 40 r.

Tokan, near Suakin, Red Sea Province, Sudan.
12. ACOMYS AIRENSIS, Thomas \& Hinton
1921. Nov. Zool. NXV1II, p. S.

Mt. Baguezan, Asben, W. Sahara.
13. ACOMYS VIATOR, Thomas
1902. Proc. Zool. Soc. London, p. 10.

Wadi Sultan, near Sokna, Tripoli.
14. ACOMYS JOHANNIS, Thomas
1912. Ann. Mag. Nat. Hist. 8, IX, p. 272.

Kabwir, Bauchi Plateau, N. Nigeria.

15．ACOMYS IGNITES IGNITLS，DoIman
1910．Ann．Mag．Nat．Hist．8，VT，P． 229.
Voi，Kenya．
Synonym：pulchellus，Dollman，i911，Ann．Mag．Nat．Hist．8，Vll． p．127．Chanler Falls，Kenya．

16．ACOMIYA JGNITLS MONTANES，Heller
1914．Smiths．Misc．Coll．1，ㄱllI，no．7，p，I2．
Mt．Marsabit，N．Kenya．
17．ACOMYS JGNITES KEXPI，Dollman
19II．Ann．Mag．Nat．Hist．S，VIII，p． 125.
Chanler Falls，N．Guaso Nyiro，Kenya．
is＇．ACOMIS MLLLAH，＇Thomas
1904．Ann．Mag．Nat．Hist．7，XIV，p． 103.
Harar，Abyssinia．
19．ACONJY BROCKNIAN゙1，Dollman
1911．Ann．Mag．Nat．Hist．S，VIII，p． 259.
Bulhar，Somaliland．
20．ACOMYS SEIOLSL．de Winton
i 896．Proc．Zool．Soc．London，p．So7．
Near Bulawayo，Rhodesia．
21．ACONIS LOUISAF IOUISAE，Thomas
i896．Ann．Mag．Nat．Hist．6，XVIII，p． 269.
Henwaina Plain， 40 miles south of Rerbera，British Somaliland．
22．ACOMS゙タ LOUISAE LMBRATLS，Thomas
1923．Ann．Mag．Nat．Hist．9，XII，p， 174.
Wagar Mountain，Gobis Nountains， 40 miles south－east of Berbera． I3ritish Somaliland．

## （wilsoni Section）

23．ACOMIY WHLSoNI WILS（）N1，Thomas 1892．Ann．Mag．Nat．Hist．6，X，p． 22.

Mombasa，Kenya．
24．ACOMIS WIH．SoN1 ARGILLACELS，Honton \＆Kicrshan 1920．Ann．Mag，Nat．Ilist．9，VI，p．ror．

Xonealla，Sudan．
25．ACOMIX WHABONI I NOD．St．Leger
1932．Ann．Mag．Nat．Hist．10，JX，p． 241.
Koliokwell River，west of lake Rudoff，Lganda．

1914．Ann．Nlas．Nat．Hist．S，NJV，p，\＆ith．
Magadi，Fienya．
27．ACOMIS WII．SINI ABLUTLS，Dollman
ro ${ }^{*}$ r．Ann．Mag．Nat．Mist．8，VIll，p． 127.
Nyama Nyango，N．（juase Nyiro，Kenya．

## subspinosus Group

28．ACOMI＇S SUBSPINOSUS，Waterhouse
1837．Proc．Zool．Soc，London，p．104．
Cape，S．Africa．
Not allocated to Group
（I have not examined those listed below，and am unable to allocate them to group or section．）

29．ACOMY＇S CHUDEAU1，Kollman 19II．Bull．Mus．Paris，p． 402.

Atar，south－west of Biskra，Mauretania．
30．ACOMYS HAWASHEN゙SIS，Frick 1914．Ann．Carnegie Jus．9，p． 26.

Sadi Malka，Hawash，Abyssinia．
31．ACOMI＇S SECRATI，Heim de Balsac
1936．Suppl．au Biol．de France et de Belgique，Paris，21，356，f．6，no．4．
Iniker，Ahaggar，S．Algeria．
32．ACOMYS INTERMEDIUS，Wettstein 1916．Anz．Akad．Wiss．Wien，53，p．161．

Dilling，S．K゙ordofan，Sudan．
33．ACOMIS NUBICUS，Heuglin
1877．Reise N．Ost．Afr．II，p． 70.
＂Nubia along the Nile．＂
34．ACOMYS ALBIGENA，Heuglin
1877．Reise N．Ost．Afr．II，p． 69.
Bogos，Eritrea．
35．ACOMIYS BOVONE1，de Beaux 1934．Atti．Soc．Ital．Sci．Nat．LXXIII，p． 280.

El Bur，Italian Somaliland．
36．ACOMY HYSTRELLA，Heller 1911．Smiths．Misc．Coll．LV1，17，p． 13.

Nimule，$N$ ．Uganda．
37．ACOMIS SPINOSISSIMUS，Peters
1852．Reise nach Mossambique：Säugeth．p． 160 ．
Tette and Buio，Portuguese E．Africa．
38．ACOMIYS TRAN゙SVAALENSIS，Roberts 1926．Ann．Transv．Mus．XI，p． 252.

Newgate，Zoutspansberg，Transvaal．
Genus 65．URANOMYS，Dollman
1909．Uranomys，Dollman，Ann．Mag．Nat．Hist．8，IV，p． 551.
Type Species．－U＇ranomys ruddi，Dollman．
Ravge．－African：Uganda，Gambia，Nigeria，Gold Coast，Nyasaland．
Number of Forms．－Seven．

Cinaracters.-.Skull with relatively short rostrum, broad braincase, interorbital constriction apparent, though little marked, supraorbital ridges usually developed. Jugal relatively long. Anterior border of zygomatic plate cut back above. Incisive foramina long, extending nearly to M.2, and rather broad. Bullae medium. l'alate broad, the posterior portion continued backwards, and the mesopterygoid fossae roofed in by bone, as in Acomys. Upper incisors usually strongly pro-odont, but this character not well marked in acomboides. Lower incisors long, the roots showing rather prominently on the mandihle; though not so extreme as in Bandicota, this is the nearest approach to that genus in this formation that I have seen other than in perhaps Anisomys and Echiothrix. Cheekteeth with M. 3 reduced; the cusps evidently not abnormal, but not wery well marked (most of the small series seen are nearly worn out).

I lindfoot broad, the threc central digits rather long, D. 5 and the hallux short. Fur stiff, like that of Lophuromys. 'Tail short, moderately or well haired. On the type label of zoodi is noted, mammae $3-3$.

This genus has been considered a near ally of Acomys by more than one author.

Forms seen: acomiondes, foxi, ozeeni, ruddi, tentebrosus, zwoodi.
It is not a well-known genus, and at the present, with limited material, no comments are offered on the distinctness or otherwise of the species.

List of Named Forms

1. LRAN()AM\% RLDDI, Dolman
2. Ann. Mag. Nut. Mist. 8, 1V, p. $55^{2}$. Kirui, Mt. Elgon, Uganda.
3. LRA\OMY'S L(GANDAE, Heller
4. Smiths. Misc. Coll. LVI, 17, p. 12. Likonda, Uganda.
5. LRANO, MY' TENEBR(St's, Hinton
6. Ann. Mag, Nat. Hist. 9, VII, P. 370.

Nsana, N.-VV. Nyasaland.
4. URANOMIY WOODI, 1tman
1921. Ann. Mag. Nit. Hist. ©, VIl, p. 369.
(hos), S. Nyasaland.
5. URANOMVS OWENI, Thomas
1910. Ann. Mag. Nat. Hist. S, VI, p, +3r.

Marakissa, Gambia.
6. URANOMY's lioxi. Thomas
1912. Ann. Mag. Nat. Hist. 8, 1N, p, 273.

Panyam, N. Nigeria.
7. LRANOAY'A ACOMDODDES, Ingoldhy
1929. Ann. Mag. Nat. Ilist. 10, 111, P. 523.

Kintampo, N. Ashanti, Gold Coast.
The remaining genera appear very distinct from the main stem of the Varinate.

Genus 66. BANDICO'TA, Gray.
1873. Bandicota, Gray, Ann. Mag. Nat. Hist. 4, XII, p. 418.
1907. Gunomys, Thomas, Ann. Mag. Nat. Hist. 7, XX, p. 203. (Arricola bengalensis, Gray \& Hardwicke.)
'Type Species.-Bandicota gigantea, Gray.
Range.-Indo-Malayan: Peninsular India generally, Sind, north to Kashmir; Bengal, Nepal, Burma, Annam, Siam, Yunnan, to Malacca; Sumatra, Java. Formosa.

Number of Formis.-About twenty-one.
Charactras.-Like Nesokia (next to be described), but less extremely specialized. Lower incisor root forming prominent process on mandible, but usually in rather lower position than in Nesokia, and rather less extreme. Skull similar in most respects to Nesokia; rather narrower often in the larger species. Occiput powerful; zygomatic plate as in Nesokia; palatal foramina not specially shortened, often reaching toothrows, though narrowed. Incisors rather less broad as a rule than in Nesokia, and sometimes pro-odont. Coronoid process high. Bullae relatively large. Palate little narrowed. Cheekteeth becoming a series of transverse plates (more or less straight), as in Nesokia, but rather less extreme than in that genus, and often with traces of cusps, probably always at birth. The cusps are crowded together. A minute posterointernal cusp is present in the young, in M.ı and M.2. M. 2 has T. 1 present, and the usual second and third lamina. M. 3 is smaller than M.2, but not much reduced. M.1 may be five- or six-rooted. The pattern is like that of Nesokia in the adult, except that in M. 2 and M. 3 T. 1 is apparently very generally traceable. Essential external characters as in Nesokia, though size may become large, up to 329 head and body or perhaps more. Plantar pads 6. Tail usually less short than in Nesokia, and may approach head and body length. In the lower teeth, there seems a tendency towards suppression of the terminal heel (least marked in the larger forms). The mammae vary from $3-3=12$ to a condition like the African coucha Rats in which there are about 18 , and they are not separated into sets.

This genus was divided by Thomas into two, Bandicota and "Gunomys." The latter was simply characterized as:
"Skull broad. Palatal foramina long. Mammae irregular, ${ }^{1}+\mathbf{- 1 8}$," against the "skull narrow and long" of Bandicota.
Wroughton keys the two groups in the Indian Mammal Survey as:
"Ilead and body more than 250. Nammae $3-3=12$. Bandicota. Ilead and body at most 225. Nammae 16-18. Gunomys."
But "Gunomys" gracilis of Wroughton has mammae as in Bandicota, 3-3= 12; whereas Bandicota sazilei of Wroughton (included as a Bandicota in his key) has the head and body about 223. Kloss in 1921 compared Bandicota with "Gunomy's" and gave the following table:

Bandicota
Skull . . . A little narrowed, breadth to length index $53-5$.
Nammae
Tail averages proportionately

12
A little longer, more than - 8 of head and hody length.
Less contracted posteriorly.

## Guvomys

This index 55-60.
12-18
Less than 8 of head and body length. More so.

He remarked that the differences were hardly of generic rank. It seems quite clear that Gumomys must be treated as a synonym of Bandicota, which is in itself not very widely separable from Nesokia.

The species of Bandicota were reviewed by Wroughton, Journ. Bombay Nat. Hist. Soc. XVH1, p. 736, 1908.

They appear to me to divide into five groups:
bengalensis group. Multimammate. Smallish forms (head and body at most 225 (Wroughton)). 1 very much doubt whether there is more than one valid species in this group. The differences given by Wroughton seem racial rather than specific. Perhaps lordi, rather a large type, may be a species, but there seem to be intermediate forms, such as varius, nearly as large. 1 therefore provisionally treat all named forms as subspecies of bengatensis, assuming that all have the multimammate character present.
gracilis group. Like the last, but mammae separated into sets: $3-3=12$.
indica group. As a rule rather larger (hindfoot 52 or less); mammae as far as known $3-3=12$; including a few rather doubtfully distinguishable species, as nemorizaga; and one evidently clearly distinct one, sazile $i$, which is smaller as a rule than this section of the genus (hindfoot $27-43$ mm., head and body about 223 or more). Apart from this species, members of this group are typically $240-300 \mathrm{~mm}$. head and body.
gigantea group. Like the last, hut giant: hindfoot 59, ho or more. Ilead and body to 360 mm . or more. The status of $B$. maldoharica is at the moment not clear.
This arrangement must be treated as provisional. 'The nomenclature of Wroughton is accepted; but according to 'Tate the name bandicota should stand for the giant forms, with synonym gigantea; Wroughton states that bandicota is a synonym of indica.

Forms seen: bandicota, bengalensis, cmrtata, "dubius," cthotana, gracilis, insularis, indica, jabonillci, kok, lordi, malabarica, mordax, nemorizaga, sazilei, setifera, sindicus, "taravensis," varithos, zarius, zardi.

```
List of Named Forms
bengatensis Group
1. BANDICOTA BENC:ALENSIG BENGALENSIS, Gray \& Hardwicke
Synonym: duccatnsts, Tytler, 1854 , Ann. Mas. Nat. Hist. 2, XIV, p. 173.
```

1833. Ill. Ind. Zonl. pl. 21.

Bengal.
(Bandicola bengalensis bengalensis),
tarayensis, Horsficld, 1855, Ann. Mag. Nat. Hist. 2, XVI. p. 112.
plurimammis, Horsfield, 1855 , Ann. Mag. Nat. Hist. 2, N゙VI, p. 112.
morungensis, Horsfield, r855, Ann. Mag. Nat. Ilist. 2, XVJ. p. 112.
barclayanus, Anderson, 1878, Journ. Asiat. Soc. Bengal, X'LVII, Part ii, p. 229.
blythiamus, Anderson, 1878, Journ. Asiat. Soc. Bengal, XLVII, Part ii, p. 227.
2. BANDICOTA BENGALENSIS SUNDAVENSIS, Kloss
1921. Treubia, II, 1, p. 116.

Oleleh, Atje, Sumatra.
3. BANDICOTA BENGALENSIS VARILLLES, Thomas
1907. Ann. Mag. Nat. Hist. 7, XX, p. 205.

Georgetown, Penang, Malay Peninsula.
4. BANDICOTA BENGALENSIS KOK, Gray
1837. Charlesworth's Mag. Nat. Hist. 1, p. 585.

Dharwar, S. Mahratta Country, India.
Synonym: prozidens, Elliot, 1839, Madras Journ. X, p. 209.
5. BANDICOTA BENGALENSIS INSULARIS, Phillips
1936. Spolia Zeylanica, 20, p. 95.

Thinney, near Jaffna, in N. Province of Ceylon.
6. BANDICOTA BENGALENSIS WARDI, Wroughton 1908. Journ. Bombay Nat. Hist. Soc. XVIII, p. 745.

Pandritton, Kashmir.
7. BANDICOTA BENGALENSIS SINDICL゙S, Wroughton
1908. Journ. Bombay Nat. Hist. Soc. XVIII, p. 746. Pithoro, Central Sind district.
8. BANDICOTA BENGALENSIS VARIUS, Thomas
1907. Ann. Mag. Nat. Hist. 7, XX, p. 204.

Georgetown, Pinang, Nalay Peninsula.
9. BANDICOTA BENGALENSIS LORD1, Wroughton 1908. Journ. Bombay Nat. Hist. Soc. XVIII, p. 746. Kolaba district, Konkan, Bombay.

## gracilis Group

10. BANDICOTTA GRACILIS, Nehring
11. Sitz. Ber. Ges. Nat. Fr. Berlin, p. 116.

Cevlon.
Synonym: dubius, Kelaart, 1850, Journ. Asiat. Soc. Ceylon, II, pt. 2, p. 319. Name preoccupied.
indica Group
11. BANDICOTA SAVILEI SAVILEEI, Thomas 1916. Journ. Bombay Nat. Hist. Soc. XXIV, p. 641. Mt. Popa, Burma.
12. IBANDICOTA SAV'lLEI (CLRTATA, Thomas 1929. Ann. Nag. Nat. Hist. 10, I1F, p. 205.

Raheng, WV, Siam.
13. BANDICO'IA INDICA INDICA, Bechstem
1800. Ueber Vicrfüss. 'Thiere, I1, p. 713.

Pondicherry, India.
Synonym: perchat, Shaw, i Kon, (ien, Zool. H1, p. 55.
(?) bandicota, Buchstein, 1800, Ueber Vierfüss. ']here, H, p. 714.
14. EANDICOTA INDICA SETIFERA, Horsfield
1824. Zool. Res, Java, no. 8, pl. XX1Y'.

Jiva. (Oceurs also in Sumatra.)
に. B.ANDICOTA INDICA ELLIOTANA, Anderson
IS7K. Journ. Asiat. Soc. Bengal, NI, V', ए. 231.
Calcutta.
1f. B.A.NDICOTA NEMORIVAGA NEX[ORIVAGA, Hodgson
IS3f. Journ, Asiat. Soc. Bengal, V, p. 234.
Nepal. (Occurs in lumnan and Formosa, according to Wroughton.)
Synonym: macropus, Hoduson, i845, Ann. Nag. Nat. Hist. NV, p. 268.
17. BANDICOTA NEMORIVAGA \IORDAX, Thomas
1916. Journ. Bombay Nat. Hist. Soc. XXIV. p. 642 .

Chieng-Mar, N. Stam.
18. BANDICOTA SIAXIENSIS, Kloss
1919. Journ. Nat. Wist. Soc. Siam, H1. p. 382.
'Fachin, Central Siam.

## "isanta (iroup

14. BANDI(OTA GIGANTEA GIGANTEA. Hardwacke
15. Trans. Linn. Soc. leondon, VII, p. 306.

Coast of Nalabar.
(According to Tate, 1936, P. 6it, this species should be known as bundicota, Bechstein; a synonym of indica, according to Wroughton.)
20. BANDICOTA GIGANTEA JABOLHLEI, Thomas
1927. Proc. Zool. Soc. Kondon, P. 54.

Tourane, Annam.
21. BANDICOTA MALABARICA, Shaw
1801. (ien. Zool. 11, p. 54.

Nalabar, S. Inda.

## Genus 67. NEsOKII, Gray

1842. NesokiA, Gray, Ann. Mag. Nat. Hist. X, p. 264.
1843. Spalacontys, Peters, Abhandl. K. Akad. Wiss. Merlin, p. 139. (Spalacomys indicas, Peters.)
'lype Spectes.-Arzicola indica, Gray \& Ilardwicke.
Range.-Chiefly South-western Asiatic part of Palaearctic: North India (Delhi, Sind, Baluchistan, North-west Frontier), Persia,

Southern Russian 'Turkestan ('Turkmenia); eastwards to Lob Nor (Sinkiang); also from Afghanistan, Mesopotamia, Syria, Palestine, and Northern Egypt.

Number of Forms.-About thirteen.
Characters.-Skull modified to a certain extent for fossorial life; short, broad, with considerable interorbital constriction, wellmarked supraorbital ridges which extend back to occipital region, this region strong, prominent. Rostrum short; incisors extremely broad, and rather proodont. Zygomatic width considerable. Zygomatic plate cut back above, broad, the infraorbital foramen moderate above, much narrowed below. Anterior portion of zygoma broadened, jugal short. Incisive foramina slit-like, much shortened, the incisor root sometimes forming a knob behind them. Bullae large and well inflated. Palate relatively narrow; pterygoid fossae deep. Mandible with high coronoid process, rather thick lower border, and lower incisor root forming a very powerful knob beside the condylar process, and nearly as high as this process, the structure comparable to that of Rhizomys.

Upper molars broad, hypsodont, plain laminate; no traces of cusps, or scarcely so, in any examined, though I have not seen any cutting specimens. Laminae $3-2-2$, the posterior lamina of M. 3 smaller than the others as a rule. M. I evidently five-rooted. It may be noted that the remnants of the front lamina of M. 2 (T.1, etc.) seem in this genus to be entirely suppressed. Lower molars a series of transverse plates.

Fur harsh or occasionally relatively soft. Tail considerably shorter than head and body, usually poorly haired (rather more naked than in Bandicota as a rule). Hindfoot with D. 5 and the hallux not specially reduced. The claws may be rather large. Nammae $2-2=8$.

Size moderate: about 150-250 head and body.
The forms referred to the genus were revised by Wroughton, Journ. Bombay Nat. Ilist. Soc. XV11, 1908, p. 736. All were regarded as distinct species; but all appear to be no more than races of the type. Vinogradov treats all forms occurring in U.S.S.R. as subspecies, including huttoni which seems one of the most elearly distinct.

Forms seen: bacheri, bailwardi, beaba, brachyura, buxtoni, griffithi, hardwickei, huttoni, indica, satumini, suilla.

## List of Named Forms

[^7]4．Nに゙九（）KIA INDIC：H HTTTONI，Blyth
1846．Journ．Asiat．Soc．Bengal，XV，p． 139.
Kandahar，Afghanistan．
5．NEKOKIA INDICA SATENINI，Nthring
1899．Sitz．Ber．Ges．Nat．Fr．Berlin，vii，p．ıos．
Merv，Transcaspia．
Synonym：（？）boettgeri，Radde 太 Walter，1889，Zool．Jahro．iv，p． 1036. See liroughton for status．According to＇Thomas， 1907，not distinguishable from huttoni．Anu－Darya， Transcaspia．
（3．NESOFL．INDICA B．AILWHRDI，Thomas 1907．Ann．Mag．Nat．Hist．7，XX，p．191\％．

Bunder－i－gaz，south shore of Caspian Sea．
7．NESOKLA INDIC＇A SCULJYY，Wood \＆Mason I876．Proc．Asiat，Soc，Bengal，p．So．

Yarkand，Chinese＇Turkestan．
8．NESOKIA INDICA DUTKELSKIANA，Heptner 1928．Arch．Naturg．92A，Heft 7，p． 126.

Samarkand，Russian Turkestan．
（）．NESOKIA INDICA BRACHYCRA，Buchner
1889．Wiss，Res．Przewalski Central－Asien Reisen：Zool．Th．1，Säugeth．p．82． Lob Nor，Sinkiang．
10．NESOKIA INDICA BLXTONI，Thomas
1919．Journ．Bombay Nat．Hist．Soc．XXVI，p， 422. Amara，Mesopotamia．
11．NESOKlA INDICA MYOSLRA，Wagnet 1845．Arch．f．Naturg．SI．Heft r，p．14）． Syria．
12．NESOKLA INDICA BACHERI，Nehring 1897．Zool．Anz．no． 547 ，p． 503.

Ghor el Safich，Palestine．
13．NESOKJA 1ND］CA SLILIA，Thomas 1907．Ann．Nag．Nat．Hist．7，XX，p． 203. Suez，Egypt．
The＂Nesokia＂argyopus of Cabrera，Bul．Real Soc．Esp．I list．Nat．1， p．118，Igot，Persia，Bashtyari Mountains，is an Arricola（Microtinae）（Cabrera， 1912）．

Genus 68．BEAM［YS，Thomas
1909．Beamys，Thomas，Ann．Mag．Nat．1list．S，IV，p． 107.
Type Species．－Beamys hindei，Thomas．
Range．－liast Africa：known from Kenya and Nyasaland．
Nimber of Formis．－Two．
Rramars．－This genus has been referred to the Dendromyinate，but I am convinced it has nothing to do with them．It has，it is true， the anterointernal cusp of X． 1 suppressed；but all other cusps，including the
posterointernal, are strongly developed, whereas in Dendromyinae the whole inner row is vestigial and there is no posterointernal; and in this genus $\mathbf{~ 1 . 3}$ is large, bilaminate, and well developed, whereas in all Dendromyinae it is vestigial. The infraorbital foramen is normal in this genus, highly abnormal as a general rule in Dendromyinae. Well-developed cheekpouches are present; it is probably on this account that T. 1 in M.r has become suppressed; very much the same thing is happening in Cricetomys and Saccostomus, in which genera cheekpouches are also present. I think that neither of these three genera are specially allied to each other, but that all are evolving or have evolved a roughly similar dental arrangement as regards the forepart of M.i independently. Beamys is much the least specialized of the three, but is nevertheless an isolated type.

Characters.-Cusps of the molars prominent, and angular. M. 2 with six cusps, the foremost lamina almost entirely obliterated; M.1, as indicated above, with only T. 2 and T. 3 on the front lamina, and with T.4, 5,6 , and T. 7,8 , and 9 all well developed. M. 3 large, with two roughly equal transverse plates. A small $\mathrm{T}_{.3}$ is present in $\mathrm{M}_{1.2}$, but evidently no T.1. In the only unworn skull seen, 'T. 7 is joined to 'T. 9 by a ridge passing behind T.8; M .2 is similar in this feature. Lower teeth normal, the outer subsidiary cusps strong, the terminal heel of M.1 and M. 2 well developed. Skull with poorly marked supraorbital ridges, and rather long rostrum. Incisive foramina very short, far in front of toothrows. Zygomatic plate more or less straight anteriorly; infraorbital foramen moderately large; jugal relatively long; bullae moderately small; palate broad.

Fur soft. Tail very poorly haired, in the very few seen reminiscent of the naked-tailed Melomys-Lromy's type of New Guinea Rats; hindfoot broad, arboreal, D. 5 relatively long, the three central digits rather short, hallux moderate. Cheekpouches present.

Forms seen: hindei, major.
The two known species differ from each other in size (major, hindfoot 25 mm . ; hindei, 20.7).

List of Named Forms

i. BEAMY'S HINDEI, Thomas
1909. Ann. Mag. Nat. Hist. 8, IV, p. Io8.

Taveta, coast region, British E. Africa.
2. BEAMIS MAJOR, Doliman
1914. Ann. Mag. Nat. Hist. 8, XIV, p. 428.

Mlanje, Nyasaland, E. Africa.

## Genus 69. SACCOSTOMLUS, Peters

1846. Saccostomes, Peters, Bericht. und Verhandl. K. Preuss. Akad. Wiss. Berlin, p. 25 S.
1847. Eosaccomys, Palmer, Science, N. S. XVII, 439, p. 873. Proposed to replace Saccostomus on the assumption that it was preoccupied by Saccostoma, Fitzinger. Thomas \& Schwann, Proc. Zool. Soc., p. 269, 1905, do not consider this the case; and the name Saccostomus is retained by Hollister, 1919, St. Leger, 193r, and by most authors.

Typp Splecies.-Saccostomus campestris, Peters.
Ravgr---African: Kenya, Uganda, Rhodesia, Nyasaland, Nozambique, South-west Africa, Bechuanaland, Transvaal, Angola, to Cape Province.

## Nimber of Forms.-Thirteen are named.

Characters.-Skull relatively narrow, with considerable interorhital constriction; rostrum not shortened. Supraorbital ridges often absent, or may be weakly developed. Zygomatic plate slightly cut back above; infraorhital foramen not much wider above than below, but not abnormally large; jugal relatively long. Incisive foramina long, well open, usually reachng the torthrow. Palate moderately broad. Bullac relatively large and inflated.

Upper molars lacking the anteromternal cusp of M.I ; this tooth has an anterior lamina consisting of $1 \mathbf{T} 2$ and T.3; behind this, T.4, 5, 6 and T.7, 8,9 are all developed and functional in the young animal, but the third lamina is often narrower than the second. X. 2 bas a vestigial 'T'. 3 (often barely traceable); the second and third lamina are like those of M1. 11.3 is small, but not excessively reduced; two clear laminae are present, the posterior one a little narrower than the anterior one. This tooth is not smaller than in many Nurinate, indeed some Murinae, such as. Mus, have it much more reduced. The cusps tend to wear down rather fast, so that a great number of adult specimens seen are more or less laminate in dental characters. The posterointernal cusp is frequently traceable even in the adult. The main cusps are therefore the same as in Beamys; but the pattern is much less angular and more simplified than in that genus. The laminae are broad, and tend to project outwards. M.i appears four-rooted. One skull in the British Museum has a fourth (posterior) molar in the upper jaws. The lower teeth have the usual Murine elements; the outer subsidiary cusps are originally present, though not large; the terminal heel of M.I and XI. 2 rather small. Xt. 3 is hilaminate, not particularly reduced.

Mandible normal, with well-developed coronoid process. Form thickset; fur very soft; ear moderate. Tail strongly shortened, most often less than half head and body length. Forefoot small, but digits normal. Ilindfoot broad, and strongly shortened, the outer digits not specially reduced. Nammae +-2-12 (Shortridge). A specimen of mashonae at the B...I. is labelled as with 3-2 10. Cheekpouches are present. The hindfoot is only about if per cent of head and body length, on average. 1 can suggest no reason for this peculiar shortening. 'The animals seem to be slow-moving, inoffensive creatures judging by captivity specimens, and as far as I know are purely ground dwellers, though one specimen I have had contact with showed a facility for climbing which was rather surprising. 'The young are apparently born more or less hairy, or so I am told, not naked as in many Nice; according to Flower, Acomys resembles Saccostomus in this respect.

On account of the suppression of the anterointernal cusp, this genus has been referred to the Dendromyinae; but, as in the case of Beamys, no real cusp reduction has taken place in this genus, and it is probably more correctly regarded as an isolated member of the Murinae. (If suppression of one cusp is to be
regarded as a subfamily character, Mastacomys from Tasmania will also have to have a subfamily, though in this case it is the anteroexternal, not anterointernal, which has gone.) 'This genus does not show any great reduction of M.3, which characterizes the Dendromyinae. As figured by 'lullberg, and as stated by this author, the molars of Saccostomus differ considerably from those of Steatomys (Dendromyinae). It is an interesting fact that out of all the Murine genera known, so far as I have traced, only three are definitely stated to possess cheekpouches, namely Beamys, Saccostomus and Cricetomys, and in these three alone the anterior lamina of XI.x is characterized by either loss or excessive reduction of ' .1 . It may be that this is brought about by the possession of these pouches, but one would have expected that the outer cusp might have become modified rather than the inner one. A further instance is the Gerbil Desmodilliscus, which possesses cheekpouches, and alone of all Muridae has lost the third lower molar, though retainng the upper one, so that its dental formula as regards cheekteeth is $\frac{3}{2}$. But the suggestion is weakened by the fact that the Palaearctic Hamsters possess large cheekpouches, but nothing highly aberrant has occurred in their dental characters. It is a curious coincidence, if not more, that this peculiar formation in M.s should occur in these three genera of unrelated African Muridae.

Compared with Beamys, the dentition of Saccostomus is very much less angular, much simpler, and therefore, according to the view generally held in this work, more specialized.

According to Tullberg, the glans penis of Saccostomus resembles that of Cricetomys, and the caecum is enlarged in a similar manner.

Forms seen: anderssoni, campestris, elegans, hildae, isiolae, mashonae, pagei, umbriventer.

I think it is very unlikely that there is more than one valid species of this genus, as indicated by the material examined. Perhaps isiolae may stand as being the only form with tail more than half head and body length. Ultimately I think all forms will be regarded as races of campestris. Numbers 9 to 13 are not represented in the British Museum.

## List of Named Forms

1. SACCOSTOMUS CAMPESTRIS CAMPESTRIS, Peters

18千6. Monatsber. K. Preuss. Akad. Wiss. Berlin, p. 258.
Tette, Mozambique, Portuguese E. Africa.
Synonym: lapidarius, Peters, 1852 , Reise nach Mossambique: Säugeth. p. 167.
2. SACCOSTOMUS CAMPESTRIS ELEGANS, Thomas

1897 . Proc. Zool. Soc. London, p. 43 r.
Karonga, Lake Nyasa, E. Africa.
3. SACCOSTOMUS CAMPESTRIS MASHONAE, de Winton
1896. Proc. Zool. Soc. London, p. So4.

Mazoe, Mashonaland.
4. SACCOSTOMUS CAMPESTRIS HILDAE, Schwann
1906. Proc. Zool. Soc. London, p. iso.

Kuruman, Bechuanaland.
5. SACCOSTOML'S CAMPESTRIS PAGFI, Thomas \& Ifinton 1023. Proc. Zool. Soc. London, p. 495.

Lehutitung, Central Kalahari.
6. SACCOSJOMI'S CAMPESTRIS ANDERSSONI, de Winton 1898 . Ann. Mag. Nat. Hist. 7, II, p. 6.

Damaraland, S.-W. Africa.
7. SACCOSTOMLS CAMPJ:STRIS UMBRIVENTER. Miller 1910. Smiths. Misc. Coll. LIV, No. 1025, p. 1.

Njoro Osolali, Sotik, lienya.
S. AACCOSTOMICS isjolate, Heller
1912. Smiths. Misc. Coll. LIX, no. 16, p. 14.

1siola River, N. Guaso Nyiro, kenya.
('Fine following have not been examined.)
4. SACCOSTOMLS MEARNSI, Hetler
1910. Smiths. Misc. Coll. LIV, No. 1924. p. 3.

Changamwe, Kenya.
10. SACCOSTOMLS FLSCLS, Peters
1852. Reise nach Mossambique: Säugeth. p. 168, pl. 36, fig. 4.

Inhambane, Mozambique.
(Probably an individual variation of campestris, according to Thomas $\mathbb{S}$ Wroughton, Proc. Zool. Soc. London, p. 295, 1907.)
if. SACCOSTONIS LIMPOPOENSLL, Roberts 1914. Ann. Transv. Mus. IV, p. 183.

Sand River, N.-W. Transvaal.
12. SAcCOSTOML'S CRICETULLS, G. MI. Allen \& Lawrence 1936. Bull. Mus. Comp. Zool. Harvard Coll. LXXIX, no. 3, p. 100.

South bank of Greeki River, sabei district, due north of Mt. Elgon, Uganda.
13. SACCOSTOMLS STRLETER1, Roberts
1914. Ann. Transv: Mus. IV, p. 183.

Hector Spruit, Transvaal.

Genus -o. (RICETOMIS, Waterhouse
1840. Cricetomys, Waterhouse, Proc. Zool. Soc. Loindon, p. 2.

Type Spfecies.-Cricetomys gambianns, Waterhouse.
Range- African: Sudan, Kenya, Lganda, Zanzihar; Liberia, Nigeria. Fernando Po, Gaboon, Congo, Ingola; Nyasaland, Dozambique, 'Transtaal.

Nimbrer of Forns-'Twenty-eight are named.
(haracters--Very large. Cheekteeth differing from normal Nurinae in that the inner cusps of the upper series are lecoming vestigial. Skull long and narrow, with narrow braincase, relatively long rostrum, the nasals somew hat broadened anteriorly. Supraorhital ridges well developed,
cxtending back to the occipital region, which is upstanding and strong. Paroccipital process noticcably lengthened. Bullae small. Incisive foramina very short, often situated mostly in premaxillae. Palate normal. Jugal very long for a Murine, taking up most of zygoma, relatively broad. Infraorbital foramen very wide, rounded, often little narrowed below. Zygomatic plate moderately narrow, though tilted upwards. Incisors medium. Mandible with high coronoid process.

Upper checkteeth: M.I with only two functional cusps, T. 2 and 'Г.3, on the front lamina; 'T.1 very reduced, and very much displaced backwards, so that apparently it never is joined to the front lamina, even when cut, but is joining ' 1.5 (of the second lamina), as a rule, and in old age even becomes merged into the second lamina. 'T. 5 and 'T. 6 like the two cusps in front of them, but T'. 4 pushed backwards in a similar manner to T.i, so that it joins the lamina behind it. The posterior lamina consists of T. 8 and T.9, also a postcrior supplementary cusp, which may wear out in M.r but seems fairly constantly traceable in M.2. M.2 with a small T.I (joined to T.5, and distorted backwards, as in the front molar); the two posterior laminae are like those of M.т. A small T. 3 may also be present. M. 3 large, nearly as large as M.2, but evidently without 'T.r, which I have only seen clearly present in one specimen. In a few skulls seen with the teeth cutting, the pattern appears to be just as described above. On account of the extra posterior cusp, М.ı and \.2, have four outer cusps, as in some complex-toothed Oriental and Australasian types. M. 2 is nearly as large as M.r. M.i is three-rooted. The lower teeth are complex, evidently with the usual Murine elements present; the terminal heel is well developed in M.r and M.2, also the outer subsidiary cusps as a rule, particularly the anteroexternal of M.2. Small extra subsidiary cusps are sometimes present in both upper and lower teeth.

Size large, usually over 300 mm . head and body, up to $45^{\circ}$ (St. Leger). Large cheekpouches present. Fur may be soft or rather rough, but seems to me to vary individually rather than specifically. Ear moderately large. Hindfoot rather broad, with six plantar pads; the three central digits not lengthened, the outer digits not reduced. Forefoot normal. Tail usually or always longer than head and body, the terminal portion pale in colour as a rule, the tail moderately haired. In the living animal, when walking, the tail is not dragged along the ground, but always held erect and seems to be used as a sort of balancing organ. The stomach, according to Tullberg, is very complex, and the caecum enlarged. Alone of all Muridae examined by this author except some Madagascar genera, the tongue is stated to possess three papillae circumvallatae, instead of the usual one. Mammae 8 or ro (Shortridge). Tullberg has pointed out that this genus is very isolated among Murinae, and suggests that it may have been derived from other ancestors than the remainder of the Murinae, a view which is here suggested. It seems in fact that the molar structure is alone nearly sufficient for it to be removed to a subfamily; but Saccostomus and Beamys, as pointed out elsewhere, parallel it to a certain degree, in that the anterointernal cusp is reduced (though actually suppressed in those genera), perhaps on account of cheekpouches being present. But in those genera, the posterointernal


Fig. i7. Cricetomys gambianus gambianus, Waterhouse. B.M. No. 32.8.1.23, ठै; © 1 .


Fig. is. Cricetomys gambiants gambiants, Waterhouse.
B.M. No. 32.8.1.23, ${ }^{\text {on ; }}$ I.
cusp has not been suppressed, whereas in Cricetomys it is absent. The genus seems to be a specialized offshoot of some very generalized type.

These Rats are slow-moving, good-tempered, in my opinion, considerably intelligent, and very attractive in captivity. They have good captivity lives, but for some reason have not yet bred in this country. When excited or pleased they make a chirruping noise reminiscent of a canary.


Fig. 19. Cricetoniys gambianus gambianus, Waterhouse. Cheekteeth: B.M. 32.8.1.23. ot; $\times 7$.

Forms seen: adventor, ansorgci, buchanani, cosensi, cunctator, dichrurus, dolichops, elgonis, cmini, ganbianus, grahami, kenyensis, liberiae, luteus, oliviae, osgoodi, poensis, proparator, sanctus, servorum, ซiator, vaughanjonesi (Cricetomys emini raughanjonesi, St. Leger, 1937, North Rhodesia).

I arn quite unable to distinguish between any of the standing "species," and regard all forms as races of the type.

## List of Named Forms

1. CRICETOMYS GAMBIANUS GAMBIANUS, Watcrhouse 1840. Proc. Zool. Soc. London, p. 2.

Gambia, IV'. Africa.
Synonym: goliath, Rüppell, 1842, Mus. Senckenb. 1II, p. 114.
2. CRICETOMYS GAMBIANUS LIBERIAE, Osgood 1910. Ann, Mag. Nat. Hist. 8, V, p. 283.

50 miles inland from Monrovia, Liberia.
ro-Living Rodents- 11

3．CRICETONIS GAXBIANL＇S DICHRLRLS，Osgood
1910．Ann．Mag．Nat．Hist．8，V，p． 280.
Anambara River，S．Nigeria．
＋CRICETONIY GAMBIANL A OLINIAE，Dollman
1911．Ann．Nag．Nat．Hist．8，Vlll，p． 258.
Bornu，N．Nigeria．
5．CRICETOMIS GAMIBIANU＇S SERVORUM，Hinton
1919．Ann．Nag．Nat．Hist．9，IV，p． 288.
Lagos，Nigeria．
6．CRICETOMIS GANBIANL＇s BLCHANANI，Thomas \＆Ilinton 1921．Nov．Zool．NXVIII，p． 7.

Farniso，near Kano，N．Nigeria．
7．CRICETONIY GANBIANLS POEXSIS，Osgood 1910．Ann．Jag．Nat．Hist．8，V，p． 279.

Bubi Town，Bantabiri，Fernando Po．
S．CRICETONIS GAMBIANLS DOLICHOPS，Osgond 1910．Ann．Mag．Nat．Hist．8，V，p． 280.

Como River， 70 miles from Gaboon．
9．CRICETOMIS GAMBIANLS LANGI，Hatt 1034．Amer．Nlus．Nov．708，p． 5.

Faradje，Upper Uelle，Congo．
10．CRICETHMYS GAMBIANLS ENINI，Wroughton 1910．Ann．Mag Nat．Hist．8，V，p． 106.

Gadda，Nonbuttu，N．－E．Congo．
11．CRICETONIY GAMBIAN゙ゥ ふANCTLA，Hinton 19I9．Ann．Mag．Nat．Hist．9，IV，p． 286.

Inkongo，Sankaru，Belgian Congo，
12．CRICETOMIS（；AMBIANES JICROTIS，l．onmbere 1917．Kungl．Svenska Vet．Akad．Handl．Stockholm，58，art．2，p． 77.

Masisi，west of Lake Kivu，Central Africa．
13．CRICETONIY（iANIBLANL＇s ANSORGEI，Thomas
1904．Ann．Nag．Nat．Hist．7，XIll，p． 412.
Pungo Andongo，N．Angola．
＋（ RICETONIY G GAMBIANLS DISSIMILLIA，Rochebrune
LSis．Bull．Soc，Philom．7，IX，p． 86.
Landana，Cabinda，N．Angola．
Synonym：tephits，Rochebrune，I885，Bull．Soc．Philom．7，1X，p． 87.
15．CRICETOMIY（BAMIBIANI＇S VIATOR，Thomas
1904．Ann．Mag．Nat．H1st．7，X111，p．＋13．
Likangala，Ayasaland．
16．（RICETOMIS（ $A$ AMBIANLS ADVEXTOR，Thomas \＆Wroughton 1907．Proc．Zool．Soc．London，p． 295.

Coguno，Inhambane，Portuguese E．Africa．
 agosi．Proc．Zool．Soc．London，p．izi．

Tambarara，Portuguese E．Africa．
18. CRICETOMIYS GAMIBIANUS HAAGNERI, Roberts
1926. Ann. Transv. Mus. XI, p. 252.

Zoutspansberg, Transvaal.
19. CRICETTONY'S GAMBIANU'S COSENSI, Hinton 1919. Ann. Mag. Nat. Hist. 9, IV, p. 286. Zan2ibar.
20. CRICETOMY'S GAMBIANUS KENYENSIS, Osgood 1910. Field Mus. Nat. Hist. Zool. ser. X, p. 9.

South side of Mt. Kenya.
21. CRICETONYS GAMBIANUS LUTEU'S, Dollman 1911. Ann. Mag. Nat. Hist. 8, VIII, p. 12 .4.

Igembi Hills, north-east of Mt. Kenya.
22. CRICETONIS GAMBIANUS RAINEYI, Heller
1912. Smiths. Misc. Coll. LIX, no. 16, p. 15.

Mt. Gargues, Matthews Range, Kenya.
23. CRICETOMIYS GAMBIANUS ENGUVI, Heller 1912. Smiths. Misc. Coll. LIX, no. 16, p. 16.

Taita Hills, Kenya.
24. CRICETOMY'S GAMBIANUS OSGOODI, Heller 1912. Smiths. Misc. Coll. LIX, no. 16, p. 16. Mazeras, Kavirondo, Kenya.
25. CRICETONIY GAMIBIANU'S PROPARATOR, Wroughton 1910. Ann. Mag. Nat. Hist. 8, V, p. 107.
E. Ruwenzori, Uganda.
26. CRICETOND'S GAMBIANUS ELGONIS, Thomas 1910. Ann. Mag. Nat. Hist. 8, V, p. 198. South face Mt. Elgon, Kenya.
27. CRICE'TOMISS GAMBIANU'S GRAHAMII, Hinton 1919. Ann. Mag. Nat. Hist. 9, IV, p. 283. Nuba Mountains, S.-E. Sudan.
28. CRICETOMI'S GAMBIANUS KIVL゙ENSIS, Lönnberg 1917. Kungl. Svenska Vet. Akad. HandI. Stockholm, 58, art. 2, p. 75. Masisi, Belgian Congo.

Genus 7r. PHLOEOMIYS, Waterhouse
1839. Phloeomys, Waterhouse, Proc. Zool. Soc. London, p. io8.

Type Species.-Mus (Phloeomys) cumingi, Waterhouse.
Range.-Philippine Islands: Luzon, Manila.
Number of Forms.-Two.
Characters.-Size very large, easily the largest member of the subfamily, indeed of the whole family. Head and body length 485 mm . ('Taylor), or perhaps more. Skull highly modified, with extremely reduced bullae, and postorbital process present. Cheekteeth a series of plain straight transverse plates.

Skull with short broad rostrum, this thick and heavy, and with powerful supraorhital ridges, which extend far backwards, and are much raised, and jut out in front of the squamosals to form large postorbital processes. The interorhital constriction, which is not well marked, is placed rather far back. Between the postorbital ridges, the skull is deeply depressed. Occipital region strong, prominent, but narrow. Paroccipital process long; bullae extremely reduced. Basioccipital between them broader than usual. l'alate relatively broad, rather noticeably sloping downwards posteriorly. Incisive foramina shortened, not approaching the toothrow. Zygomatic plate broad, slanting backwards a little ahove; infraorbital foramen abnormally narrowed both above and below. Incisors extremely broad. Zygoma robust, exeept the jugal which is noticeably narrow and short. Nandible not abnormal.

Upper molars with no traces of cusps in the small series examined, the laminae plain and straight, perhaps less tightly packed together than is usual; the laminae 3-2-2, the posterior lamina of M. 3 shorter than the others. The third lamina of $\mathrm{M.I}$ and $\mathrm{M.2}$ is as broad as the others, suggesting that the posterointernal cusp may have been present originally. In the lower teeth, A.i has four laminae, the first narrower and rounded, often with an isolated island in the centre; the fourth confined to the outer side of the tooth, and perhaps representing the terminal heel of more normal Murinae. N. 2 with three laminae, the posterior also confined to the outer side. N. 3 with two laminae of nearly equal size.

Fur relatively thick and soft in pallidus, harsher in the type, which differs in its darker colour. Lar small. Feet arboreal, foreelaws very large; D. 3 and D. 4 subequal and slightly longer than D. 2 and D. 5 in the forefoot; D. 5 of hindfoot nearly as long as the three central digits; hallux quite long, and all digits bearing large claws. Tail uniformly haired, but not bushy (compare Crateromys); with a profuse growth of stiff hairs throughout. According to Taylor there are "mammae 1 - $\mathbf{I}$, inguinal."

Remarks.-This genus is usually regarded as type of a distinet subfamily the Phlocomyinae. This subfamily was erected by Alston, and contained also Nesokia. Nesokia is less specialized than Phlocomys in dental characters, and is, moreover, connected by Bandicota with more normal Rats. Athough 1 have seen no Pllocomy's with unworn teeth, it seems safe to assume that the genus is descended from cuspidate ancestors like the rest of the Murinae, and it would be an interesting fact to ascertain whether the young show any signs of cusping or not. Niller \& Gidley define the Phloeomyinae as "upper cheekteeth with triserial arrangement of elements obscured by flattening out of each trio of tubercles to form a single detached transverse lamina; crowns moderately hypsodont ; hraincase relatively small and auditory bullae reduced; external form heavy, arboreal."

But Nesokit approaches the present genus fairly elosely in molar pattern; the braincase is relatively small in most of the Indo-Malayan and Australasian Giant Rats, and in Crateromys more so than in the present genus; the bullae are not very much more reduced than in some species of Rattus, Dacnomys,

Mallomys, Hyomys and others, and the slightly arboreal characters are duplicated in all the other Oriental Giant Rats, to a greater or lesser degree.

The genus is referred to the Murinae by Winge, but not by Tullberg.
'Tate transferred to the Phloeomyinae all the complex-toothed Rats of the 1ndo-Malayan. They were regarded as "Muridae with complexly-folded molars" (p. 612). As Phlooomys is the most strictly simple-toothed form in the whole area, the name at least is singularly inappropriate; and if this classification were retained, such forms as Apodemus must be regarded as a Phloeomyine, to mention only one.

It seems that Phlocomys, though extremely specialized, is not of necessity much more distinct from the main Murine stem than such types as Cricetomys, etc., and in my opinion is less distinct from them than is Anisomys.

Compared with the other Giant Rats, Crateromys, Mallomys, Hyomys and Cricetomy's, its skull is noticeably broad, besides being larger; all these others are more narrow-skulled types. The dentition of course differs from them all.

Forms seen: cumingi, pallidus.

## List of Named Forms

1. PHLOEOMYS CUMINGI, Waterhouse
2. Proc. Zool. Soc. London, p. 108.

Luzon, Philippine Islands.
Synonym: (?) elegans, Cabrera, 1901, Bol. Real. Soc. Esp. Hist. Nat. p. 372. Locality unknown (Philippines).
(?) atbayensis, Elera, 1895 , Cat. Sist. Faun. Filipinas, 1, p. 21 (nom. nud.).
2. PHLOEOMY'S PALLIDU'S, Nehring
1890. Sitz. Ber. Ges. Nat. Fr. Berlin, p. 106.

Luzon, Philippine Islands.

## A Note on the Genus Diontys of Thomas

The genus Diomy's was erected by Thomas in 1917 (Journ. Bombay Nat. Hist. Soc., XXV, p. 203), with type crumpi, Thomas (same reference, p. 204), from Pareshnath, Ilazaribagh, Behar, India.

It is based on one broken skull, with much-worn teeth, the external characters of which are not known. Apparently nothing more has been heard of it. The front molar is stated by Thomas to lack the anteroexternal cusp, T.3; but this may have been brought about by wear, as in very old age, this cusp may become more or less untraceable in other forms. The infraorbital foramen appears rather narrow, and the lower incisors long. Thomas compared the skull with Millardia, from which it is evidently distinct. It may be that it represents a valid genus, but having no external characters to compare it with other genera, and no undamaged skull, I find it quite impossible to include it in the present classification.

# Gfnera Unrepresented at the British Museum 

## African

## 1. NILOPEGAMIYS, Osgood

1928. Field Mus. Nat. Hist. Zool. ser. XII, p. 185.
'Type.-N. plumbeus, Osgood (same reference). 'Tributary of Little Abbai, Gojam, Abyssinia.
Described as related to the Ratins rats of Africa (Mastomys, etc.), but modified towards aquatic life. Ear small. Hindfoot enlarged, about 27 per cent head and body length.

## 2. LE1MAC(OMIYS, Matschic

1893. Sitz. Ber. Ges. Nat. Fr. Berlin, p. 107.

TYpf.-L. buttneri, Matschie (same reference, p. 109). Bismarckburg, Togo, Dahomey.
Tail shortened. Probably most nearly allied either to Steatomys or Lophuromys. I have no notes on its dental details.

## Indo-Malayan

3. MELASMOTIIRIN, Miller \& Hollister
4. Proc. Biol. Soc. Washington, XXXIV, p. 93.

Typf.-Melasmothrix naso, Miller \& I Iollister (same reference). Rano Rano, Xiddle Celebes.
Described as superficially like Echiothrix (if so, a very distinct genus), skull like Echiothrix, but pterygoids normal; zygomatic plate situated over M.r. Head and body 125 mm . 'Tail shortened, 90 mm .

> 4. TRIPHOMIS, Niller
1910. Proc. U.S. Nat. Mus. XXXVIII, p. 399.

Type.-T. achustus, Niller (same reference). Benguet, Luzon, Philippine Islands.
Based apparently on one old specimen; the most noticeable characters from the genus description are that the infraorbital foramen is large, that the outer digits of the hindfoot are much reduced, and the posterior palate said to be slightly abnormal. Nammate (Io) as in Rattus rattus group.

> 5. TARSOMIS, Mcarns
1905. Proc. U.S. Nat. Mus. NXVIII, p. 453.

Type. - $T$. apornsis, Mearns (same reference). Dindanao, Philippine Islands.
If distinguishable from Rattus, it will be on a character of the plantar pads
of the hindfeet. Much work remains to be done on this character within the genus Rattus.

## 6. LJMNOMYS, Mearns

1905. Proc. U.S. Nat. Mus. XXVIII, p. 451.
'T'ype.-L. sibuanus, Mearns (same reference, p. 452). Mount Apo, Mindanao, Philippines.

## Other Forms:

L. mearnsi, Hollister
1913. Proc. U.S. Nat. Mus. XLVI, p. 324.

Grand Malindang Peak, Mindanao, Philippines.
L. picinus, Hollister
1913. Proc. U.S. Nat. Mus. XLVI, p. 325.

Mt. Halcon, Mindoro. Philippines.
From the original description, this genus has not a single character to distinguish it from Rattus. This conclusion is apparently reached by Thomas (Proc. Zool. Soc. London, 1907, p. 141).

## Australasian

## 7. LORENTZIMYS, Jentink

1911. Nova Guinea, 9, p. 174.

Type--Lorentzimy's nouhtysii, Jentink.

1. LORENTZIMYS NOUHUYSII, Jentink
2. Nova Guinea, 9, p. 174.

Bivak II, Upper Noord River, Dutch New Guinea.
This was described and has passed into current literature as a jumping species, though Mr. Tate told me that in his opinion the foot is probably scansorial. From Rümmler's key, it does not appear to be very widely distinguishable from Rattus, but the toothrows from the few measurements given by Rümmler appear to be nearly as Macruromys (i.e. strongly reduced), the palatal foramina are said to be shortened, the skull short, broad and deep, the ear large, and the tail tufted. The size is small, about 85 mm .

In a group as large as this, it is quite impossible for me to include any genus in the key, unless I have actually seen it, so I am compelled for the present not to offer further remarks on the above seven named genera.

## MURINAE: <br> SPECIAL HORKS OF REFERENCE

Tate, Some Muridae of the Indo-Australian Region, Bull. Amer. Mus. Nat. Hist. LXXII, VI, p. 501, 1936.
Miller, Catalogue Mammals Western Europe, 1912, p. 791; Apodemus, Micromys, Rattus, Mus, Acomys.
Vinogradov, Rodents of U.S.S.R., 1933, Les Mammifères de l'U.R.S.S. 10, Les Rongcurs.
Wroughton, Indian Mammal Survey, Journ. Bombay Nat. Hist. Soc. XXVI, p. 783 , 1919.

Ri'mmler, Die Systematik und Verbreitung der Muriden Neuguineas, Mitt. Zool. Mus. Berlin, 1938, 23, Heft 1, pp. 1-297.
I. Wood Jones, Mammals of South Australia, 1923-5.

Hollister, East African Nammals in U.S. Nat. Mus. 1919, Smiths. Inst. U.S. Nat. Mus. 99, part. 1I, Rodentia, Lagomorpha \& Tubulidentata, p. i.
St. Leger, Kiey to genera of African Rodentia, Proc. Zool. Soc. 1931, p. 958.
Tullberg, Ueber das System der Nagetiere, 1899. Also a paper, Muriden aus Cameroons (Nova Acta Reg. Soc, Upsal., 3, XVI, 1893).
Thomas, numerous papers, many of which have been already referred to when dealing with the separate genera. Specially may be mentioned, 1898 , Trans. Zool. Soc. London, XIV, p. 378; on Mammals obtained by Mr. John Whitehead during his recent expedition to the Philippines.
Shortridge, Mammals of South-west Africa, Heinemann, London, 1934, vol. I includes Rodentia.
Brazenor. Mem. Nat. Mus. Melbourne, no. 8, p. 74, 1934. Revision of Notomy's.

## Subfamily RHYNCHOMIINAE

1896. Thonas: Muridae, Rhynchomyinae.

Geographical Distribetion.-Philippine Islands; "High Mountains of Central Northern Luzon."
Nimbfr uf Genera.-One.
Characters,-Cheektecth $\frac{2}{2}$, so reduced as to be nearly invisible to the naked eve, and appearing practically functionless. Upper incisors extremely reduced. Rostrum greatly elongated.

Remarks.-The teeth of this genus are, so to speak, "too far gone" for any one to be able to say with certainty whether the form belongs to the Nurinae, a genus of which, Echiothrix, closely resembles this genus in the extraordinary cranial characters, or to the Hydromyinae, many of which resemble Rhynchomys in the molar formula of $\ddot{y}$. On this account I think a subfamily must be retained for it.

Thomas transferred Echiothrix to this subfamily, but, as I have remarked elsewhere, Echiothrix has the dentition of quite a normal member of the Murinae, and the similarity of skull between this genus and Rhynchomys may very well be the result of convergent evolution.

Genus 1. RIIIN('HOMIS, 'lhomas
1S95. Rhynchoars, Thomas, Ann. Mag. Nat. Hist. 6, XVI, p. 160.
Type Spferfs.-Rhynchomys soricoides, 'Thomas.
Ranize- Monte Data, Luzon, Philippine Islands.
Nlaber of Fordis.-One.
Characters.-Skull highly aboormal on account of the greatly elongated rostrum. Nasals with the anterior end projected upwards.入or supraorbital ridges present, and little interorbital constriction. Occipital region of skull upstanding, though not ridged Zygomatic plate very narrow,
slanting evenly backwards from its lower border. Bullae relatively small. Zygoma narrow, jugal short. Nandible with well-developed coronoid process, the jaw narrow and long. Incisive foramina long, with two grooves running from their posterior ends to the centre of the palate. In front of the minute teeth, there are two ridges, one on each side, running forwards along the outside of the palate; Thomas suggests that these may be used for biting. No enclosed pterygoid fossae. Upper incisors minute; lower incisors less reduced, sharp, but extremely slender. Cheekteeth $\frac{2}{3}$, extremely small; M.I about twice the size of M.2. They appear more or less simple basin-shaped in form.

Fur soft. Muzzle long. Tail shorter than head and body, moderately haired. Feet not abnormal; D. 5 hindfoot longer than hallux, considerably shorter than the three central digits.

Compared with Echiothrix, the skull is less robust, while the coronoid process is not reduced.

Forms seen: soricoides.
List of Named Formis

1. RHYNCHONIS SORICOIDES, Thomas
${ }_{1} 895$. Ann. Mag. Nat. Hist. 6, XVI, p. 160.
Mt. Data, Luzon, Philippine Islands.

## Subfamily HYDROMYINAE

1896. Thomas: Muridae, Hydromyinae.
1897. Tullberg: Muridae, Murini, part.
1898. Miller \& Gidley: Muridae, Hydromyinae.
1899. Winge: Muridae, Murini, part, Hydromyes.
1900. Weber: Muridae, Hydromyinae.

Geographical Distribetion.-The Australasian region, from New Guinea to Tasmania; and the Philippine Islands (Luzon).
Nlaber of Genert.-Eight, one of which is not represented in the British Nuseum. The genus Cranomys, which is often referred to this subfamily, has been dealt with in the Nlurinae.

Characters.-Like the Murinae, but cheekteeth more simple, the laminae more or less basin-shaped (the pattern probably originally derived from a Nurine pattern in which the outer row of the upper molars becomes suppressed). Infraorbital foramen usually large, and round; zygomatic plate much narrowed, typically (always except Seromys) not cut back above, but nearly straight anteriorly. N1. $\frac{8}{3}$ absent or vestigial. Bullae small. In many cases external form much modified for aquatic life.

## Key to the Genfra of Hydromyinae

(not including the genus Pseudohydromys which is not represented in London)
External form much modified for aquatic life. Hindfeet extremely en-
larged. Skull modified, of aquatic form (tendency towards heavy
flattened brainease, great interorbital constriction, etc., as seen also in the Nootropical Cricetinc aquatic Rats, Ichthyomys, etc.). Cheekteeth $\frac{2}{2}$.
Ear vestigial. ']ail with highly developed swimming-fringe. Molars smaller. (Incisors narrow) Crossomys
Ear not vestigial. 'Tail with less developed swimming-fringe. Molars large.
Brainease heavier; frontals less constricted; ineisive foramina much shortened. Incisors narrow.

Parahydromys
Braincase lighter; frontals normally more constricted; incisive foramina less shortened; incisors heavier.

Hydromys
fixternal form not modified for aquatic life. Hindfect not enlarged. Skull less modified. (Ear normal.)
Upper incisors not strongly pro-odont. Lower incisors not much lengthened. Incisive foramina less shortened.
Nasals normal. Hindfeet much narrowed and lengthened, suggesting a saltatorial type. Zygomatic plate Hydromyine, not cut back above. Cheekteeth Nasals slightly shortened anteriorly. Ilindfeet normal. Zygomatic plate Nurine, slightly cut hack above. Cheekteeth :. Neromys
L pper incisors strongly pro-odont. Lower incisors lengthened. Incisive foramina strongly shortened. (Nasals shortened anteriorly.)
Cheekteeth :
Chrotomys
Cheekteeth 2.
Celaenomys
] think that with representative material, the last-named would not prove gencrically distinet from Chrotomys.

Genus 1. llyDRONIS, Geoffroy
1804. Hydromys, Geoffroy, Bull. Sci. Soc. Philom. Paris, ILI, 93, p. 253.

T'ype Species.-Hydromys chrysogaster, (ieoffroy.
Range.-Australia (evidently with a wide range, and including Tasmania), New Guinca, Aru Islands, Key Istands, New Britain, Waigeu Island and Goodenough Island (D'Entrecasteaux group).

Number of Foras.-Fourteen are recognized by Rümmler.
Characters.-Skull modified for aquatic life. Nasals shortened anteriorly. Frontals excessively constricted; braincase narrower than in l'archydromys and Crossomys, lighter. Supraorbital ridges not developed, or barely tractable. Dursal profile of skull flattened. Bullac very smait, basioceipital correspondingly broad. Incisive foramina rather short, considerahly in front of toothrows. Toothrows tend to converge anteriorly. Incisurs rather long, and heavy. Zygomatic plate relatively very narrow, slightly curved
inwards anteriorly, quite different from that of normal Murinae. A strong masseter knoh present at lower border of infraorbital foramen; this foramen is large, nearly of even width, scarcely narrowed below, but less open than in Parahydromys and Crossomy's. Nandible without special peculiarities. Cheekteeth $\frac{2}{2}$; molars large; M. i considerably larger than M.2. The laminae in M.I take the form of basin-shaped lobes, the centre of each lobe being occupied by a deep depression, the inner side of the first two laminae with a rather prominent cusp, which, however, wears down. Third lamina in M.i smaller than the anterior two. The outer side of the first two laminae also has a cusp present. M. 2 with one main lamina, placed posteriorly, with a small circular heel at the back originally formed by a small outer re-entrant fold, which appears to wear out. In front of this lamina is a small lobe representing probably T.i of M. 2 of normal Murinae. In the lower series, M. 2 has two roughly equal-sized lobes; M.i has two lobes, the anterior larger than the posterior.

Externally modified for aquatic life, though much less highly than Crossomys. Ear much less reduced than in that genus, though small. Forefoot with four functional digits, D. 3 the longest; the forefoot is very small compared to the hindfoot. Ilindfoot very broad and large, with five digits, the outer two shortest; D. 3 and D. 4 subequal and longest. Fur thick and soft. Tail rather shorter than head and body as a rule, well haired throughout its length. Size largest of subfamily. The webbing of the digits of the hindfeet is moderately developed. Mammae $0-2=4$ (Thomas).

Rümmler regards all named forms as races of one species; the material examined tends to support this view.

Forms seen: beccarii, caurinus, chrysogaster, esox, fulwolavatus, fuliginosus, illuteus, longmani, melicertes, nauticus, reginae.

## List of Named Fornis

1. HY'DROMYS CHRYSOGASTER CHRYSOGASTER, Geoffroy
2. Bull. Sci. Soc. Philom. Paris, 93, p. 254.

Bruni Island, D'Entrecasteaux Canal, Tasmania.
Synonym: leucogaster, Geoffroy, 1804, Bull. Sci. Soc. Philom. Paris, 93, p. 254. Ile Maria, Tasmania. apicalis, Kuhl, 1820, Beitrag, p. 60. flaziventer, Owen, 18+0-5, Odontography, p. 26. fulvogaster, Jourdan, 1837, C.R. Acad. Sci. Paris, 5, p. 523. fulvoventer, Cuvier, 1837, Ann. Sci. Nat. 2, 8, p. 372.
2. HYDROMIS CHRYSOGASTER FLLVOLAVATLS, Gould
1853. Mamm. Austr. III, pl. 25.

River Murray, S. Australia.
Synonym: lutrilla, Gould, 1853, Mamm. Austr. I, p. xxxvi, ex Macleay MS. Sydney; New S. Wales.
3. IIYDROMIYS CHRY'SOG.ASTER FELLIGINOSL'S, Gould
1853. Mamm. Austr. III, p. 27.

King George's Sound, W. Australia.
4. HYDROMY'S CHRYSOGASTER CALRINLS. Thomas
1909. Ann. Mag. Nat. Hist. 8, IV. p. 197.

Parry's Creek, Wyndham, N.-IW. Australia.

5．HYDROMIY（IIRYSOCASTER LAWNFNSIS，Troughton 1935．Rec．Austral．Nus．XIX，no．4．p． 253.

Lawn Ilill Creek，N．－WV．Queensland．
6．HYDROAYS CHRY：OGASTER LONGMANI，Thomas 1923．Ann．Mag．Nat．Hist．9，Xl，p．171． Ravenshot，N．Queensland．
7．HIVDRONIY（HRYNOGASTER REGINAE，Thomas \＆Dollman igog．Proc．Zool．Soc．London（1908），p． 789.

Inkerman，Queensland．
8．HYDRO．\IV CHRY sOGASTER MELICERTI：S，Thomas 1021．Ann．Mag．Nat．Hist．9，V111，p． 430.

Melville lsland，N．Australia．
9 HYDRGNIY（HRY＇SOGASTER GROO＇］ENSIS，Troughton 1935．Rec．Austral．Mus．XIX，no．4，p． 252.

Groote Eylandt，N．Australia．
Io．HYDROMIS CHRYSGGASTER MOAF，Troughton in35．Rec．Austral．Mus．X1X，no．4，p． 254.

Moa Island，Torres Straits．
11．HYDROMI＇S CHRYSOGAATER NALTELCLS，Thomas 1921．Ann．Mag．Nat．Hist．q，V1lI，p． 429.

Dobo，Aru Islands．
12．HODROMIY CHRY゙九）（；AsTER BLCCARII，Peters I\＄75．Ann．Mus．Civ．Stor．Nat．Genova，V1，p． 303.

F゙ei Island．
13．HYDRONIY＇S CHRY＇SOGASTER ESOX，Thomas
1906 ．Ann．Mag．Nat．Hist．7，NV1I，p． 324.
Port Moresby，British New Guinea．
Synonym：esox illutcus，Thomas，1922，Ann．Mag．Nat．Hist．9，1X， p．264．Idenberg River，N．Dutch New Guinea．

14．IIMDROAIY＇（HRISOGASTER NEOBRITTANICUS，Tate \＆Archbold 1935．Amer．Mus．Nov．So3，p． 8. Bamings，Balayang，Wide Bay，New Britain；Solomon Islands．

## Genus 2．PARAHYDROAIYS，Poche

1906．Parahydromys，Poche，Zool．Amz．XXX，p．326．To replace
1906．Limnomvis，Thomas，Ann．Mag．Nat．Hist．7，XVI1，p．325．（Not of Mearns．） 1906．Drosomy＇s，Thomas，Proc．Biol．Soc．Washington，XIX，p．199．（To replace Limnomys，Thomas．）

Type Specifs．－Limnomys asper，Thomas．
Range．－New Guinea；originally described from Mlount Gayata；subse－ quently known from other localities，including Dutch New Guinea．
Number of Forms．－One．
Characters．－Compared with Hydromys，the nasals appear even more shortened anteriorly；the frontals are less constricted，though ＂ith no supraorbital ridges；the braincase is extremely heavy，much broader．

Incisors weaker, narrow. Incisive foramina relatively shorter, more or less confined to the premaxillae. Infraorbital foramen broader, its base more at right angles with ascending branches, so that if it were not considerably higher than wide, its base would form the base of a square. Masseter knob at base of infraorbital foramen poorly developed. Bullae very small. Molars as in Hydromys.

Tail considerably longer than head and body, well haired. Ear medium. Hindfoot much larger than forefoot; but webbing of digits apparently little developed. Nammae $0-2=4$.

According to Tate, Stein remarks that the genus occurs in rocky places in the forest high on the mountains, and is independent of water. It is interesting if this genus is not aquatic, as it appears to be specialized towards aquatic life in quite a similar manner to IIydromys, if a little less extremely.

Rümmler in his revision of the Muridae of New Guinea synonymizes this genus with IIydromys. I think it is sufficiently distinct to stand as a valid genus.

Forms seen: asper.

## List of Named Forms

1. PARAHYDROMYS ASPER, Thomas
2. Ann. Mag. Nat. Hist. 7, XVII, p. 326.

Mt. Gayata, Richardson Range, British New Guinea.
Genus 3. CROSSOMIS, Thomas
1907. Crossomys, Thomas, Ann. Mag. Nat. Hist. 7, XX, p. 70.

Type Species.-Crossomys moncktoni, Thomas.
Range.-Described from Serigina, Brown River, North-east British New Guinea.
Number of Forms.-One.
Characters.-Braincase very large, smoothly rounded and heary; frontals rather more constricted than in Parahydromys; not or faintly ridged. Bullae extremely small. Toothrow situated far forward in skull. Incisive foramina of medium length, less reduced than in Parahydromys. lnfraorbital foramen very large, shaped like that of Parahydromys. Hasseter knob at its base well developed. Zygomatic plate very narrow. Incisors evidently narrow. Molars $\frac{2}{2}$, relatively small, more reduced than in the two allied genera.

External form extremely modified for aquatic life. Hindfoot with five digits, the bases of which are webbed. Tail longer than head and body, fully haired, its under surface with a well-developed swimming-fringe, which divides into two rows of hairs near the body. Forefoot extremely small, with four functional digits. Lar practically untraceable. Thomas was of the opinion that the genus represents the most highly specialized aquatic Rodent.

Riimmler regards the genus as a synonym of Hydromys. I think that there is not the slightest doubt that Crossomys represents a very distinct genus. The
vestigial ear and the smaller molars appear to be its main characters; the skull also has quite a different aspect from that of $I y d r o m y s$, but is more like that of Parahydromys, which is, however, least modified for aquatic life of the three quera.

Forms seen: moncktomi.

## List of Named Forms

1. CROssonIY's MONCKTONI, Thomas
2. Amn. Mag. Nat. IIist. 7, XX, p. 72.

Serigina, Brown River, N.-E. British New Guinea.

## Genus 4. CHROTONIYS, Thomas

1895. Ann. Mag. Nat. Hist. 6, XVI, p. 16 r.

Type Spectes.-Chrotomys zehiteheadi, Thomas.
Range.-Luzon, Philippine 1slands.
Number of Forms.-One.
Characters.-Not modified for aquatic life. Rostrum long, nasals shortened anteriorly. Frontals moderately constricted, not developing ridges apparently. (Three skulls seen only.) Bullae small. Braincase rather broad. Incisive foramina very short, situated about halfway between the front of the toothrows, and the incisors. Zygoma much narrowed; jugal short. Infraorbital foramen narrow, little wider above than below; without a masseter knoh at its lower border. Upper incisors broad, strongly pro-odont. Lower incisors much lengthened. Cheekteeth $\frac{3}{3}, ~ \ 1.3$ vestigial. Upper molars like Hydromys, but the third lohe of M.I is smaller, and there is a well-marked extra lobe at the back of M.2. Lower teeth like Hydromys, except for the presence of a minute third molar. Nuzzle long. Ears medium. Fur thick, with a prominent yellowish middorsal stripe which extends forwards to the forehead present. 'Tail relatively short, fairly well haired. Hindfoot narrow, though less so than in Leptomys. D. 5 short, hardly reaching past base of D.4. Forefoot normal.

Forms seen: zchitehoadi.

> List of Named Forms
> r. CHROTOXIYS WHITEHEADI, Thomas
> 1895. Ann. Mag. Nat. ITist. 6, XV1, p. 161.
> Mt. Data, Luzon, Philippine Islands.
> (ienus 5. (ELAENOM1Y', Thomas
> ISMR Trans. Zool. Soc. London, XIV, p. 390.
> 'Type Species.- Veromys silaceus, Thomas.
> Range.-Luzon, Philippine 1slands.
> Number of Forms.-One.

Characters.-Skull essentially as in Chrotomys. Molars $\frac{2}{2}$, perhaps a little smaller than in Chrotomys, but like the two anterior teeth of Chrotomy's in pattern. External characters like Chrotomys, but without a middorsal stripe.
'Iwo skulls only have been seen. It is probable that with a larger series, the genus would be not generically separable from Chrotomys. I think little importance should be attached to the presence or absence of M. 3 in this group, as when present the tooth is at the point of suppression, and sufficient specimens have never been taken to show whether it is a constant character, or whether, as perhaps in the Bathyergine genus Heterocephalus, M. 3 with age becomes shed.

Forms seen: silaceus.

## List of Named Forms

1. CELAENOMYS SILACELS, Thomas
2. Ann. Mag. Nat. Hist. 6, XVI, p. 16 i.

Mit. Data, Luzon, Philippine Islands.

## Genus 6. LEPTOMYS, Thomas

1897. Leptomys, Thomas, Ann. Mus. Civ. Stor. Nat. Genova, XVIII, p. 6 ro.

Type Species.-Leptomys elegans, Thomas.
Range.-New Guinea.
Number of Forms.-Two.
Characters.-Nasals normal, projecting forwards to level of incisors. Little interorbital constriction present in skull, and no supraorbital ridges in the few seen. Incisive foramina considerably less reduced than in Chrotomys, though short and not approaching M.1. Zygoma narrow, and jugal short. Zygomatic plate narrow; infraorbital foramen rather larger than in Chrotomys, and without masseter knob.

Cheekteeth $\frac{s}{\frac{s}{j}} ;$ M. 1 of the upper series like Chrotomys, the depressions deep, the third lobe reduced. M. 2 like Chrotomys; M. 3 very small. Lower teeth originally with high cusps, more Murine than in allied genera, though evidently simplifying with wear. Incisors not pro-odont.

Mammae $0-2=4$. Ear medium. Form less thickset than in Chrotomys. Tail subequal in length to head and body, scaly, very poorly haired. Ilindfoot narrow and lengthened, the three centre digits considerably longer than D.5, which is slightly longer than the hallux. Forefoot normal.

Forms scen: elegans.

## List of Named Forms

1. LJPTOMIS ELEGANS, Thomas
2. Ann. Mus. Civ. Stor. Nat. Genova, XVIII, p. 6ro.

British New Guinea.
2. LIP'POM1's ERNSTMIAYRI, Rummler
1932. Das Aquarium, VI, p. 135.

Saruwaged Mountains, Huon Peninsula, New Guinea.
1889. Neromys, Thomas, Proc. Zool. Soc. London, p. 248.

TYpe Species.- Veromys myoides, Thomas.
Range.-Queensland.
Number of Forms.-One.
Characters.-Form Mouselike. Cheekteeth $\frac{2}{2}$. Skull with little interorhital constriction; nasals rather shortened anteriorly; no supraorbital ridges; braincase rather heavy; bullae small. Incisive foramina of medium length, not approaching M.r. Ineisors thick, inclined to be slightly pro-odont, the upper ones of the type skull orange, the lower ones white. Infraorbital foramen and zygomatic plate more Murine than in other genera; the zygomatic plate very slightly cut back above. Cheekteeth with in the upper series M1.1 nearer Chrotomys than Hydromys, but differing from the former in that the third lobe is about as large as the first and second; M .2 with short inner front lobe, as usual, and the posterior lohe well developed, with a small heel. M.i lower with two lobes, the anterior one with a small inner and outer fold in the front portion, M. 2 two-lobed. M. 2 upper is rather simpler than in Chrotomys.

Mammae $0-2=4$. 'Tail a little longer than head and body, not well haired. Hindfeet normal, but D. 5 relatively short. D. 5 forefoot considerably reduced.

Only one skin and skull seen.
Forms seen: myoides.

## List of Named Forms

1. XEROMI' MYOIDES, Thomas
2. Proc. Zool. Soc. London, p. 248.

Port Mackay, Queensland.

## (Gents not represented in London)

1. PSEUDOHYDROAIS, Rümmler
2. Zeitschr. Für Säugetierk, 9, p. 47. From New Guinea.

Type.-Pseudohydromys murimus, Rümmler.
: PSELDOHYDROMYS MURINUS, Rummler
1934. Zeitschr. für Säugetierk. 9, p. 48.

Morobe, Mlt. Mism, N.-E. New Guinea.
This is from description a small Mouse (head and body 9I), with apparently simple Hydromws-like molars (checkteeth $\frac{3}{3}$ ), the external form not modified for aquatic life, and as figured by Rummler, the incisors not pro-odont, and the zygomatic plate as in Hydromys (i.e. not resembling that of Neromys). From Rümmler's measurements, the hindfoot is proportionately shorter than in Leptomys. The form seems well differentiated from other genera.

## HYDROMIINAE: <br> SPECIAL WORKS OF REFERENCE

Tate, 1936, Bull. Amer. Mus. Nat. Hist. LXXII, p. 642. Some Muridae of the IndoAustralian Region.
Rommler, 1938, Die Systematik und Verbreitung der Muriden Neuguineas. Mitteilung. aus dem Zool. Mus. Berlin, Band 23, Heft. 1, pp. r-297.

## Subfamily DENDROMIYINAE

1896. Thomas: Muridae, Dendromyinae, part, included Deomy's.
1897. Tullberg: Muridae, Murini, part.
1898. Niller \& Gidley: Muridae, Dendromyinae (but their diagnosis included "manus with only three functional digits," which appears to restrict the group to Dendromus only; they do not give a list of genera).
1899. Winge: Murini, Mures, part.
1900. Weber: Muridae, Murinae, part.

The group is called Dendromurinae by G. M. Allen in his Check List of African Mammals (1939).

Geographical Distribution.-Africa, south of the Sahara.
Number of Genert.-As here understood, five. (The unrepresented Leimacomys, Matschie, which has been listed with the Murinae, may belong here.)

Characters.-Like the Murinae, but with the inner row of cusps of the upper cheekteeth becoming more reduced, so that there is only one functional inner cusp present on the first and second molars. M. $\frac{3}{3}$ vestigial.

Remarks.-The genera referred to this group might perhaps be referred to the Murinae, as it will be seen that neither Tullberg nor Weber retain this subfamily. Miller \& Gidley regard it as the most primitive group of their Muridae, with the triserial arrangement of the cusps of the upper molars "not fully developed." The opposite view is taken here, namely, that the primitive triserial arrangement has become much reduced. To this group have been added Beamys and Saccostomus. Though genera like these might be ancestral, I have already given my reasons for retaining them in the Murinae when dealing with that group; moreover, if they are placed in this subfamily, it seems that Cricetomys probably should be also.

Of the genera retained here in the subfamily, Dendromys and Steatomys appear very closely allied to each other, though the former has become specialized for arboreal life, and has lost its fifth finger, and appears about to lose the claw of the fifth hindtoe (or in many species has lost it).

Notwithstanding its many extreme specializations, such as loss of hallux, abnormal form of skull, specialized posterior palate, and its rather generalized complex tecth, 1 think Malacothrix is a near ally of these genera. Whether Prionomys has evolved independently a similar arrangement of cusps of molars,
and much reduced $\mathrm{It}_{.3}$, is not clear ; certainly its molars are not like those of the above-mentioned genera in many characters, and the cusps recall those of Oenomys in their strong enlargement. Petromiscus is referred to the Dendromyinae by Hinton, and is retained here ; but I am not altogether convinced that this group of small Mice is not another South African representative of the Cricetinae ; in many ways their molars seem to me to be, at least in the adult, very similar to many forms of that subfamily, and very unlike those of Dendromyinae as here understood.

## Key to the Genera of Dendromyinae

Infraorbital foramen enlarged, but without conspicuous ridging of outer border, and without masseter knob. Checkteeth with cusps abnormally raised up, the rows separated by deep valleys; upper incisors pro-odont. (Mlanus with four, pes with five digits.)

Prionomys
Infraorbital foramen when enlarged with outer border conspicuously ridged, and with strong masseter knob. Cheekteeth with cusps never ahormally raised up. Upper incisors not pro-odont.
Infraorhital foramen as in normal Muridae. (Manus with four, pes with five digits.)

Petromyscus
Infraorbital foramen enlarged, its outer border prominently ridged; a large masseter knob present at its lower border.
Hindfoot with four digits only, the hallux suppressed. Pterygoid fossae unusually broad, and posterior nares extremely narrow. Cheekteeth narrowed; frontals abnormally constricted. Malacothrix Hindfoot with five digits, the hallus retained. (Not combining cranial characters as noted above.)
Forefoot with three digits. Tail long, prehensile. (Pygmy arboreal forms.)
Forefoot with four digits. Tail relatively short. Not specialized for arboreal life.

Steatomys

## Genus 1. DENDROMUS, Smith

1829. Dendromus, Smith, Zool. Journ. IV, p. 438.
1830. Poemys, Thomas, Ann. Mag. Nat. Hist. S, XVIII, p. 238. (Dendromus melumutis, Smith.)
1831. Chortomys, Thomas, Ann. Mag. Nat. Hist. 8, XV111, p. 238. (Dendromys lorati, de Winton.) Vald as a subgenus.
'Type Species.-Dendromus typicus, Smith = Mus mesomelas, Brants.
Range.-African: Abyssinia, Kenya, Uganda, 'langanyika; Congo, Cameroons, Nigeria; Angola, South-west Africa, Rhodesia, Nyasaland, South Africa.

Number of Forms.-About forty-four.
Characters.-Very small. Skull with considerable interorbital constriction; braincase round and moderately large. Supraorbital ridges rarely traccable. Incisive foramina broad, long, reaching usually about the lovel of the middle of M.1. Palate broad. Bullae relatively large. Infraorbital foramen very large, the zygomatic plate narrow, but well tilted upwards; a prominent masseter knob present. Upper incisors compressed, one-grooved. Cheekteeth rather narrow; M. 3 minute. M. 1 with T. 2 and T.3, narrow and close together; T.4, 5 and 6 representing the second lamina, the inner cusp (T.4) small; T. 8 and 9 representing the last lamina, and sometimes traces of a fourth outer posterior cusp. M. 2 with a vestigial T.3; the other cusps as in the posterior laminae of M.1. Sometimes an extra cusp in front of the front lamina in M.נ is present. Lower incisors plain; cheek tecth with M. 3 small; M. 2 often noticeably large, as large sometimes as M.1; the pattern evidently not highly abnormal, and not far removed from the Murine type.

Manus with three digits only, D. 5 suppressed entirely as a rule. Hindfoot with very short hallux, D. 5 nearly as long as the three central digits, and often clawless; its claw when present is minute. Tail long, said to be prehensile, and not well haired. A middorsal stripe may be present or absent; or in D. lozati there are three stripes on the back.

Thomas divided the genus into three subgenera:
Dendromus s.s.: back single-striped (or without stripe), D. 5 of hindfoot retaining the vestigial claw.
"Poemy's" like Dendromus cranially and dentally, but D. 5 of hindfoot without claw.
Chortomys: back three-striped; D. 5 of hindfoot said to have a minute claw (though in some specimens it seems to be suppressed); upper profile of skull is strongly reminiscent of the abnormal condition of Malacothrix (excessive interorbital constriction, widely spreading zygomata, etc.).
There appears to be some difference of opinion at the moment as to the limits of "Poemys" and Dendromus. For instance, G. M. Allen lists whytei, ruddi, ochropus, acraeus and lineatus as Poemys, whereas Hollister states they are all Dendromus. Shortridge, 1934, gives generic rank to Poemys because of its "many differences both in structure and habits" (as observed in South Africa). There appears, however, to be no doubt that Poemys is a synonym of Dendromus. It is possible that the possession of the minute claw or the nail may be an age character. 'There are unquestionably far too many distinct "species" standing at present in this genus.

According to Shortridge, there are 8 mammae present in the genus.
Forms seen: acraeus, ansorgei, concinnus, exoneratus, haymani, insignis, jamesoni, kizu, lineatus, locati, mesomelas, mystacalis, melanotis, messorius, major, nigrifrons, nyikae, nyasae, pecilei, ruddi, shortridgci, zulturnus, whyytei.

## List uf Named Forais

## Subgenus Dendromus, Smith

1. DEMDROMIC'S MIESOMIELAS MEsoMIELAS, Brants
2. Wet geslacht der Muizen, p. 122.

Cape of Goond Hope, near Zondags River.
Synonym: typicus, Smith, Zool. Journ. \&, p. 439, 1829.
ayresi, Ruberts, $19{ }^{2} 3$, Ann. Transv. Mus. IV, p. 83. Pondoland.
2. DENDROMLS MIFSOMIELAS MAJOR, S't. Leter
1930. Ann. Nag. Nat. Hist. 10, VT, p. 622.

Sisanukanu Village, (irootfontein district, S.-WV. Africa.
3. DENDROMLS JAMESONI JAMIESUNI, Wroughton
1910. Ann. Mag. Nat. Ilist. 8, 1II, p. 247.

Zoutspansberg, 'l'ransvaal.
4. DENDROMLE JAMESONI PONGOLENSIS, Roberts
1931. Ann. Transw. Mus, XIV', p. 232.

Pongola River, 15 miles west of Manaba, N: Zululand.
5. DENDROMUL ANGORGEI, Thomas
1905. Ann. Mar. Nat. Hist. 7, XVJ, p. 173.

Caconda, Ienguella, Angola.
6. DENDROMES LELCOSTOMLS', Monard
1932. Bull. Soc. Neuchatel. Sci. Nat. 57, P. 55.

Caluquembe, Benguella, Angola.
7. DENDROMLS NYASAE, Thomas
1916. Ann. Nag. Nat. Hist, S, XVIII, p. 24.

Nyika Plateau, N. Nyasaland.
8. DENDROAILS INSIGNIS INBIGNIS, Thomas
1903. Ann. Mag. Nat. Hist. 7, XII, p. 341.

Nandi, Kenya.
9. DFNDR(OIKS INSIGNIS KIVLT, Thomas
1916. Ann. Mag. Nat. Hist, S, XVIII, p. $24^{2}$.

Buhamba, Kivu region, Congo.

1912. Smiths. Misc. Coll. LIX, 16, p. 5.

NIt. Gargues, Matthews Range, Kenya.
11. DENDROMICS RSSIGMIS ABYSSINICLS, Ospood
1936. Field Mus. Nat. Hist. Publ. Zonl. Ser. XX, p. 235.

East slope of Alt. Albasso, Chilalo Nountans, Arusi, Ahyssina.

1936. Field Mus, Nat. Itist. Puhl. Zool. ser. XX, p. 235.

Kalongi, Butangu Valley, western slope of M1. Ruwenzon, Ulanda.
13. DENDROMIE S MF SBORIE 8 , Thomas
spo3. Ann. Mag. Nat. Hist. 7, XIl, p. 340.
Efulen, Camerouns.
14. DENDROMI'S OREAS, Osgood
1936. Field Mus. Nat. Hist. Publ. Zool. ser. XX, p. 236.

South-west side of Mt. Cameroon, Cameroon Mandate, British Nigeria.
15. DENDROMUS WHYTEI WHYTEI, Wroughton
1909. Ann. Mag. Nat. Hist. 8, JII, p. 247.

Fort Hill, Nyasa.
16. DENDROMUS WHY'TEI PALLESCENS, Osgood 1910. Field Mus. Nat. Hist. Publ. Zool. ser. X, 2, p. 7.

Ulukenya Mountains, Kenya.
17. DENDROMUS WHYTEI CAPITIS, Heller 1912. Smiths. Misc. Coll. LIX, 6 , p. 6.

MIt. Lololokwi, Matthews Range, Kenya.
is. DENDROMUS RUDDI, Wroughton 1910. Ann. Mag. Nat. Hist. 8, V, p. 275. Malakisi, MIt. Elgon.
19. DENDROMIUS ACRAEUS, Wroughton
1909. Ann. Mag. Nat. Itist. 8, IV, p. 541.

Kirui, Elgon, Kenya.
20. DENDRONIUS OCHROPUS, Osgood
1910. Field Mus. Nat. Hist. Publ. Zool. ser. X, 2, p. 6.

Lake Elementeita, Kenya.
21. DENDROMLS LINEATUS, Heller
1911. Smiths. Misc. Coll. LVI, 17, p. 4.

Rhino Camp. Lado Enclave, S. Sudan.
22. DENDRONUS PC'MILLIO, Wagner
1841. Münch. Gel. Anz. XII, p. 437.

Cape Colony.
23. DENDROMIS MELANOTIS MELANOTIS, Smith 1834. South Afr. Quart. Journ. II, p. 158. Port Natal, S. Africa.
Synonym: subtilis, Sundevall, Ofvers. Kongl. Svenska. Vet. Ak. Forh. Stockholm, 3, 5, p. 120, 1846.
24. DENDROMIS MELANOTIS BASUTICUS, Roberts 1927. Rec. Albany Mus. 3, p. 484. Basutoland, S. Africa.
25. DENDROMILS MIELANOTIS CHIVERSI, Roberts 1929. Ann. Transv. Mus. XIIl, p. 116. Vlakfontein, Parys District, Orange Free State.
26. DENDRONIU'S MELANOTIS THORNTONI, Roberts 1931. Ann. Transv. Mus. XIV, p, 23 I. Port Elizabeth, E. Cape Province.
27. DENDROML'S MELANOTIS CAPENSIS, Roberts 1931. Ann. Transv. Mus. XIV, p. 232. Wolseley, Cape Province.
28. DENDROML'S MELANOTIS PRETORIAE, Roberts 1931. Ann. Transv. Mus. XIV, p. 232. Rietondale, P'retoria.

29．DENDROML S LONGIC：ALDATLS，Roherts 1913．Ann．Transv：Mus．IV，p， 83. Tzaneen Estate，＇Transvaal．

30．DENDROMES CON゙CINVU＇S，Thomas 1926．Proc．Zool．Soc．London，p． 299.

Otjumbumbi，Cunene River，S．－IV．Africa．
31．DENDROALE ARENARITS，Roberts 192＋．Ann．Transv．Mus．X，p． 71.

S．Africa；no Iocality given．
32．DENDROMIUS ANGOLFN゙ダ心，Roberts 1929．Ann．Transv．Mus．XIIJ，p． 115.

Angola．
33．DENDRONIL＇N゙YKAE，Wroughton 1909．Ann．Mag．Nat．Hist．S，H1，p． 248. Nyika Platcau，Nyasaland．

34．DENDROMLC＇NAIR（）BAE，（）sgood 1910．Field Mus．Nat．Hist．Zool．ser．$\underset{\text { M }}{ }$ 2，p． 7. Nairobi，Kenyo．
35．DİNDRONIL A MSTACALIS，Heuglm 1863．Verh．Leop．Carol．Akad．III，p． 5. Central Abyssinia．
 1863．Vert．Leop．Carol．Akad．III，p． 5. Tigre，Abyssinia．
37．DENDRONILS NIGRIFRONS NIGRIFRONS，True i 892．Proc．U．S．Nat．Mus，XVV，p． $46 z$.

Kilimanjaro，E．Africa．
38．DENDRONUE NIGRIFRONS SPECTABILIS，Heller 1911．Smiths．Misc．Coll．LVI，t7，p． 3. Rhino Camp，Lado Enclave．
30．13FNDRONIU S NGRIFRON：VULTERNL゙S，Thomas 1916．Ann．Mag．Nat．Hist．S，XVIII，p． 242.

Chirinda lorest，Melsetta，Rhodesia．
ヶo．1）ENDROAIT NIGRIFROṄ SHORTRIDGEI，st．Ieget 1930．Ann．Mag．Nat．Hist．Io，VI，p． 622.

Ssanukanu Village，Grootfontein district，S．－W．Africa
4．IOENDR（OMLSHAYMANI，Hatt
1934．Amer Mus．Nov．708，p． 13.
Mboga，Belgian Congu．

18S6．Rev．Scient．xil，p．i6．
W．Africa．
43．DENDROMIC ISOXERATES，Thomas
ig18．Ann．Nag．Nat．Hist．9，11，p． 59.
Panyam，Bauchi Province，N．Nigeraa．

## Subgenus Chortomys, Thomas

44. DENDROMES LOVATE, de Winton
45. Proc. Zool. Soc. London, p. 986.

Managasha, near Addis Ababa, Abyssinia.

## Genus 2. STEATOMYS, Peters

1846. Steatomy's, Peters, Monatsber. K. Preuss, Akad. Wiss. Berlin, p. 258.
'Type Species.-Steatomy's pratensis, Peters.
Range.-African: Sudan, Kenya, Tanganyika; Congo; Nigeria; Gold Coast; Angola; Portuguese East Africa, South-west Africa, South Africa.
Number of Fornis.-Twenty-five.
Characters.-Skull with rather pointed rostrum, moderate interorbital constriction, no supraorbital ridges (or these can sometimes le traced). Infraorbital foramen very large, and zygomatic plate narrow, as in Dendromus; conspicuous masseter knob present; bullae large. Jugal long. Incisive foramina as in Dendromus. Upper incisors grooved, lower incisors plain. Cheekteeth similar to those of Dendromus, tending to become laminate with wear.

Form thickset. Fur soft. Foreclaws sometimes rather large; functional digits four in manus, five in pes; the digits normal in proportions. Tail short, about half head and body length as a rule, rather well haired.

Forms seen: aquilo, bocagei, cuppedius, caurinus, gazellae, jacksoni, lozeridgei, minutus, muañae, pentonyx, pratensis, swalius, umbratus.

The forms seen divide quite clearly into two groups, the type and allies, smaller forms, adult normally under 100 mm . head and body, and the bocagei group, more heavily built forms, in which the head and body length of the adult is usually over 100 mm ., including caurinus, bocagei, jacksoni, and more doubtfully gazellae, a little-known form with rather larger bullae than is usual in the genus. It must be noted, however, that I have not seen many of the named forms.

Shortridge writes: "The remarkable fatness of Steatomy's, connected with prolonged hibernating habits, is characteristic of the genus, and without parallel among other South African Rodents." He states that the mammae are $3^{-2} \quad 10$.

List of Nanied Formis

pratensis Group

[^8]2. STEATOMIY'S PRATENSLS MAL NENSIS, Roherts 1032. Ann. Transw Mus. NV, p. it. Shorobe, Maun district, Ngamiland.
3. STEATOMYS PRATLASIS KASAICTS, Hatt 1934. Amer. Mus. Nov. no. 708, p. 15. Luluabourg, Kasai district, Belgian Congo.
4. STEATOMYS SWALIUA SWALIL's, Thomas
1926. Proc. Zool. Soc. London, p. 300. Ondongwa, Ovamboland, S.-W. Africa.
5. STEATOMI'S SWALIL'S LMBRATES, Thomas
1926. Proc. Zool. Soc. London, p. 301.

N゙.-WV. Ovamboland, on Cunene River.
6. STEATOMI'S I.OVERIDGE1, Thomas
1919. Ann. Mag. Nat. Hist. 9, IV, p. 33. Lumbo, Mozambique.
7. STEATONHS PENTONTX, Sclater

1 S99. Ann. S. African Mus. I, p. 202.
Cape Flats, near Cape Town.
8. STEATONIS MINLTES, Thomas \& Wroughton
1905. Ann. Mag. Nat. Hist. 7, XVI, p. 174.

Fort Quillenges, Benguella, Angola.
9. STEATOMIS MLANZAE, Kershaw
1923. Ann. Mag. Nat. Hist. 9, XII, p. 535.

Nyambita, Mwanza, Tanganyika.
10. STEATOXIYS PARVCS. Rhoads
1896. Proc. Acad. Nat. Sci. Philadelphia, p. 529. Rusia, Lake Rudolf, Abyssinia.
11. STEATUMIS AQUILO, Thomas \& Hinton 1923. Proc. Zool. Soc. London, P. 264. Jebel Marra, Darfur, Sudan.
12. STEATOAYS CUPPEDILS, Thomas \& Hinton
1920. Nov. Zool. XXVII, p. 318 .

Kano, N. Nigeria.

> bocugei (iroup
13. STEATOMIY BOCAGEI, Thomas
1892. Ann. May. Nat. Hist. 6, X. p. 264. Caconda, Angola.
14. STEATOMIS JACKSONI, Hayman
1935. Proc. Zool. Soc. Lundon, p. 930.

Wenchı, Ashanti, Gold Coast.
15. STEATOAIS CALRINUS. Thumas
1912. Ann. Hag. Nat. Ilist. \&, IN, p. 271.

Panyam Plateau, N. Nigeria.
16. ATEATOMY's (iAZELLAE, Thomas \& Imen
1923. Proc. Zool. Soc. London, p. 265.

Tamburas, Bahr-el-Ghazal, sudan.

## Not seen, and not allocated to Group

17. STEATOMYS KREBSII KREBSII, Peters
18. Reise nach Mossambique: Säugeth. p. 165.

Caffraria, S. Africa.
18. STEATOMYS KREBSII ORANGIAE, Roberts
1929. Ann. Transv. Mus. XIII, p. 116.

Orange Free State.
19. STEATOMY'S KREBSII TRANSVAALENSIS, Roberts 1929. Ann. Transr. Mus. XIII, p. 117.

Witfontein, Randfontein, Transvaal.
2o. STEATOMYS KREBSII KALAHARICLS, Roberts 1932. Ann. Transv. Mus. XV, p. 1.

Central Kalahari, 25 miles west of Damara Pan.
2r. STEATOMYS CHITERSI CHIVERSI, Roberts
1931. Ann. Transv. Mus. XIV, p. 233.

Blood River, Natal.
22. STEATOMYS CHIVERSI TONGENSIS, Roberts
1931. Ann. Transv. Mus. XIV, p. 233.

Manaba, N. Zululand.
23. STEATOMY'S OPIMISS, Pousargues
1894. Bull. Soc. Zool. XIN゙, p. 131.

Balao, Reg. Dakoas, Congo.
24. STEATOMYS NATALENSIS, Roberts
1929. Ann. Transv, Mus. XIII, p. 117.

Bergville, Natal.
25. STEATOMYS ATHI, Heller
1910. Smiths. Nisc. Coll. LIV, p. 3.

Ulukenia Hills, Athi Plains, Kenya.
It is very probable that too many species are recognized in this genus.

## Genus 3. MALACOTHRIX, Wagner

1843. Malacothrix, Wagner, Suppl. Sehrebers Säugeth. III, p. 496.

T'ype Species.-Otomys typicus, Smith.
Range.-South Africa, South-west Africa.
Number of Formis.-Sin.
Cilaracters.-Skull highly abnormal, with extreme interorbital constriction, such as not seen elsewhere in Murinae, and rarely in the present group; rostrum very narrow (and interorbital region no wider than the rostrum); braincase shortened, rounded, slanting downwards posteriorly. Zygomata very widely spreading. Toothrow placed rather far forwards in the skull. Palate extremely broad, the mesopterygoid roofed in by bone, something after the manner of Acomys, only the pterygoid fossae are much broader, and deeper, than in that genus, and tend less to meet anteriorly. Bullae medium.

Incisive foramina large and long, reaching about the middle of M.ir, and extending forward to the incisors. Zygoma rising abruptly anteriorly to a considerable height; zygomatic plate tilted strongly upwards, with much enlarged masseter knob, which slants abruptly outwards. The ridge of this is continued upwards, the whole outer side of the enlarged infraorbital foramen being prominently ridged. Upper incisors compressed, one grooved. Upper cheektecth extremely narrow, complex; M. I long, with an extra cusp in front of T.2; T. 2 and T .3 approximately equal; ' $\mathrm{T} . \mathrm{r}$ not entirely suppressed in some cases, and appearing as a minute cusp. The second lamina of M. I with three cusps; the third lamina with two main cusps, and a small extra outer posterior one. The laminae of the checkteeth appear less packed together than is usual. M. 2 with T.3, and the second and third laminae like those of M.I. M. 3 minute. Lower incisors plain. 11.3 lower at vanishing point. 'The pattern of M. I and X. 2 is evidently originated from a Dendromus-like pattern, but sometimes in age tends to become more or less prismatic owing to the cusps ceasing to be opposite each other, but alternating, and then the lower molars take on a Cricetine pattern, with quite wide spaces separating the cusps. Nandible not abnormal.

Fur of a peculiar quality. Ear large. IIndfoot extremely narrow, relatively long, with four digits only; alone of all Muridae this genus has lost the hallux; D. 5 not much shorter than D.2, 3 and 4. Tail well haired, relatively strongly shortened. Sole of hindfoot hairy. Nanus with four functional digits. Mammate 8 (Shortridge).

Forms seen: typicus, egeria.

```
                    List of Named Forms
    1 \JALACOTHRIX TYPICLS TVPlCLS, imith
IS34. South Afr. Quart, Journ, ii, p, 1+8.
                            District of Graaff Reinet, S. Africa.
    2. II.ALACOTHRIX TYPICLS JRYI, Roberts
1917. Ann. Transv. Mus. V, p. 268.
            Klipriviersorg, K゙rugersdorp district, Transvaal.
    3. NL&IACOTHRIX TYPIC'LS NOLOPIFNSIS, Roberts
1933. Ann, Transv, MIus. XV, p. 266.
            S miles west of Pitsani, Molopo River, Bechuanaland.
    q \IALACOTHRIX IYPICL` KALAIAARICT&, Roberts
1932. Ann. Transv. Mus. SV, p. Io.
            Kuke Pan, Central Kalahars.
    5. \IALACOTHRIX TYPICL'S DAMIARFNSIS. Roberts
I932. Ann. Transv: Mus. XV, p. 10.
            Gobabis, S.-11. Africa.
    (4) IAIACOTHRIX TYPICE'S EGI:RIA. Thoma=
1926. Pruc. Zool. Soc, London, p. 301.
    ()ndongwa, Central Ovamholand.
```

The "Malacothrix albicaudutus" of Trouessart, alhicaudatus, Desmarest,

1820, Desm. Mamm., p. 438 , is regarded by G. M. Allen as a Mystromys (Cricetinac).

## Genus 4. PRIONOMYS, Dollman

1910. Prionomys, Dollman, Ann. Mag. Nat. Hist. 8, VI, p. 226.

Type Species.-Prionomys batesi, Dollman.
Range.--African: Cameroons.
Number of Forms.-One.
Charactars.-As remarked above, this genus may not be closely allied to Dendromus, Steatomys and Malacothris. Braincase extremely heavy, rostrum relatively short; supraorbital ridges traceable. Zygomata widely spreading. Zygomatic plate narrow, but well tilted upwards. Infraorbital foramen much widened. Jugal broad, long. Incisive foramina relatively short. Palate very broad. Bullae not large. Upper incisors inclined to be pro-odont. Upper cheekteeth with cusps much raised up and thickened, of Oenomys-type, the rows of cusps separated from each other by deep valleys. M.I with the cusps numerically as Dendromus; the whole of the inner side of the tooth is broadly curved round, on the centre of which curvature appears a strong T.4. M. 2 with 'T. 3 small, all cusps on second lamina, and third lamina evidently with only one functional cusp. M. 3 at the point of becoming suppressed. Lower cheekteeth with $\mathrm{N}_{\mathrm{I}} 3$ small, but less reduced than in the upper jaw; a deep valley separates the two main rows of cusps. Nandible well ridged, with coronoid process low, far forward.

Fur soft. Tail long, poorly haired (its describer suggests the tail may be prehensile); D. 5 of hindfoot long, hallux also well developed, probably opposable, though retaining a small claw; the hindfoot arboreal. Nanus with D. 5 shortened. Two skulls seen only.

Forms seen: batesi.

## List of Named Forms

1. PRIONOMIY BATESI, Dollman
2. Ann. Mag. Nat. Hist. 8, VI, p. 228.

Bitye, Ja River, Cameroons.

Genus 5. PETRONISCUS, Thomas
1926. P'etromyscus, Thomas, Ann. Nlag. Nat. Hist. 9, XVII, p. 179.
'TYpe Species.-Praomys collimus, Thomas $\mathbb{S}$ Hinton.
Range.-South-west . Ifrica.
Number of Forms.-Four.
(haracters.-Skull with broad flattened braincase, and moderate interorbital constriction. Palate broad. Incisive foramina well open, long. 7ygomatic plate more or less straight anteriorly, the infraorbital
foramen not abnormal. Upper incisors compressed. N1.3 much reduced in the upper series. The cheekteeth have been fully described by Hinton, Ann. Mag. Nat. Hist. 9, X1II, 1. 175, 1926. He refers the genus to the Dendromyinae, and it is accordingly retained here. The molars seem to me to differ rather markedly from both Nlurinae and Dendromyinae. 'The re-entrant folds, or spaces between the laminae, appear to play a much more important part in the pattern than in any member I have seen of the other two subfamilies. The posterior lamina of N .1 and $\mathrm{X.2}$ appears more or less doubled, or twisted round on itself. 'The lower molars are like those of Mystromys (Cricetinae). Indeed, as 1 have suggested above, it occurs to me that this genus may belong to that subfamily.

Externally with no special peculiarities; fur rather soft; small; tail moderately haired; hindfoot with D. 5 lengthened, and hallus not reduced. Mammae $0-2=f$ or $1-2-6$. In $P$. shortridgei, either formula may be present.

Forms seen: bruchus, collinus, monticularis, shortridgei.
There does not seem to be very much difference between the named forms, except monticularis, which is very distinct, having much narrowed posterior nares, and shorter ears.

> Liet of N゙amed Formis
> collinus Group
> 1. PETROMYSCLS COLLANL'S COLELNLS, Thomas\& Hinton
> Great Brukaros Mountain, S.-W. Africa.
1925. Proc. Zool. Soc. London, p. 237.

Karibjb, S.-IV. Africa.
2. PETROUYSCL'S COELRL'S BRLCHCN, Thumas \& Hmton
1925. Proc. Zool. Soc. London, p. 238.
3. PETROMIYGCL'S SHORTRIDGEI, Thomas
1926. Proc. Zool. Soc. London, p. 302.

Cunene Falls, N.-W. Ovamboland. S.-W. Africa.
monticularis Group
4 PETROMISCL' MONCICLLARIS, Thomas \& Hinton
1925. Proc. Zool. Soc. London, p. 23 .

Great Brukaros Mountain, near Berseba, S.-W: Africa.

## Subfamily DEOMIVNAE

1888. 'Thomas: Muridae, Deomyes.
i So6. Thomas: . Turidae, Dendromyinae, part.
Geographical Distribetion.- Central Africa: the Congo Basin.
Vumber of Genera.-One.
Characters.-Zygomatic plate abnormally narrowed, and completely beneath the infraorbital foramen (parallel-Graphiurinae). Infraorbital foramen nearly as wide as high, not narrowed below. Cheekteeth as in Dendromyinae.

Genus 1. DEOMIYS, Thomas
1888. Deoarys, Thomas, Proc. Zool. Soc. London, p. 130.

Type Species.-Deomys ferrugineus, Thomas.
Range.-As in the subfamily Deomyinae.
Number of Forms.-Two.
Characters.-Zygomatic plate extremely narrow, the zygomata thin, the upper and lower roots of anterior zygoma about of equal length, the zygoma commencing on a much lower level than in normal Muridae. Infraorbital foramen very large and wide. Skull with long rostrum, frontals little constricted, supraorbital ridges developed; braincase smooth and rounded. Palate broad anteriorly, narrow posteriorly; incisive foramina broad, of medium length, not reaching M.r. Bullae rather small. Incisors narrow, the upper ones with two faint grooves. Cheekteeth with M. 3 minute, simple; M. 1 considerably larger than M1.2. N.I with three laminae, each with two prominent and high cusps, on inner side and outer, but in the second lamina the inner one becomes central on account of the presence of a well-developed extra inner cusp, T.4. M.2 with two laminae, three cusps on the first, and two on the second. A deep depression separates the cusps of each lamina in M.1. Lower teeth with elements as in the upper series except that no third cusp is present on the second lamina of M.1, nor the front one of M.2. Cusps originally extremely high. Mandible rather weak. Fur faintly bristly. Ear large. Tail considerably longer than head and body, nearly naked on upper portion, gradually more haired as the end is approached. Forefoot not abnormal. Hindfoot narrow, lengthened, the outer digits much reduced, D. 5 slightly longer than the hallux. Mammae said to be $0-2=4$. Hindfoot with 5 solepads.

Remarks.-This genus was referred to the Dendromyinae by Thomas. But the zygomatic plate suggests that the jaw-muscle structure must be very near that of Graphiurus, while the zygomatic plate of all other Muridac examined is tilted upwards to a greater or lesser degree, though it must be admitted that such forms as Oxymycterus and Lophuromys are sometimes not very different. However, if the Graphiurinae are to be retained as a separate subfamily, from the other Dormice (and according to Miller \& Gidley they are on this account not only a different family, but even referred to a different superfarmily), I think that Deomys must be regarded as type of a subfamily within the Muridae; it probably bears the same relationship to other Dendromyinae that Graphiurus does to the Muscardininae. I would add that so far as my observations go, based on nearly two hundred genera in the Muridae, the zygomatic plate and infraorbital foramen of Deomys appear unique.

Forms seen: ferrugineus, christyi.

## List of Named Formis

1. DI:OMIS FERRUGINEL'S FERRUGINEL'S, Thomas
2. Proc. Zool. Soc. London, p. 130.

Lower Congo.
2. DEOONS FERRLGINEUS CHIRISTYI, Thomas
1915. Ann. Nag. Nat. Ilist. 8, XV1, p. 150.

Poko, Uelle River, Belgian Congo.

## Subfamily OTOMYINAE

r8y6. Thomas: Muridae, Otomyinae.
1899. Tullberg: Muridae, Otomymi.
1918. Miller \& Gidley: Nuridae, Otonymae.
1924. Winge: Muridae, Murini, Mures, part.

192S. Weber: Muridae, Murinae, part.
Geographical Distribution.-Africa: widely distributed south of the Sahara; "Abyssinia to the Cape, eastwards to Lake Kivu and Angoniland; one species from Cameroons; and one specimen at British Museum from Angola" (st. Leger).

Number of Genera.-Two.
Characters.-Cheekteeth :3, broad, hypsodont, their pattern a series of transverse plates; $\mathbf{N .} 3$ in the upper series the domimant tooth, ahways much larger than MI.2; usually or always larger than M. 1. Skull as in specialized Muridae. Incisors thick, typically prominently grooved. External form Rat-like, not specialized; tail usually well haired, and relatively short.

The group was revised by Thomas in rgi8, before which it was held to contain two genera, Otomys and Oreomys, the latter shown by Thomas to be a synonym of Otomys. Thomas divided the group into three genera, Otomys (with subgenera Anchotomys and Lamotomys), Myotomys, and Parotomys (with subgenus Liotomys). Myotomys is not retainable as a full genus, being connected with Otomys hy intermediate forms. The two subgenera Anchotomy's and Lamotomys of Thomas seem to be nothing but aberrant species; O. typus, type of Oreomys, appears to be just as distinct as either from typical Otoms.

## Key to the Geners of Otomyinaf

Auditory bullac excessively inflated, the meatus with a strongly projecting thickened process on its anterior edge; hasioccipital narrowed. Parotomys duditory bullae nut specially inflated; basioccipital not narrowed. Otomys

## Genus 1. O'TOMIS, F Cuvier

1823. Otomys, F. Cuvier, Dents des Mamm. p. 168.
1824. Oreomys, Heuglin, Reise Nordost. Afr. p. 2, p. 76. (theomys typus, Heuglin.) Name preoccupied.
1825. Oreinosys, 'Truuessart, Cat. Mamm. Viv. et Fuss. Rodentia, in Bull. Soc. Études Sci. d'Ancers, X. 2ce, fasc. I11. (To replace (beomys, Heuclin.)
 Bocage.)
1826. Lanotonys, Thomas, Ann. Mag. Nat. Hist. 9, HI, p. 208. (Olomys laminatus, Thomas \& Schwann.)
1827. Myotomys, Thomas, Ann. Mag. Nat. Hist. 9, II, p. 206. (Otomys unisulcatus, Cuvier \& Geoffroy.)

Type Siecies.-Euryotis irroratus, Brants.
Range.-Africa: Abyssinia, Kenya, Uganda, Tanganyika; Cameroons, Eastern Congo, Angola; Rhodesia, South-west Africa, Portuguese East Africa, South Africa.

Number of Forms.-About fifty-seven.
Characters.-Skull with great interorbital constriction, very prominent supraorbital ridges, which form small postorbital knobs in front of fronto-parietal suture, and then run backwards over the parietals. Nasals typically extremely broadened anteriorly, the premaxillae not visible from above (this character not present in unisulcatus group). Palate very narrow, somewhat poorly ossified, and with a conspicuous raised longitudinal ridge placed centrally. Pterygoid fossae deep. Incisive foramina long, narrow, extending nearly to M.I. Bullae of medium size, not much inflated, much smaller actually and relatively than in Parotomy's; basioccipital less narrowed than in that genus. Zygoma heary. Infraorbital foramen and zygomatic plate of typical specialized Murine type, the zygomatic plate well cut back above. Mandible powerfully ridged, the angular portion slightly turned outwards at the back, giving a somewhat Hystricoid appearance from outer side. Upper incisors with one deep groove placed externally, or with one deep outer and one shallow inner groove. In some specimens of unisulcatus group, the grooving obsolete. Lower incisors with one deep groove placed externally, and one shallow inner groove, or with two clear grooves, or in unisulcatus group grooving obsolete or absent. Cheekteeth a series of straight transverse plates; in the upper series, M.i has always three laminae, M. 2 has two, and M. 3 may have nine, eight, seven, six, five or four. Lower cheekteeth: M. 2 and M. 3 have two laminae ( N .3 is not enlarged); M.i has four, except in anchietae (five), and laminatus (seven). In one specimen of tropicalis seen, however, there are five, which indicates that subgeneric names based on number of laminae alone will not be retainable if a great number of specimens are at hand. The laminae are tightly packed together; M. 3 upper is always considerably enlarged, in some cases excessively so.
"Myotomys" was proposed as a full genus by Thomas, with the characters: "Skull with more indication of an approach to Otomys. But the muzzle is not modified in the peculiar way characteristic of that genus, the nasals being little broadened anteriorly . . . the interorbital region not specially contracted, its edges with distinct beads, which evenly diverge hackwards instead of abruptly curving out to form postorbital projections as in the case of Otomys. These beads searcely run any distance on to the parictals. Other skull characters much as in Otomy's. One species, $M$. turneri, both has more expanded nasals than in normal, and has clearly five laminae in its 11.3 ; but even then there is no equality with the specialized condition found in true Otomys, and the frontal
ridges are quite as in Parotomss, not as in Otomys." 'The tendency to grooving of incisors and lamination of molars is less in "Myotomys" than in true Otomys. But O. turneri seems to be very near Otomys s.s. as regards nasal broadening, and to be intermediate between Otomys and Myotomys both in this character and in the character of the five laminae of M.3, in which it agrees with the aberrant species O. denti (an Otomys s.s.). 'There therefore remains only the shape of the parietal and frontal ridges, which is certainly not a valid generic character (compare, for instance, the various formations found within the genus Rattus).

Another intermediate between the two groups is karoensis, Roberts (not seen), described as with the generat colour and cranial characters of Myotomys but the dentition of an Otomy's: "it is a distinct link hetween the two genera, thus reducing Myotomys to subgeneric rank." As, however, this species is intermediate between (Otomys and "Myotomys" in dental characters, and turneri is intermediate between the two groups in cranial characters, I can see no reason for regarding "Myotoms" as anything but a synonym of Otomys.

External characters: form rather thickset; fur moderate, or in some forms becoming thick and soft (nnisulcatus group chictly); tall shorter than head and body, well haired; feet not peculiar; outer digits of hindfoot rather reduced, though not excessively so; mammae 4 , inguinal (Shortridge).

Forms seen: anchietac, angoniensis, auratus, broomi, burtoni, coenosus, canescens, cupreus, dartmouthi, degeni, denti, classodon, clgonis, fortior, granti, irroratus, jacksoni, kempi, laminatus, mushona, maximus, mallets, nvikae, mubilus, orestes, percizali, rowleyi, ruheculus, sloggetti, squalus, turneri, tropicalis, thomasi, unisulcatus, ziz'ax.

For a review of species see Wroughton, Ann. Mag. Nat. Hist. 7, XVIII, p. 264, 1906, and Dollman (Last African forms), Ann. Mag. Nat. Hist. 8, XV, p. $149,1915$.

The genus appears to divide, broadly speaking, into about six groups, as follows:
laminatus group: M. 3 with 9 or 10 laminae, M.i lower with 7 laminae; lower incisors with one deep outer, one shallow inner groove.
O. laminatus: South Africa.
anchictae group: M .3 with 7 laminae, as in many others, but M .1 lower with 5 laminae.
O. anctictese: Ingola and 'Janganyika.
typus group: Based on those forms with the lower incisors having two deep grooves. As in all remaining species, M.1 lower has + laminae.
O. spus, Abyssinia: with $\mathrm{M}_{3}$. with $\&$ laminae (the nearest approach to laminutus known in the genus); or cven with a rudimentary ninth.
O. jacksomi, Kenya, Ahyssinia: M. 3 with 7 laminae; also O. percizali, from Kenya.

And $O$. durtmosthi, from Uganda: N. 3 with 6 laminae.
irroratus group: This contains the majorty of the genus. The lower inctisors have one deep outer and one shallow inner groove, usually.
N. 3 with 7 laminae: O. angoniensis, O. nyikae, O. tropicalis, $O$. rubeculus, O. divinorum, O. thomasi, East Africa (K゙enya, Uganda, Last Congo); O. burtoni, Cameroons; O. rozteyi, Portuguese Last Africa.
M. 3 with 6 laminae: $O$. orestes, Kenya; O. irroratus, Southern Africa; O. kempi, Congo: this form has one groove to lower incisors, and appears to be nearly allied to denti (below).
M. 3 with 5 laminae: O. denti, from Ruwenzori; a very dark species. turneri group: O. turneri, presenting cranial characters which are intermediate between those above and the unisulcatus group. M. 3 with 5 laminae. Orange River Colony:
unisulcatus group: O. sloggetti, and O. unisulcatus, with their races; M. 3 with 4 laminae (sometimes the third and fourth are partly joined, and not complete); lower incisors usually plain; upper incisors may become so. South Africa.
O. karoensis, not seen, probably also represents a group, as noted above.

## List of Named Forms

(References and type localities of all Otomyinae by Mr. G. W. C. Holt.)
laminatus Group

1. OTOMYS LAMINATLS LAMINATUS, Thomas \& Schwann
2. Abstr. Proc. Zool. Soc. London, p. 23 ; Proc. Zool. Soc. London, p. 267. Subudeni, Zululand, S. Africa.
3. OTOMYS LAMINATLS PONDOENSIS, Roberts
4. Ann. Transv. Mus. X, p. 71.

Pondoland, S. Africa.
3. OTOMY'S LAMINATUS MARIEPSI, Roberts
1929. Ann. Transv, Mus. X1II, p. 1 io.

Lydenburg, Transvaal, S. Africa.
anchietae Group
4. OTOMY'S ANCHIETAE ANCIIIETAE, Bocage
1882. Journ. Sc. Acad. Lisbon, 1N, p. 26.

Caconda, Angola.
5. OTOMY'S ANCHIETAE LACUSTRIS, G. M. Allen \& Loveridge
1933. Bull. Mus. Comp. Zool. Harvard Coll. LXXV, 2, p. 120.

Madehani, north end of Lake Nyasa, Tanganyika.

## typus Group

6. OTOMY'S TYPUS TYPC'S, Heugh
7. Reise N. Ost. Afr. ii, p. 77.

Shoa, Abyssinia.
Synonym: degeni, Thomas, 1902, Proc. Zool. Soc. London, p. 311. Gombitchu, Shoa.
7. OTOMY: TYPL'S FORTIOR, Thomas
1906. Ann. Mag. Nat. Hist. 7, XVIII, p. 302.

Charada, Kaffa, Abyssinia.
(Considered a distinct species by Dollman.)
11-Living Rodent-II
s．OTONYS IACKSONI JACKSONI，Thomas
1891．Ann．Mag．Nat．IIist．6，VII，p． 2.
Mt．Elgon，Uganda side．
9．OTONIS JACKSONI EHELERI，Frick
1914．Ann．Carnegie Mus．IX，nos．1－2，p． 10.
Chilalo Divide，Abyssinia．
10．OTOMIS JACKRONI MALKENSIS．Frick
1914．Ann．Carnegie Mus．IX，nos．1－2，p． 11.
Malka，Sidamo，Abyssinia．
11．OTOMIYS PERCIVALI，Dollman
1915．Ann．Mag．Nat．Hist．8，XV，p． 168.
12 miles south of Lake Olballassat，Naivasha district，Kenya．
12．OTOMIS DARTMOUTHI，Thomas
1906．Ann．Mag．Nat．Hist．7，XVIII，p．IfI．
E．Ruwenzori，Uganda．

## iroratus Group

13．OTONI＇S ANGONIENSIS ANGONIENSIS，Wroughton
1906．Ann．Mag．Nat．Hist．7，XV111，p． 274.
M＇Kombhuie，Nyasaland．
14．OTONIY ANGONIENSIG F1，ASSODON，Oserood 1910．Field Mus，Nat．Hist．Zool．ser．X，2，p． 10.

Naivasha，Kenya．
15．OTONYS NYIKAE NYIKAE，Wroughton 1006．Ann．Mag．Nat．Hist．7，XVIII，p． 276.

Nyika Plateau，Nyasaland．

```
    10. OTONIS NYIKAE CANESCENS%, Osgood
1910. Field Mus. Nat. Hist. Zool. ser. X, 2, p. 10.
            Kijabe, Kenya.
    17. (TOMYS TROPICALIS TROPICALIS, Thoma&
1902. Ann. Mag. Nat. Hist. 7, X, p. 314.
            West slope of Mt. Kienya.
    18. "TOMY'S TROPICALIS ELGONIS, Wroughton
1910. Ann. Mag. Nat. Hist. 8, V, p. 207.
Elgonyi，Elgon，Kenya．
19．OTOMY＇S TR（）PICALIS VIVAX，Dollman 1915．Ann．Mag．Nat．Hist．8，XVV，p． 159.
Mt．Nyiro，south of Lake Rudolf，Kenya．
20．＇TOMIY TROPICALIS NLBILIS，Dollman 1915．Ann．Mag．Nat．Hist．8，XV，p． 160.
Jombeni，Igembi Range，north－east of Mt．Kenya．
21．（OTOMIY＇s TROPICAIJIS GHIGill．de Beaur Iリズ・ Anm，Mus．Civ．Stor，Nat．（ienova，51，P． 213.
Busala，Uganda．
22．（OTOMIS TROPICALIS VCLCANLC\＆，Lomnberg \＆Gyidenstolpe Iy25．Arkix：f．Zowl．Band 17 B, no． \(5, \mathrm{p}, 2\).
Nt．Sabinio，Birunga Volcanoes，E．Cungo．
```

23. OTOMY'S TROPICALIS FARADJIUS, Hatt 1934. Amer. Mus. Nov. 708, p. 1. Faradje, Upper Uele district, E. Congo.
24. OTOMYS RUBECLLL'S, Dollman 1915. Ann. Mag. Nat. Hist. 8, XV, p. 16 I. Kagambah, Uganda.
25. OTOMYS DIVINORCM, Thomas 1910. Ann. Mag. Nat. Hist. 8, VI, p. 311.

Rombo, Mt. Kilimanjaro, Tanganyika.
26. OTOMI'S THOMASI THOMASI, Osgood 1910. Field Mus. Nat. Hist. Zool. ser. X, 2, p. 9.

Molo, Kenya.
2\%. OTOMI'S THOMLASI MLALLEUS, Dollman 1915. Ann. Mag. Nat. Hist. 8, XV, p. 154.

Lake Olbollossat, Naivasha Province, Kenya.
28. OTONY'S THOMLASI SQUALUS, Dollman 1915 . Ann. Mag. Nat. Hist. 8, XV, p. 155.

Mt. Kinangop, Aberdare Range, Kenya.
29. OTOMY'S BURTONI, Thomas
1918. Ann. Mag. Nat. Hist. 9, II, p. 210.

Cameroon Mountain.
30. OTOMIS ROWLEYI, Thomas 1918. Ann. Mag. Nat. Hist. 9, II, p. 209.

Coguna, Inhambane, Portuguese E. Africa.
31. OTOMIYS MASHONA, Thomas 1918. Ann. Mag. Nat. Hist. 9, II, p. 210.

Iazoe, Mashonaland, S. Rhodesia.
32. OTOMIS ORESTES ORESTES, Thomas
1900. Proc. Zool. Soc. London, p. 175.

Teleki Valley, Mt. Kenya.
33. OTOMY's ORES'TES DOLLMANI, Heller 1912. Smiths. Misc. Coll. LIX, 16, p. 5.

Mt. Gargues, Natthews Range, Kenya.
34. OTOMIS IRRORATUS IRRORATUS, Brants
1827. Geslacht der Muizen, p. 94.

Uitenhage, Cape of Good Hope.
Synonym: bisulcatus, Cuvier \& Geoffroy, 1829, Hist. Nat. Mamm. IV. p. 71 .
obscura, Lichtenstein, 1842, Säug. Caffern. p. זо. typicus, Smith, 1834, South Afr. Quart. Journ. 2, p. I49.
35. OTOMIS IRRORATCS ALRATCS, Wroughton
1906. Ann. \ag. Nat. Hist. 7, XVIII, p. 272.

Vredefort, Orange Free State.
36. OTOMY'S IRRORATL'S CLPRELS, Wroughton 1906. Ann. Mag. Nat. Hist. 7, XVIII, p. 273.

Zoutspansberg, Transvaal.
37. OTONIS IRRORATES MAXIMLS, Roberts 1924. Ann. Transv. Mus. X, p, 70.

Machili River, N.-W. Rhodesia.
38. OTOMIS IRRORATES COEN()SL'S, Thomas
1918. Ann. Mag, Nat. Hist. 9, II, p. 208.

Kuruman, Bechuanaland.
39. OTOMIY IRRORATES NATALEXBIS, Roberts
1929. Ann. Transv. Mus. XIII, p, ilt.

Bilgobbin, Dargle district, Natal.
40. OTOMIY IRRORATLA RANDLASIS, Ruberts
1929. Ann. Transs. Mlus. XIII, p. Itz.

Fontaine Bleau, Johanneshurg.
41. OTOMIS KEMPl, Dollman
1915. Ann. Mag. Nat. Hist. 8, XV, P. 152.

Burunga, Mt. Mikeno, Belgian Congo.
42. OTONIS DENTI, Thomas
1906. Ann. Mag. Nat. Hist. 7, XVIll, p. I42.
E. Ruwenzori, Uganda.

Not seen, and not allocated to Group
43. OTO.NI'S KAROENSIS, Roberts
1931. Ann. Transv, Jus, XIV, p. 231.

Wolseley, Cape Province.
(For note on the characters and probable position of this species see above.)
44. OTONIY'S sILBERBALERI, Roberts
1919. Ann. Transv. Mus. V', p. IIt.

Lormarıns, Paarl district, S. Africa.
45. OTONIY'S ROBERTSI, Hewitt
1927. Rec. Albany Mus. 3. p. 430.

Mont-aux-Sources, Orange Free State-IBasutnland border.
fi. OTOAIS TLGELENSIS TUGELENSIS, Roberts
1929. Ann. Transv. Mus. XIII, p. 113.

Klipspruit, Utrecht, Natal.
47. OTONIY TLGELENSIS SABIEN゙SIA, Roberts
1929. Ann. Transv. Nus. Xlll, p. 114.

Nariepskop, Lydenburg district, Transvaal.
48. OTONIY' TLGELHXSIS PRETORLAE, Roberts
1929. Ann. Transv. Mus. XIII, p. 114.

Fountans Valley, Pretoria.
49. OTONIS TLGELENSIS AAL NDERSIAE, Roberts
1929. Ann. Transv, Mus. XIII, p. 115.

Grahamstown, S. Africa.

## turnur (iroup

50. OTONY'S TLRNERE, Wroughton
51. Ann. Mag. Nat. Hist. 7, XX. p. 3I.

Aberfeldy, N.-E. Orange Raver Colony.
unisulcatus Group
5r. OTOMIS SLOGGETTI SLOGGETTI, Thomas
1902. Ann. Mag. Nat. Hist. 7, X, p. 311.

Deelfontein, S. Africa.
52. OTOMIS SLOGGETTI JEPPEI, Roberts
1929. Ann. Transv. Mus. XIII, p. 109.

Jamestown, Cape Province.
53. OTOMYS SLOGGETTI BASUTICUS, Roherts
1929. Ann. Transv. Mus. XIII, p. 110.

Bolepeletsa, Basutoland, S. Africa.
54. OTOMYS UNISULCATUS UNISULCATUS, Cuvier \& Geoffroy 1829. Mamm. livt. LX, fig. 264.

Cape of Good Hope.
55. OTOMY゚S L゙NISLLCATUS BERGENSIS, Roberts
1929. Ann. Transv. Mus. XIII, p. 108.

Lambert's Bay, S. Africa.
56. OTOMY'S UNISLLCATUS GRANTI, Thomas 1902. Ann. Mag. Nat. Hist. 7, X, p. 312.

Fish River, Deelfontein, S. Africa.
57. OTOMY'S UNISLLCATUS BROOMI, Thomas 1902. Ann. Mag. Nat. Hist. 7, X, P. 313.

Port Nolloth, Little Namaqualand.

## Genus 2. PAROTOMYS, Thomas

1918. Parotomys, 'Thomas, Ann. Mag. Nat. Hist. 9, II, p. 205.
1919. Liotomys, Thomas, Ann. Mag. Nat. Hist. 9, II, p. 205. (Parotomy's littledalei, Thomas.) Valid as a subgenus.

Type Species.-Otomy's brantsii, Smith.
Range.-South Africa, extending to South-west Africa.
Number of Formis.-Six.
Characters.-Bullae extremely large and inflated, the meatus with strongly projected thickened anterior process, visible from above. Basioccipital region narrowed. Other essential cranial characters as Otomys; but the interorbital constriction not extreme, the nasals little broadened anteriorly. Cheekteeth: upper series with three laminae in M.1, two in M.2, and two complete laminae in M.3, this tooth also with a long backwardly pointing heel, in which two laminal elements occur; occasionally there are four complete laminae in this tooth. Lower molars: M. 2 and M. 3 with two laminae, as usual; M.1 with four, the two anterior ones not clearly separated from each other. Lower incisors plain. Lpper incisors typically with one deep outer, one shallow inner groove. External characters not essentially different from Otomys; fur soft ; in subgenus Liotomys, the tail is apparently less reduced than is usual. Nammae 4 .

Lotomys was proposed as a subgenus for the species littledalei, in which the upper incisors are plain.

This genus seems clearly distinct from Otomys, on account of the muchinflated bullae.

Forms seen: brantsii, littledalei, luteolus.
List of Named Forms
Subgenus Parotomys, Thomas

1. PAROTONIS BRANTSII BRANTSII, Smith
2. South Afr. Quart Journ. ii, p. 150.

Namaqualand, S. Africa.
Synonym: pallida, Wagner, 1841, Arch. Naturg. 1, p. 134. S. Africa.
rufifrons, Wagner, $18+3$. Schreber Säug. Suppl. iii, p. 507.
2. PARCTONIY'S BRANTSH LETEOLU'S, Thomas \& Achwann 1904. Proc. Zool. Soc. London, p. 178. Deelfontein, Cape Colony.
3. PARCOTOMYS BRANTSII DESERTI, Roberts 1933. Ann. Transv. Mus. XV, p. 267.

Bushman Pits, Kuruman, Bechuanaland.
Subgenus Liotomys, 'Thomas

+ PAROTOMIS LITTIEDALII LITTLEDALEI, Thomas 1918. Ann. Nag. Nat. Hist. 9, 11, p. 205. Tuin, Kenhart, W. Cape Province.

5. PAROTONIYS LITTLEDALEI MOLOPENSIS, Roberts 1933. Ann. Transv. Mus. XV, p. 267.

Hakscheen Pan, west of Molopo River, S. Africa.
6. PAROTOMIS LITTLEDAJIEI NAMIBENSIS, Roberts
1933. Ann. Transv. Mus. XV, p. 268. Swakopmund, S.-W. Africa.
The Otomyinae form an interesting and apparently rather isolated branch of Muridae, considerably more distinct from Murinae I think than are Mydromyinae, Rhynchomyinae, Dendromyinae and Deomyinae. In the young teeth, cutting, as in a specimen of "Myotomys," there do not appear to be traces of cusps. No other Muridae with ronted cheektecth possess the peculiarity that N. 3 is considerably larger than Xl. or M.2, though this nay occur in some Nicrotinae. The Intomyinae parallel the Nlicrotinae in the fact that the teeth which are most subject to change of form are M. 3 upper and M. I lower. So far as I am aware, little or nothing is known of their fossil history, and they have not been discotered outside Africal.

## Subfamily CRICETINAE

1896. Thomas: Muridae, Sigmodontinae (included Palaearctic genera and all genera from Nadagascar); Nentominae.
18u\%. Tullberg: Cricetidac. Hesperomyidac. Nesomyidae, part.
1897. Miller \& Gidley: Cricetidae, part, Cricetinae (included all genera from Madagascar).
1898. Winge: Muridae; Rhizomyini, part (genera from Madagascar). Cricetini, part, groups; Criceti (included Lophiomy's and Siphneus $=$ Myospalax); Hesperomyes.
1899. Weber: Nesomyidae, part. Muridae, Cricetinae.

Geographical Distribution.-Entire American Continent from Arctic Canada and Alaska south to Southern Patagonia; the greater part of the Palaearctic region (North France, Hungary, Grecce, Asia Minor, Syria, Persia, Kashmir eastwards to east coast of Northern China, north to Germany, temperate Russia and temperate Siberia); Southern Africa; Madagascar.

Number of Genera.-Fifty-four groups worthy of generic rank are represented in the British Museum. Eight named genera, of which at least three are valid, are not represented in London.

Characters.-Cheekteeth cuspidate, laminate or prismatic; rooted; when cuspidate, the cusps arranged in two longitudinal rows in both upper and lower molars; the laminae bearing the cusps separated by wide re-entrant folds (compare Murinae, and allied subfamilies); cheekteeth not a series of transverse plates combined with tendency to enlargement of MI. 3 (compare Otomyinae); cheekteeth without pattern of thick isolated enamel ridges extending across crown surface (compare Tachyoryctinae); when teeth are prismatic, roots developed in adult, and skull not becoming much modified by ridges for jaw-muscle attachment, not developing squamosal crest in any genus examined, nor median interorbital crest, etc. (compare Myospalacinae, Microtinae); skull not taking on "saltatorial" appearance, with enlarged braincase and bullae, and weakened rostrum, etc. (compare Gerbillinae). In some genera the cheektecth become flatcrowned and have alternating inner and outer re-entrant folds, something after the manner of some Hystricoid genera.

Skull and external form various; as a rule not extremely specialized; in rare cases (Notiomys, Chelemyscus, Blarinomy's) considerably modified for fossorial life; or in Ichthyomys and allied genera much specialized for aquatic life.

The present group is the most difficult group of living Rodents to arrange in any natural order. They are on the whole very generalized, being scarcely more progressive dentally than the primitive Murinae; according to IIinton in this group the centre row of cusps of the upper molars of the ancestral Murine has become suppressed, leaving two rows only; they further differ from Murinae in the clear spaces between the laminae.

Over seventy groups have been given generic names in the past, very many of them on extremely vague characters which can be duplicated elsewhere more or less at any time.

This subfamily, except the Palacarctic members, have had less attention paid to them by the present author than any other group of Rodents. The North American genera which have large ranges have been properly revised by Amcrican authors. But directly Panama is passed, an enormous list of names described for the most part binomially, and in appalling chaos, is reached. I
am quite convinced that to get this list in order is far beyond the scope of a book of this nature, and in the majority of the South American genera, I have listed all forms described binomially alphabetically. It may be noted that in America there are just about a thousand named forms belonging to this subfamily.

An important work by Gyldenstolpe, Kungl. Sienska. Vetens. Akad. Handl. Stockholm, 3, Band 11, no. 3, 1932, lists all named forms south of Panama and gives short notes on their characters. Although no revision has been attempted, this work will be extremely useful to authors who attempt to revise any genus occurring south of Panama, as it has collected together data on all these forms. But even here, the generic characters listed are exceedingly vague.

Cranial characters are of no use in dealing with a group of this description from the point of view of arranging a key, as all being more or less generalized Tluridac, there are no characters (with very few exceptions) which will not he duplicated in any of the large genera. External characters are very much the same; even the tail reduction, which might on first view be used to divide off such genera as Cricetus and Onychomys, is overlapped by short-tailed species of many of the Neotropical genera. One is forced therefore to endeavour to divide the genera on dental characters, and a key has been got together which is in many places much more average than absolute, and probably can be broken down; this is chiefly owing to the fact that although such forms as Neotoma, Sigmodon and $O_{r y}$ romss, representing three extremes, are very widely separated dentally, there are a host of subsidiary genera which have intergrading dental characters; in fact some genera start life in one section, and in the adult appear to develop a dental pattern not distinguishable from that of another section. All American Cricetinae seem to be extremely closely allied, and to have no characters which will constantly separate them from allied genera, in very many instances; even long-standing and well-known genera like Akodon, Peromyscus, Orizomys, Phyllotis and Hesperomys are not in all cases clearly distinguishahle, and as each of these may have as many as a dozen closely allied subsidiary genera, the task of arranging these in any natural order is almost impossible. 'The South American genera are all so essentially similar perhaps because they have probably been isolated there for millions of years and have had no competition with other subfamikes of Muridae (as Murinac, Nicrotinae, Gerbillinae, etc.), as have the genera of any of these subfamilies in other portions of the world, such as the Palacarctic or Africa. Very much the same essential similarity and intergrading or overlapping of characters occurs in the Indo-Nalayan region in the Mlurinae (Rattus, ctc.), in which these are almost the sole type of Muridae.

Characters have heen used in this subfamily for generic purposes which one would take no notice of elsewhere, but which must he used if even longstanding senera like, for instance, Rhipidomys are retained.

Oryzonys scems to be fundamentally the most primitive genus if complexity of checkteeth indicate a primitive character, as has been held by Hinton, and in the present work. The molars are brachyodont, eusped, and extremely complex, and have well-marked subsidiary ridges in the main outer folds. The genus contains nearly two hundred named forms ranging from the southern

United States to Patagonia, and round it centre many named genera, some of which are retainable, and some of which are not. Rhipidomys and Thomasomys are among the less differentiated of these. Nectomys seems to be more progressive dentally, in a tendency to lose the cusps, and for the outer folds of the upper molars to isolate as enamel islands on the crown surface; but Oryzomys approaches this type of dentition, in certain sections. All these Rats are generalized in cranial and external characters, or in Rhipidomys and sometimes Thomasomys, and some sections of Oryzomy's, are becoming a little specialized for arboreal life (not more so than in some sections of Rattus among the Murinae). Оtotylomys, Tylomys, and Nyctomys combine certain arboreal specialization with a broadened "Squirrel-formed" skull like that which is found in progressive species of Pogonomy's (Murinae), and other Indo-Malayan genera. The teeth of these three genera all differ in detail from Oryzomys. 'The Madagascar genus Nesonys seems to represent a stage of dental development not very much more progressive than Oryzomys.

Rhagomys is a very little-known genus which appears in the very few specimens available for examination to combine a more simplified and progressive dentition than Oryzomy's, with a more specialized arboreal hindfoot than any of the above-mentioned arboreal genera, but as the skins seen are not in good condition the last statement cannot be guaranteed.

Reithrodontomys contains a group of small Mice ranging from Ecuador north to the warmer portions of the United States, the generic character of which lies in the grooved incisors. A section of the genus has Oryzomys-like teeth, while another section has more simplified molars, in which the subsidiary ridges are suppressed. The genus has been fully revised by Howell, and according to this author the two types of dentition are connected by intermediate forms.

Peromyscus is the dominant genus of North American Cricetine-Rat, ranging from Labrador and Alaska to Panama. It appears to stand near Oryzomys, from which it differs in dental details such as the fusion of the anterior pair of cusps, and the fact that the cusps of the upper molars are less opposite to each other. In one section of the genus, the subsidiary ridges of the upper molars tend to become suppressed. The genus is revised by Osgood, and contains over a hundred and seventy named forms. Baromys was regarded as a subgenus of Peromyscus by Osgood, but is now given generic rank; it contains a few small Mice from 'Texas and Mexico, and appears to me to be distinct from Peromyscus; in fact it might represent one of the genera of small South American Rats, such as Hesperomys. The subsidiary ridges of the upper molars are not apparent in any specimen examined; but the cusps are well marked, and the molars do not show tendency to become prismatic or more flatcrowned. Calomyscus from Persia, Baluchistan, and 'Turkmenia, is 1 think very closely allied to P'eromyscus, but is more simplified dentally, and has a more robust zygoma. Oxychonys from the United States, Mexico and Southern Canada parallels the Old World Hamsters in external characters to a certain extent, but is 1 think quite distinct from them, and from all other North American genera in dental details; the cusps of the molars in those seen (not very many it must be
admitted) are more raised up and prominent than in any other genus, and there are no subsidiary ridges in the main outer folds.

Akodos (including about eight subsidiary "genera" of 'Thomas) appears to stand very near Oryzomys, but there is tendency for simplification of the molars, which are usually narrower, with weaker re-entrant folds, and with a tendency to become more hypsodont; in many cases in this genus the subsidiary ridges are present in the main outer folds in the young specimen, but seem to hecome lost with wear. N. 3 is more reduced than is normal in Oryzomys-like genera (but agreeing in this character with Peromyscus). The genus contains a large number of named forms from South America. Oxymycterve and L.fonses stand near Akodon, but are more specialized, or aberrant; the skull takes on a superficial resemblance to the African Murine Lophuromys in some characters, such as very low and weak zygomatic plate, and tendency towards unusually wide unconstricted frontals. The rostrum is usually long and pointed. The former is rather specialized for fossorial habits. Blarinomys is a small Tlouse, like Oxymycterus in cranial characters, but much more specialized for underground life. Notiomys, containing several species from southern South America, is also much specialized for digging, the claws being immensely enlarged, as happens elsewhere in such genera as Prometheomys, Myospalax, etc. The genus is probably a near ally or offshoot of Akodon.

Scapteromys is an isolated genus which may be allied to Akodon, or may be derived from Oryzomys. The subsidiary ridges in the main outer folds of the molars are apparently clearly traceable, but the general pattern is much more progressive than in the complex-toothed types, the folds of the molars isolating on crown surface with wear something after the manner of Spalax, or genera with a similar dentition, though more complex than in Spalax. The external form is slightly specialized for aquatic and for fossorial habits; the size may become large.

Scotinowys appears to be a remarkably isolated type, judging by very few skulls examined; the folds of the upper molars are completely isolated as deep central pits between the cusps in old specimens; the general dentition is weak, with narrow teeth, and obsolete re-entrant folds. I have no notes on the pattern of moderately young specimens, however.
'The Palaearctic Hamsters seem to me to be quite clearly distinguishable from other genera on dental characters, in the importance of the deep isolated pits between the cusps in the upper molars, combined with general complexity of dental arrangement (with wide heavy re-entrant folds, six well-marked cusps in \1.1, no reduction normally of $\$ 1.3$, etc.), combined with suppression of the suhsidiary ridges in the main outer folds. The external form, as is well known, is as a rule rather highly specialized, with tendency to general thickset form, shortening of feet, reduction of tail, etc. Cricetcels has the widest range, the largest number of groups of species, and is the most generalized in cranial tharacters; Phonopts is distinguished from it by the specialized characters of the feet; Cricetis and Nesocricetis have a much more specialized heavily ridged skull than in these genera, and the external characters typical of the section are at their maximum development in these two genera.

The African Mystromys may be allied to the Cricetus series or it may be allied to the Neotropical Phyllotis series; it has remarkably few diagnostic characters as a genus. In the young the cusps of the molars are well developed. The general dental pattern is simpler than in the Cricetus section, and the Oryzomy's genera. The form is more or less Cricetine, with a considerably shortened tail (in all seen).

Ilesperomys contains a group of generalized and rather nondescript small Nice from South America. The cusps of the molars are still apparent, but it differs from Oryizomys and Akodon in the complete suppression of subsidiary ridges in the main folds of the upper molars. It scems to lead straight into Eligmodontia and Phyllotis, the latter containing many species; in both these genera there is a tendency for loss of cusps, and for the molars to take on a more or less weakly prismatic appearance, or to become nearly a series of transverse plates (which when present are separated by clear inner and outer folds). This section of genera seems to me to lead straight into the specialized hypsodont prismatic Veotoma type of dentition on the one hand, and probably to the more brachyodont less Microtine type of Reithrodon, Holochilus and Sigmodon on the other.

Chinchilllla is more hypsodont than Phyllotis, and more with a tendency for a flatcrowned laminate type of dentition from birth. Irenomys, a littleknown form, has as highly specialized a dentition as is known in the subfamily, the molars, cutting and adult, being completely simplified transverse plates separated by equal-sized rather wide inner and outer re-entrant folds, much as in the Gerbil Meriones. Androniys is a hypsodont prismatic type, from South America, which seems to be very near the Neotoma series. Neotoma, with many species and groups from Western Canada, the United States, and Mexico, has hypsodont prismatic Vole-like molars. The genus contains large Rats. The skull, compared with Microtinae, is much less specialized by jaw-muscle ridges. The teeth are rooted, and the pattern ultimately becomes obliterated. Hodomys and Nflsonia, the latter rather modified dentally, are allied types.

Several genera have a type of dentition which while prismatic and Hatcrowned differs rather markedly from the Neotomine type, chiefly perhaps in the more brachyodont teeth, and the very narrow alternating folds, which are scarcely open at all; the general effect being reminiscent of a type of dentition found in some Hystricoid genera.

Neotomys, rather an isolated type, with specialized skull and complex M.3, Reithrodon, with a highly specialized skull and simple reduced M.3, Ecifomys, with less specialized skull, and Chelemyscts, near the last but with enormously enlarged foreclaws, are South American types all of which possess grooved incisors, and all of which belong in this section, as do Holochills, which has a complex M.3, and Sigmodon, with several forms from the southern U'nited States, Central and northern South America.

Hypogeomys, from Madagascar, is a highly specialized Giant Rat with (in the one specimen seen) hypsodont, prismatic teeth with inner and outer re-entrant folds, and with several external specializations.

The South Imerican Fishing-rats, Ichthyomys, Rheomys and Ayotomys,
are so specialized cranially and externally for aquatic life that they need no special comparison with the other genera.

I am handicapped in these notes in several cases by the lack of material in some of the lesser-known genera, so that if and when more of these come to hand it may fe that some of the characters given will be found to be not constant.
(The references and type localities for all members of the subfamily Cricetinae listed below are the work of Mr. G. W. ('. Ilolt.)

Key to the Genera of Cricetinae
(not including Tenomy's, Teanopus, Otonyctomys and a lew others not represented in the British Nuseum)
External form highly modified for aquatic life. Skull much specialized towards aquatic life (with much flattened braincase, enlarged infraorbital foramen, narrowed zygomatic plate, etc., its general appearance Hydromys-like).
Nasals slanting upwards anteriorly, the nasal opening much heightened. Lower incisors extremely compressed, but the upper pair less so. No earconch.
Nasals not slanting upwards anteriorly, the nasal opening not specially heightened. A functional earconch present. Upper and lower incisors broad. 2. IChthyomys Upper and lower incisors narrow.
External form never extremely motified for aquatic life. Skull without the above-mentioned peculiarities.
External form much modified for fussorial life (either by strong reduction of ears and eyes, or by great enlargement of foreclaws).
Claws not lengthened. Infraorbital foramen unusually large.
4. Blarinomiys

Claws greatly lengthened. Infraorbital foramen moderate.
Pusterior portion of palate with deep pits each side; upper incisors grooved. 5. Chelemyscl's Posterior portion of palate not ahnormal. Epper incisors plain.
6. Notiomys

Evternal form never excessively modified for lossorial life.
Zaromatic plate much narrowed, usually slanting gradually backwards from lower to upper horder, the lower border always considerably in front of upper horder; infraorbital foramen usually large, well open. (Skull normally with little interorbital constriction, lengthened rostrum, heavy braincase.)

The foreclaws prominent and considerably lengthened.
The foreclaws normal.
Nasals extending posteriorly beyond front portion of orbit; interparietal large; interorbital constriction scarcely apparent.

Nasals not extending posteriorly beyond front portion of orbit; interparietal small, much reduced; interorbital constriction more marked.
Zygomatic plate not or less narrowed, and tilted more strongly upwards (in genera in which it is narrowed, it is always tilted upwards). (Skull usually without the above-mentioned peculiarities.)
Upper cheekteeth specialized, their normal cuspidate pattern not apparent at any time, and obliterated (in the majority of genera included in this section, cutting teeth have been examined; Neotomodon may be an exception to the above statement); the pattern of the molars prismatic and flatcrowned. (Genera Numbers 10-23.)
The laminae of the upper molars plain, straight, and equal-sized, these separated by inner and outer folds which are opposite to each other, about equal in depth, and almost meeting in middle line of the teeth.
10. Irenomys

The laminae of the upper molars never as just described, the inner and outer folds alternating, the general effect less simple. Third upper molar simplified, without inner folds. 11. Nelsonia Third upper molar always with inner fold present.

Upper incisors clearly grooved.
Third upper molar enlarged, complex; groove of upper incisors placed at outer side of tooth; nasals abnormally expanded anteriorly. (Palate with deep pits in posterior portion). upper incisors placed more centrally; nasals not abnormally expanded anteriorly.
Zygoma robust; pits in posterior portion of palate
shallow.
Zygoma slender; pits in posterior portion of palate deep. Zygomatic plate with strongly marked forwardly projecting process on upper border; M. 2 not S-shaped.

Zygomatic plate without forwardly projecting process on upper horder; $\lambda 1.2$ S-shaped. $\quad 15$. EiNeomys
Upper incisors plain.
Zygoma very heavy, chiefly formed by the jugal, which
is relatively long. (Bullae enlarged, paroccipital pro-
cess lengthened; ear enlarged, plantar pads reduced; apparently giant form; only one specimen available for examination.) 36. Hypogeomys
Zygoma slender, or less heavy; in forms with a thicker zygoma (Sigmodon, Holochilus) the jugal is excessively reduced.
The folds of the upper molars in moderately young adult animals are widely open, the general dental pattern is in appearance reminiscent of that of Ticrotinae.

Palate extending posteriorly to end of toothrows or slightly behind that level.
Zygomatic plate with anterior border concave, and sharply cut back above. (Folds of upper molars alternating; first lower molar exceptionally complex originally, compare Chinchillula.) 17. Avdinomys Zygomatic plate with anterior border straight.

Braincase broad; rostrum broad; two wellmarked inner folds in M.I. (Folds of upper molars nearly opposite; first lower molar not exceptionally complex, compare Andinomys.)
i8. ('hinchilllla
Braincase narrow; rostrum narrow; one wellmarked inner fold in M.r. (The position of this genus must be accepted as provisional, as only one specimen with much worn teeth has been examined.) I\%. Neotomodon
Palate estending posteriorly only about to level of hinder part of M .2 , or front part of II .3 .
'Third lower molar S-shaped. 20. Honosiss
Third lower molar not S-shaped, consisting of two transverse loops.
21. Nentoma
'The folds of the upper molars in moderately young adult animals are not widely open, and the dentine spaces are less sharply projecting, so that the appearance
of the molars is compressed, and not reminiscent of Microtinae. (Folds typically deep but very narrow.)
M. 3 is more complex. (Usually the pattern of the upper molars is more angular, with the anterior transverse loop of M. 2 and M .3 straight, and with closed triangles more in evidence.) 22. Holochills
M. 3 is less complex, and smaller. (Usually but not always the pattern of the upper molars is less angular, with the anterior transverse loop of M. 2 and N .3 curved to a certain degree, and the closed triangles of the molars less well marked.) 23. Sigmodon

Upper cheekteeth not or less specialized, their cuspidate pattern as a rule not obliterated, and apparent at least at some time of life; usually the molars are not flatcrowned. In a few genera, as Phyllotis, Graomys, Eligmodontia, the molars may have a prismatic appearance, but the molars are never with all folds compressed, deep and narrow (compare Sigmodon, Holochilus, etc.), and are less Microtine in appearance and less angular than in such forms as Neotoma, Andinomys, Chinchillula, etc. If the crowns are flat, there are clear traces of subsidiary ridges in the outer main folds of the upper serjes (which do not occur in those genera above), and the folds isolate as islands on crown surface.
Upper incisors clearly grooved. (Cheekteeth strongly cuspidate, compare Phyllotis.) 24. Reithrodontomys
Upper incisors plain or scarcely grooved (one subgenus of Phyllotis only of those that follow may have weakly grooved incisors).
The cheekteeth are complex, with clear subsidiary ridges normally present in the main outer folds of the first and second upper molars; the teeth are always cuspidate originally, and in most cases through life. (In the genus Peromyscus, there is a tendency for the subsidiary ridges to be lost, and in one subgenus this is a fairly constant character, though it contains forms in which these ridges are traceable, and there are intermediate forms between these and typical Peromyscus. Nembers of this group without the subsidiary ridges will stand nearest to Baiomys in the key below, from which they differ in the non-reduced coronoid process, and the non-shortened tail.) (Genera Numbers 25 to 39.)
The dentition is weak, the molars rather narrow, the folds
usually not approaching each other, and not well marked; the subsidiary ridges are present originally, but may be lost in the adult; the molars tend to become more hypsodont.
The dentition is stronger, with as a rule relatively broader molars, with well-marked folds; the subsidiary ridges are retained usually through life; the molars generally are brachyodont.
Cusps of upper molars alternating; anterointernal cusp normally suppressed or vestigial; M. 3 rather strongly reduced. (Coronoid process much reduced; subsidiary ridges when present retained till old age; M.2 smaller than M1.1, compare Nesomys.) 26. Peromyscus
Cusps of upper molars opposite, or nearly so; anterointernal cusp not ohliterated, excepting Nesomys; normally M .3 is not strongly reduced.
Upper incisors strongly pro-odont; braincase much enlarged, but not ridged.
27. Chilomys

Upper incisors not pro-odont ; braincase when enlarged is strongly ridged.
Fur composed of bristles or spines.
28. Neacomys

Fur not spiny.
M.2 essentially like X.i in size and elements. ('Traces of the element corresponding to the anterointernal cusp in 11.1 are more or less obliterated.) 29. Nesoniys
M. 2 smaller than M. i, or more reduced in elements. (Anterointernal cusp in M. I retained.)
Anterointernal ensp of X.I is much reduced.
Feet more modified for arboreal life. Skull specialized, with widened frontals, heavy braincase, as is seen in specialized arhoreal genera.
30. Nyctomys

Feet not much modified for arboreal life. Skull gencralized, with narrow frontals, and moderate braincase. 31. Phaenomys
Anterointernal cusp of W.I is not much reduced.
Palate not reaching posterior part of toothrows, and without lateral pits in posterior portion.
Skull specialized, of arborcal type, with much
widened frontals, and large heavy braincase. M. 3 is similar in elements to M.2. Subsidiary ridges of upper molars are reduced. (Tail naked, feet arboreal.)
l'its between cusps of upper molars unusually well developed. Bultae enlarged. 32. Оtоtylomys
Pits between cusps of upper molars not specially developed. Bullae small.

> 33. TYLOMYS

Skull not much modified. M. 3 is more reduced than M.2. Subsidiary ridges in upper molars not or less reduced. ('l'ail usually moderately or well haired.)

Feet modified for arboreal life. Folds of upper cheekteeth never specially widened. 34. Rhipidomys
Feet usually not modified for arboreal life; but if so, folds of upper cheekteeth conspicuously widened.
35. Thomasomys

Palate reaching behind posterior part of toothrows, and except in Scapteromys, with wellmarked lateral pits in posterior portion.
Cheekteeth tending to become more or less flatcrowned carly; the outer folds of upper molars isolated, or practically so, on crown surface as islands, early in life.
Outer folds of upper molars isolate as broad islands; general dental pattern simple; M.I and M. 2 with not more than two isolated islands each. 36. Scapteromys
Outer folds of upper molars isolate as narrow islands; general dental pattern more complex; M.I and 1.2 with three or four isolated islands each.
37. Nectomys

Checktceth not tending to become Hatcrowned until late in life; cusps usually traceable through life; less tendency present for isolating of outer folds as enamel islands.

Braincase scarcely wider than rostrum. (Giant form.) 38. Megalomys Braincase clearly wider than rostrum. 39. Oryzoxtys

Cheekteeth not excessively complex; the subsidiary ridges in the main outer folds of the upper molars in M.1 and $\$ 1.2$ are not traceable.
Some part of backward prolongation of outer folds in the upper molars definitely isolated as deep and conspicuous pits between the main cusps of the upper molars, in the moderately young animal.
Inner and outer folds of upper molars weak; cheekteetl narrowed; tail clearly more than half head and body length (averaging about 60 per cent in those examined).

4o. Scotinomis
Inner and outer folds of upper molars wide and strong; cheekteeth not narrowed; tail shortened, at most 55 per cent of head and hody length, usually under $5^{\circ}$ per cent; progressively reduced until scarcely longer than hindfoot. Cheekpouches are present. Form heavy, thickset. Feet shortened. N1.3 not reduced.
Skull much specialized, with extreme interorbital constriction, parictals narrowed and strongly ridged, rostrum heavy and broadened, braincase narrowed; tendency present for parietal ridges to become fused in fully adult skulls.
Outer side of infraorbital foramen normal, well ridged, with well-marked external plate. 4r. Cricetces
Outer side of infraorbital foramen rounded, abnormal, lacking external plate.
42. Nenocricetlio

Skull not much specialized, without extreme interorbital constriction, the parietals not narrowed, not or weakly ridged; rostrum not broadened, braincase not narrowed.
Feet much broadened and densely hairy throughout.
43. Pholopes

Feet without extreme abnormalities.
44. CRicetlelos

No part of hackward prolongation of outer folds of upper molars definitely isolated as conspicuous pits between the main cusps.
Cusps of upper molars unusually raised and heightened. the checkteeth narrowed (this feature apparent usually even in comparatively old specimens) ( $\$ 1.3$
strongly reduced; tail considerably shortened; form thickset; plantar pads reduced).
45. O.iychomys

Cusps of upper molars not unusually raised up and heightened.

Feet apparently considerably specialized for arboreal life. (A little-known form.)
46. Rhagomys

Feet not specialized for arboreal life.
Skull with considerable interorbital constriction, this carried far backwards, so that braincase appears shortened. (Nolars well cusped in young, but tending to lose cusps in adult; M. 3 reduced; tail about 50 per cent of head and body length, or less, in all seen.)
47. Mystromys

Skull with interorbital constriction usually less extreme, and braincase not shortened in appearance.
Cusps of upper molars are not opposite, but alternating. M.3, at least in adult, ring-shaped. (Coronoid process not reduced, compare Peromyscus.)
Jugal prominent, relatively long, the zygoma broader; tail not shortened, well tufted terminally. 48. Calomiscus
Jugal short, and zygoma slender; tail shortened, not tufted.
49. Baiomys

Cusps of upper molars are, when present, more opposite. M. 3 is normally not ring-shaped. Jugal shortened, and zygoma slender (compare Calomyscus).
In most cases, the upper molars have the cusps not well marked, and the pattern is more or less prismatic in appearance, or may tend to become a series of transterse plates.

Palms and soles with the pads situated on hairy outgrowths (Thomas). 50. Eligmodontia
l'alms and soles usually naked, without abnormalities.

Frontals relatively broad, little constricted, with interorbital region evenly divergent backwards.
51. Graomys

Frontals strongly narrowed, never with interorhital region evenly divergent backwards. 52. Piryllotis
In most cases, the upper molars have the cusps more marked, and there is less tendency for the teeth to take on a prismatic appearance; if molars become more or less a series of transverse plates, the general dentition is much weaker, and less angular in appearance.
Folds of upper molars nearly straight; dentition lighter; no tendency for folds to cut cusp areas into partially closed triangles.
53. Zygodontomys

Folds of upper molars considerably curved; dentition heavier; a tendency present for folds to cut cusp areas into partially closed triangles. 54. Hesperomys

## Genus i. ORIZOMIS, Baird

1857. Oryzomys, Baird, Mammals North America, pp. xyi, $+58,48$.
1858. Mheroryzomys, Thomas, Proc. U.S. Nat. Mus. LV111, no. 2333, p. 229. (Hesperomys mimutus, Tomes.) Valid as a subgenus.
1859. Thallowysecs, Thomas, Ann, Mag. Nat. Hist. 9, XV11, p. 612. (Oryzomys dryas, Thomas $=$ Hesperomys minutus, Tomes) (fide Osgood).
1860. Oligoryzomys, Bangs, Proc. New Engl. Zool. Club i, p. 94. (Oryzomys nazus, Bangs.) Valid as a subgenus.
1861. Melanomys, Thomas, Ann. May. Nat. Hist. 7, X, p. 248. (Oryzomys phaeopus, Thomas.) Valid as a subgenus.
1862. Nesoryzomys, Heller, Proc. Cal. Acad. Sci. 3, iii, p. 2.fr. (Nesoryzomys narboroughi, Ileller.) Valid as a subernus.
1863. Oecomys, Thomas, Ann. Mag. Nat Hist. 7. XV'll, p. 4t+. (Rhipidomys benerolens, Thomas.) Valid as a subgenus.

Type Species.-Mus palustris, Harlan.
Ravge.--Throughout South America from Southern l’atagonia northwards. Galapagos Istands. Central America, and Mexico, including Lower California. Jamaica, St. Vincent. Southern United States, Texas, Alabama, Georgia, Florida, north to New Jersey. (For range map of United States forms see Anthony, Field Book North American Mammals, p. 374, 1928.)

Nuaber of Forms. - A bundred and cighty-six approximately.
Characters.- The skull within this genus is variable. In some forms, such as dezius and meridensis, there is considerable interorhital constriction present; the supraorbital ridges may be rather weak, and the rostrum long; the braincase moderate. In couesi and polustris, the constriction is less abrupt than in the above, and more gradual; these forms are intermediate between the dezius type, and the tectus type, in which the frontals
are relatively very broad, the supraorbital ridges are heavy, and the general form of the skull is such as is met with in arboreal types, and very similar to subgenus Oecomys, to which tectus probably belongs. The most aberrant cranial characters are found in Melanomys, which will be dealt with below. Supraorbital ridges may be present or absent within the genus. The interparietal is well developed in all seen. Zygomatic plate usually slightly cut back above; more or less straight in most members of subgenus Oecomys, and completely so in Microryzomys; more strongly thrown forward than usual in lamia, warrini (with anterior border concave), ratticeps, boliziap, legatus, and probably laticeps. 'Ithe skull of $O$. angouya agrees in arboreal form evidently with that of tectus, as does that of flazicans. The form ochrinus, described as a race of barbacoas, has a heavier rostrum than is normal, and very broad heavy incisors. O. wazrini is an aberrant type, with the skull like that of a Hesperomys, and the dental pattern not extremely different from that genus; but the subsidiary ridges are in wazrininot suppressed, though very reduced. Incisive foramina variable in length, not approaching toothrows in tectus, laticeps, and several others. Palate extending behind toothrows, and with lateral pits present each side in posterior portion. Bullae normally small to very small, but conspicuously enlarged in pyrrhorhinus.

Upper cheekteeth three-rooted, lowers two-rooted (Goldman). The upper cheekteeth are brachyodont, with rather low cusps, but these normally retained until the whole pattern is obliterated; the general pattern very complex. The cusps are symmetrical, six in M.1, four in M.2, and M. 3 has two front ones, but the posterior elements of the tooth are reduced, and not clear. As a rule this tooth is little reduced in size. The folds are well marked, relatively narrow in adult, but very clear; four in M. 1 (two each side), and three (two outer, one inner) in M.2; in each outer fold of M.1 and M. 2 there is a well-marked subsidiary ridge, which persists through life; the folds tend to approach each other across the tooth; each tooth has normally several small isolated islands in the adult ; the main folds do not as a rule completely isolate until old age, if then. The pattern changes relatively slowly with wear, apparently. In specimens seen of xanthaeolus and of polius the subsidiary ridges are rather strongly reduced. O. intectus has a highly aberrant dentition, with the cusps obliterated and the folds more or less isolating; the subsidiary ridges are weak; the second outer fold of M.1 and M. 2 is unusually long; this species should, I think, be transferred to the genus Nectomys.

Lower cheekteeth: M. 3 often rather long; two outer, three inner folds in M.1, the posterointernal fold with a terminal heel behind it. M. 2 with two folds each side, the anteroexternal one small. M. 3 much like M. .2, except that the posterointernal cusp is reduced. Subsidiary ridges originally traceable in the main folds of both sides; with wear the inner folds may isolate as islands.

Mammace $2-2=8$ (Gyldenstolpe). Form Rat-like. Tail typically poorly' haired, not reduced in length; in pyrrhorhinus very much longer than head and body (over ${ }^{150}$ per cent of this measurement, or up to 170 per cent apparently). Hindfoot typically with the three centre digits considerably longer than the outer pair, the foot narrow. In some species, as pyrrhorhinus
and tectus, the loot is as highly modified for arboreal life as in subgenus Oecomys, to which they will probably be transferred when the genus is revised, with broadened foot and relatively long 1 .5 ; between these and normal Orysomys cxist intermediates such as ratticaps, subflazus, angoura, and fulvizenter, in which the foot is as hroad as Oecomys, but D. 5 is not specially lengthened. Whether under these circumstances Oecomys can be even retained as a sulgenus is questionable.

It will be seen from the above notes that the subgenus Orysomys contains prohalhly several well-marked groups in South America. There is no doubt that in the final revision the species pyrrhorhinus, with its arboreal feet, exceptionally long tail, and strongly enlarged bullae, whether classed as Oecomys or Oryzoms, will be the type of a very distinct group or probably subgenus. I have treated it here as a species group; it is completely distinct from all Oryzomss seen. 'The species is thought by 'late, 1932, to be a Rhipidomys; but the palate of the one skull seen seems to agree with Orbzomys in the presence of small lateral pits; though it is not very typical of Oryzomys. The remainder of the species from South America I have listed alphabetically, but I have given full notes on all forms seen which deviate markedly from the normal. Five groups have been given subgeneric or generic rank which are here retained in Oryzomps.

Oeconys.- About twenty-six forms have been referred to this group, which is currently accepted as a full genus. 'The skull is with short rostrum, hroad braincase, interorbital constriction not much marked, and supraorbital ridges evenly divergent backwards; bullae relatively small; zygomatic plate normally straight anteriorly; palate and dentition as Oryzomys; feet broadened and modified to a degree for arboreal life, with long fifth digit in hindfoot (about as Rhipidomys, or perhaps a little less specialized); tail long, moderately haired, faintly tufted terminally. Hammae as Orywomys, 2-2-8.

The group was originally proposed as a subgenus of Orysomys, and later given full generic rank on the grounds that as well as in the external characters it differed from Ory $20 m$ sis in the fact that the zygomatic plate is straight anteriorly, whereas in Oryzomys it is slightly eut back above. But I cannot distinguish the zygomatic plate of Orysomys teclus from Oecomys oggoodi; while Oecomys catherimek has the zygomatic plate cut back, as in typical Oryoomys; and elsewhere in Orysomys (subgents .Vicroryzomys) the zygomatic plate is straight. I have just shown that the fect of Oecomys are no more specialized than those of Orysumys techus and Orizomys purrhorhimus, while ratticeps, subflazas, angorrya, ete., appear intermediate between the two. Even O. consi appears to lean in the direction of Oecomys in foot structure. Under the circumstances, I do not see how Oecomys can be regarded as more than a doubtfully distinguishable subgenus, until the whole genus is revised. The one character for Oecomys which remains is its slightly tufted tail (!). Goldman, in his revision of North American Oryomys, writing of the tectus group, states that in general characters "they approach that section (of Orysomys) assigned to generic rank by 'Thomas under the name Oecomy's."
()ligoryzomys contains a group of very small species, and as remarked by Goldman, departs from the subgenus ()rysomys mainly in the combination of
relative rather than absolute characters. 'The species referred to the group are small forms with delicate unridged skull. The coronoid process is rather low, as may sometimes occur in Oryzomys. "The molar crowns differ in details of enamel arrangement, the second upper molar especially in the early appearance of a single persistent normally circular enamel island in the broad space between the apex of the inner re-entrant angle and the base of the paracone. In the subgenus Oryzomys, this molar crown varies in pattern, in the more typical forms normally it is present in early stages of wear as an elongated crescentic enamel island in the central space, but in the more divergent forms the enamel island may be absent." M.3 may be relatively small. Tail considerably longer than head and body.

Nisoryzomys from the Galapagos was proposed as a full genus. Like Oryzomys, "but interorbital portion of skull very different, the frontal bones medially much narrower, with rounded sides at interorbital constriction; snout more elongate; nasals narrower, considerably longer, and less convex in profile. Zygomatic width and length of upper molar serjes less." Goldman in his revision of Nearctic Oryzomys suggests that the genus is probably not valid. It would seem that these Galapagos species are merely at one end of the series of Oryzomys in skull characters; it does not seem necessary to regard the group as a full genus. The following measurements (from Gyldenstolpe) given below indicate that the differences between the species and certain Oryzomys are present but not excessive. (Types.)

|  | Greatest <br> LENGTH | zygomatic breadth | nasals | LEAST interorbital | UPPER molats |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nesoryzomys darwini. | 30 | 14.6 | 12.6 | $4 \cdot 3$ | $4 \cdot 8$ |
| Oryzomys sylvaticus | $30 \cdot 5$ | 15 | 12 | $4 \cdot 9$ | 45 |
| Oryzomy's yungamus | $31 \cdot 3$ | 16.5 | 12.1 | 45 | $4 \cdot 9$ |

It is curious that this distinct group should be living side by side with the ordinary Oryzomys galapagoensis in such a remote place as the Galapagos. I lindfoot broad; fur thick; tail rather shorter than head and body. Dentition normal.

The two following groups are much more differentiated from typical Oryzomys than are the above.

Microryzomys (synonym, Thallomy'scus). This subgenus was based on a species mimutus, the type skull of which is apparently in fragments, and which scems to be more or less unidentifiable. 'Thomas regarded his species dryas as not congeneric with minutus, and erected "Thallomyscus" for it, at the same time referring his name Microryzomys to a synonym of Oligoryzomys. Recently Osgood (1933, Field Mus. Nat. Hist. Zool., ser. XX, p. 1), who has given characters to distinguish between Microryzomys and Oligoryzomys, and regards the group as a valid subgenus, has revived the name Microryzomys, stating that dryas is a synonym of minutus; and thereby synonymizing Thallomyscus. He regards the group as not distantly allied to Thomasomy's, from which it differs in its normal Oryzomys-like palate. The rostrum is slender, the zygomatic plate much narrowed, and straight anteriorly; the cheekteeth are relatively small.

The size is very small, the fur thick, and the tail very much longer than head and body (sometimes almost twice as long). D. 5 of hindfoot relatively long.

Dflanonys is regarded as a subgenus of Oryzomys by Goldman, who has revised the North American species, so it is here retained as such; but on cranial characters alone I should be prepared to give it generic rank, if it had not been for Goldman's classification. The frontals are extremely broad for a Nurine, and there is almost no trace of interorbital constriction; the braincase is more broadened than other species of Oryzomys examined. The rostrum is short. Palatal formina short in those seen; bullae small; zygomatic plate very slightly cut back above. Jachrymal articulating mainly with maxilla (about equally with maxilla and frontal in normal Oryzomys). Suprarbital ridges developed. Interparietal large. Upper cheektecth rather more hypsodont than other subgenera; the subsidiary ridge in first outer fold of N .1 appears to fuse with the anterocxternal cusp. (Few skulls available for examination; for full dental particulars see Goldman, North. Amer. Fanna, 1918, no. 43, in which it is fully compared with the other groups; it is considered as transitionary towards \icfomys to a certain degree.) Tail about three-quarters head and hody length only, or less. llindfoot with two outer digits considerably shorter than the central three.

Range.-Colomhia, Ecuador, Panama, Costa Rica.
North of Panama, as well as a few forms of Oligoryzomys and Melanomys, Goldman recognizes the following groups of Oryzomys s.s.:
palustris group, with the central enamel island crescentic-shaped and present in $\mathbf{1 1 . 2}$ upper, and differing from the other groups in the absence of conspicuous tufts of bristles which in other groups project beyond ends of claws of hindfect; tars small; form robust.
melunotis group, slender species with large ears; differing evidently in colour from the above; dentition similar, but re-entrant folds of molars longer.
alfaroi group: small dark forms, with comparatively large ears; skull small and delicate, dentition like melanotis group.
tulumamae group: resembling the last, but the enamel island in M .2 is absent, and the third lower molar is more than half cleft by the deep outer re-entrant fold.
hombicimus group, differing from others in unusually long pelage. Dentition about as in falamancal group.
Ietius group, distinguished hy large but rather slender form, long tail (much longer than head and budy), and general dark coloration.
tectus group, with short, stout hindfeet, large size. small ears, broad skull; dentition much as in talamancae group.
Xost of these groups occur in South America; Goldman refers the Neotropical meridensis and muculizenter to the derius group; flaricans and palmarium to the tectus group, and mollipilesus and medius to the talamancue group.

Forms seen: aurillus, alfaror, alhigularis, angonva, aquaticus, arenalis, anreizenter, benezolens, bicolor, balneator, bombycinus, bolizaris, boliziae, custaneus, childi, cathernae, caracolus, chapmani, couesi, costaricensis, copperingi,
caliginosus, chrysomelas, delticola, dryas, derius, cliurus, flazescens, flazicans, fulzescens, fulgens, fulziventer, fulzirosiris, galapagoensis, goeldi, gracilis, guianae, humilior, indefessus, intectus, intcrmedius, jalapae, keaysi, lamia, laticcps, lecipes, longicaudatus, legatus, mamorae, marmosurus, magellanicus, macconnelli, maculirenter, mclanotis, meridensis, messorius, mimutus, mizurus, mexicanus, moerex, nitidus, nitcdulus, narboroughi, osgoodi, olivinus, obscurior, ochrimus, oniscus, paricola, palmeri, paraganus, palustris, palmirae, panamensis, pererensis, peninsulae, polins, pyrrhorhinus, pectoralis, phaeopus, phaeotis, rostratus, ratticcps, robustulus, rex, roberti, rivularis, rosilla, subflazus, subluteus, stolzmanni, superans, sylzaticus, tropicius, tapajinus, tectus, trinitatis, victus, vegetus, vehutinus, wavrini, ,uanthaeolus, yunganus, splendens (Oecomys splendens, Hayman, 1938, from Trinidad).

List of Named Forms<br>Subgenus Oryzomys, Baird

(Forms occurring north of Panama revised by Goldman, North Amer. Fauna, 43, 1918.)

## palustris Group

1. ORYZONIY PALC'sTRIS PALCSTRIS, Harlan
2. Amer. Journ. Sci. XXXI, p. 385 .

Fast Land in vicinity of Salem, New Jersey.
Synonym: (?) oryziz ora, Audubon © Bachman, 1853, Quadr. iii, p. 214 S. Carolina.
2. ORYZOMY'S PALESTRIS NATATOR, Chapman
1893. Bull. Amer. Mus. Nat. Hist. V, p. 44.

Gainesville, Alachua Co., Florida.
3. ORYZOMI's PALUSTRIS COLORATE'S, Bangs
1898. Proc. Boston Soc. Nat. Hist. XXVIII, p. 189.

Cape Sable, Nonroe Co., Florida.
Synonym: floridanus, Merriam, I901, Proc. Washington Acad. Sci. III, p. 277.
4. ORYZOMY'S PALL'STRIS TEXENSIS, Allen
r894. Bull. Amer, Mus, Nat. Hist. V1, p. 177. Rockport, Aransas Co., Texas.
5. ORyZOMYS COLESI COLESI, Alston
1876. Proc. Zool. Soc. London, p. 756.

Coban, Guatemala.
Synonym: jalapae, Allen \& Chapman, i\$97, Bull. Amer. Mus. Nat. Hist. IN, p. 206. Jalapa, Vera Cruz.
teapensis, Merriam, 1901, Proc. Washington Acad. Sci. III, p. 286. Teapa, Tabasco, Mexico.
goldmani, Merriam, 1901, Proc. Washington Acad. Sci. III, p. 288. Coatzacoalcos, Vera Cruz.
rufinus, Merriam, 1901. Proc. Washington Acad. Sci. 1II, p. 285. Catemaco, Vera Cruz.
richardsoni. Allen. 1910, Bull. Amer. Mus. Nat. Hist. NXYIII, p. 99. Pena [3lanca, Nicaragua.
apatelius, Elliot, 1904, Field Col. Mus. pub. 90, 2.s. 3, p. 266. San Carlos, Vera Cruz.

6．ORIZOMIYS COLESI R1CHAIONDI，Merriam
1901．Proc．Washington Acad．Sci．III，p． 284.
Escondido River， 50 miles above Bluefields，Nicaragua．
7．ORIZOMES COLESI ZVGOMATHCLS，Merriam
1901．Proc．Washington Acad．Sci．III，p． 285.
Nenton，Guatemala．
S．（）RYZOMIY COUESI MEXICANUS，Allem
1897．Bull．Amer．Nus．Nat．Hist．IS，p． 52.
Hacienda San Marcos，Tonila，Jalisco，Mexico．
Synonym：bulleri，Allen，1897，Bull．Amer．Nus．Nat．Hist．IX，p． 53. Nayarit，Mexico．
rufus，Nerriam，1901，Proc．Washington Acad．Sci．Ill， p．287．Nayarit，Nexico．
4．（ORY゙ZOMIY COLESI AZTECL゙心，Merriam 1901．Proc．Washington Acad．Sci．JII，p． 282.

Yautepec，Morelos，Mexico．
10．ORYZOMYS COLESI CRINITLS，Merriam 1901．Proc．Washington Acad．Sci．III，p． 281.

Tlalpam，Federal district，Mexico．
11．ORYZOMTY COLESI REGll．LL＇S，Goldman 1915．Proc．Biol．Soc．Washington，XXVIII，p．iz9．

Los Reyes，Nichoacan，Mexico．
12．ORIZOMY゙S COLESI ALBIVENTER，Merriam I901．Proc．Washington Acad．Sci．III，p． 279.

Ameca，Jalisco，Nexico．
Synonym：molestus，Elliot，1903，Field Columb．Nus．publ．71．2．s． 3，p．145．Ocotlan，Jalisco．
13．ORIZOAIY：（O）LESI IIKRACRRUS，Merriam
1901．Proc．Washington Acad．Sci．1II，p． 283.
Rio Verde，San Luis Potosi，Mexico．
14．（）RYZOMIY（OOESI AOLATIC（S，Allen
1891．Bull．Amer．Nus．Nat．Hist．IIJ，p． 289.
Brownsville，Cameron Co．，Texas．
15．जRYZOMIY（OLESI PINKCOLA，Muri＊ 193z．Oce．Pap．Mus．Zool．Univ．Nich．no．245，p．i． 12 miles south of El Cayo，British IIonduras．
16．（）RリZO）\Y＇s（＇OLESI LANBI，Burt 1934．Proc．Biol．Soc．Washington，XLVII，p． 107.

Sonora，Nexico．

1S93．Ann．Nag．Nat．Hist．6，11，p． 403.
Mexico，probably in or near Valley of \exten．
IS（DRIZGNIY G G ATL NEVSIS，Goldman
1912．smiths．XIisc．Coll．LV1，36，p． 7.
Gatun，Canal Zone，Panana．

1901．I＇roc．Biol．Soc．Washington，XJV＇，p． 103.
Cozumel Island，Vucatan，Mexicn．
20. ORY\%OMIS ANTILLARLM, Thomas
1898. Ann. Mag. Nat. Hist. 7, I, p. 177.

Jamaica.
21. ORYZOMI'S PENINSULAE, Thomas 1897. Ann. Mag. Nat. Hist. 6, XX, p. 548. Santa Anita. Lower California.
22. ORYZOMY'S NELSONI, Merriam
1898. Proc. Biol. Soc. Washington, XII, p. 15.

Maria Madre Island, Tres Marias Islands, Jalisco, Mexico.

## melanotis Group

23. ORYZOMY'S MELANOTIS MELANOTIS, Thomas
24. Ann. Mag. Nat. Hist. 6, X1, p. 404.

Mineral San Sebastian, Jalisco, Mexico.
24. ORYZOMYS MELANOTIS COLMENSIS, Goldman 1918. North Amer. Fauna, no. 43, p. 51.

Armeria, Colima, Mexico.
25. ORYZOMY'S ROSTRATUS ROSTRATUS, Merriam
1901. Proc. Washington Acad. Sci. 11I, p. 293.

Metlaltoyuca, Puebla, Mexico.
26. ORY'ZOMI'S ROSTRATUS MEGADON, Merriam
1901. Proc. Washington Acad. Sci. III, p. 294.

Teapa, 'Tabasco, Mexico.
27. ORIZOMYS ROSTRATUS YUCATANENSIS, Merriam 1901. Proc. Washington Acad. Sci. III, p. 294.

Chichenitza, Yucatan, Mexico.

## alfaroi Group

28. ORYZOMY'S ALFAROI ALFAROI, Allen
29. Bull. Amer. Mus. Nat. Hist. III, p. 214.

San Carlos, Costa Rica.
Synonym: incertus, Allen, 1908, Bull. Amer. Mus. Nat. Hist. NXN1V, p. 655. Rio Grande, Nicaragua.
29. ORYZOMI'S ALFAROI DARIENSIS, Goldman
1915. Proc. Biol. Soc. Washington, XXVIII, p. 128.

Cana, E. Panama.
30. ORYZOMYS ALFAROI ANGUSTICEPS, Merriam
1901. Proc. Washington Acad. Sci. III, p. 292.

Volcan Santa Maria, Guatemala.
3r. ORYZOMIS ALFAROI RHABDOPS, Merriam 1901. Proc. Washington Acad. Sci. III, p. 291.

Calel, Guatemala.
32. ORYZOMYS ALFAROI CALDATES, Merriam 1001. Proc. Washington Acad. Sci. III, p. 289. Comatepec, Oaxaca, Mexico.
33. ORYZOMIS ALFAROI PAI.ATINL'S, Merriam 1901. Proc. Washington Acad. Sci. III, p. 290. Teapa, Tabasco, Mexico.

34．（ORYZOMIY＇ALFAROI SATLRAT［OR，Nerriam 1901．Proc．Washington Acad．Sci．IJI，p． 290.

Tumbala，Chiapas，Mexico．
35．ORYZONIS ALFAROI CHAPMANI，Thomas sigs．Ann．Mag．Nat．Hist．7，J，p． 179.

Jalapa，Vera Cruz，Mexico．
36．ORYZO．IJ＇ALFAROI DILUTIOR，Herriam 1901．Proc．Washangton Acad．Sci．III，p． 290.

Huauchinango，Puebla，Dexico．
37．ORYZ（以MYS GUERRERENSiLs，Gokdman 1915 ．Proc．Biol．Soe，Washington，XXVIll，p． 127. Omilteme，Guerrero，Nexico．

3x．ORYZOMIY HYLOCETES，Merrtam foor．Proc．Washington Acad．Sci．III，p． 29 I. Chicharras，Chiapas，Mexico．
talamancae Group
3\％．ORYZOMY＇TALABlANCAI：，Allen 1Stif．Proc．U．S．Nat．Mus．S＇JV，p． 193.

Talamanca，Costa Rica．
Synonym：carriker，Allen，igos，Bull．Amer．Mus．Nat．Hist．XXIV， p．656．Talamanca，Costa Rica．
panamensis，Thomas，1901，Ann．Mag．Nat．Hist．7，Vlll， p．252．Panama．
bombycimas Group
40．ORYZOMYS BGMBYCINLS BOABYCINLS，Goldman 1912．Smiths．Nisc．Coll．LV＇］，no． 36 ，p． 6.

Cerrn Azul，near headquarters of Chagres River，l＇anama．
4．（ORYZHMYS BOMBYCLNLS ALIEXI，Goldman
1915．Proc．Biol．Soc．Washington，XXVJII，p． 128.
Tuis，about 35 mile＇s east of Cartago，Costa Rica．
derius（ roup
42．（ORYZONIY DEVICS，Bangs
rgoz．Bull．Mus．Comp．Zool．Harvard Coll．XXXIX，p． 34.
Boquete，Chirıq̧us，Panama．
42．（ORV＂／OMYタ I＇IRRENSIS，Goldman 1913．Smiths，Mise．Coll．L．

Near Jhead of Rus Limon，Mt．Pırrı，E．Sanama，
tectus Group（belonging $t$ o subgenus Oecomys？）
44．ORY゙ZOMS゙ T TEC＂FLS TEC＂IL＇S，Thomas
1901．Arn．Mag．Nat．Hist．7，VIJI，p． 251.
Bogava，Chirıyur，Panama．
45．（ORYZOAIYS T＇EC＇TLS FRGNTALAS，Goldman
1912．Sm1ths．Nise．Coll．LVI， $3^{\text {（2）}}$ p． 6.
Corozal，Canal Zone，Panama．

## Not allocated to Group

46．ORYZOMYS VICTLS，Thomas 1898．Ann．Mag．Nat．Hist．7，I，p． 178.

St．Vincent，Lesser Antilles．
（＂Not examined and group association not determined＂（Goldman）．）
47．ORYZOMI＇S APHRASTCS，Harris
1932．Occ．Pap．Mus．Zool．Univ．Mich．248，p． 5.
Joquin de Dota，Costa Rica．

## South American Species <br> pyrrhorhinus Group

48．ORY゙ZOMIS PVRRHORHINUS，Wied
1826．Beitr．Naturgesch．Bras．II，p． 418.
Bahia Province，E．BraziI．

## Other species，not allocated to Groups

49．ORY $Z O M I S$ ALBIGULARIS ALBIGULARIS，Tomes 1860．Proc．Zool．Soc．London，p． 264.

Pallatanga，Central Ecuador．
50．ORYZOMY＇S ALBIGULARIS MACULIVENTER，Allen
1899．Bull．Amer．Mus．Nat．Hist．XI1，p． 204.
Sierra El Libano，Santa Marta district，N．．－E．Colombia．
（Belonging to Nearctic devius group（Goldman）．）
51．ORYZOMIS ALBIGULARIS MOEREX，Thomas
1914．Ann．Mag．Nat．Hist．8，XIV，p． 241.
Nindo，W．Ecuador．
52．ORYZOAYS ANGOLYA，Desmarest
1819．Nouv．Dict．Hist．Nat．；2nd．ed．Art．Rat．p． 22.
Paraguay．
（Perhaps a member of subgenus Oecomys．）
53．ORYZOMIY AURIVENTER AURIVENTER，Thomas 1899．Ann．Mag．Nat．Hist．7，1V，p． 379.

Nirador，Upper Rio Pastaza，E．Ecuador．
54．ORYZOMY＇S AUR1VENTER NIMBOSU＇今，Anthony 1926．Amer．Mus．Nov．240，p． 4.

San Antonio，Rio Ulva，E．Ecuador．
55．ORYZOMI＇S BALNEATOR BALNEATOR，Thomas 1900．Ann．\lag．Nat．Hist．7，V，p． 273.

Mirador，Upper Rio I＇astaza，E．Ecuador．
56．ORIZOMYS BALNEATOR HESPERLS，Anthony 1924．Amer．Mus．Nov．139，p． 7.

El Chiral，Province del Oro，S．－WV．Ecuador．
57．ORYZOMY＇S BARB．ACOAS BARBACOAS，Allen 1916．Bull．Amer．Mus．Nat．Hist．NXXV，p． 85.

Barbacoas，S．～W．Colombia．
58. ORI\%ONISA BARBACOAS ()CHRINLS, Thomas
1921. Ann. Nag. Nat. Hist. 9. V1l, p. 449.

West of Quito, Ecuador.
(For note on cranial peculiarities of this form see page 341.)
59. ORYZOMY's BALRI, Allen
1892. Bull. Amer. Mus. Nat. 1 Hist. IV, p. 48.

Barrington Island, Galapagos Islands.
(According to Osgood "hardly separable from O. galapagoensis" (Gyldenstolpe).)
6o. ORYZOMYS BOLIVARIS, Allen
1901. Bull. Amer. Mus. Nat. Hist. XIV, p. 405.

Porvenir, Bolivar Province, Ecuador.
6t. ORVZOMY's BOLIVHAE, Thomas
1901. Ann. Mag. Nat. Hist. 7. VHII, p. 536.

Mapiri, Upper Rıo Beni, N. Bolivia.
62. ()RY゙ZOMV's ('ARACOLL'S, Thomas
1914. Ann. Nag. Nat. Hist. S, NIV, p. 242.

Galipare, Cerro del Avila, N. Venezuela.
63. ORYZOMY'S CASTANEUS, Allen
1901. Bull. Amer. Mus. Nat. Hist. XIV, p. 406.

San Janvier, N.-W. Ecuador.
64. ORYZOMYS CHAPARENSIS, Osgood
1916. Field Mus. Nat. Hist. Zool. ser. I, no. I4, p. 205.

Todos Santos, Rio Chapare, Cochabamba district, E. Bolivia.
65. ORYZOMYS CHILDI, Thomas
1895. Ann. Mag. Nat. Hist. 6, SVI, p. 59.

Bogota region, Central Colombia.
(Probably identical with mevidensis, according to Gyldenstolpe.)
66. ORYZOMYS COPPINGERI, Thomas
iSSi. Proc. Zool. Soc. London, p. 4.
Cockle Cose, Madre de Dios Island, Trinidad Channel, S. Chile.
67. ORYZOMIS DELTICOLA, Thomas
1917. Ann. Mag. Nat. Hist. S, XX, p. 96.

Isla Eilla, Parana Delta, Buenos Aires Province, E. Argentina.
68. ORYZOMY'S ELJURLS, Wagner
1845. Archiv: für Naturgesch. N1, 1, p. I47.

Vtarare, San Paulo Province, E. Brazil.
Synonym: pygmacus, Wagner, Archiv, für Naturgesch. XI, I, 1845, p. 1.47. I panema, E. Brazil.
nigripes, Desmarest, Nouv. Dict. Hist. Nat. XXIX, p. 64, I819. Paraguay.
fe. ORYZONY\& FIAVESCENS, Waterhouse
1837. Proc. Zool. Soc. London, p. 19.

Makknads, Uruguay.
70. ORYZONIS FLAVICANS FLAVICANS, Thomas

1S94. Ann. Mag. Nat. Hist. 6, XIV p. 351.
Merida, Venezuela.
(Belonging to Nearctic tectus group (Goldman).)
71. ORI"ZOMI'S FLAVICANS' SCBLUTEUS, Thomas
1898. Ann. Mag. Nat. Mist. 7, II, p. 268.

Cundinamarca district, W. Colombia.
72. ORYZOMY'S FULVIVENTER, Allen
1899. Bull. Amer. Mus. Nat. Ilist. XII, p. 212.

Quebrada Secca, Cumana district, N. Venezuela.
73. ORYZOMIYS GALAPAGOENSIS, Waterhouse
1839. Zool. Voy. Beaglc, pt. ii, Mamm. p. 65.

Chatham Island, Galapagos 1slands.
74. ORIZOMI'S GOELDII, Thomas
1897. Ann. Mag. Nat. Hist. 6, XIX, p. 49.4.

Itaituba, Rio Tapajoz, Central Brazil.
75. ORVZONIYS GRACILJS, Thomas
1894. Ann. Mag. Nat. Hist. 6, XIV, p. 358.

Concordia, Medellin, Antioquia district, Colombia.
76. ORYZOMIS HELVOLUS, Allen
1913. Bull. Amer. Nus. Nat. Hist. XXXII, p. 597.

Villavicencio, E. Colombia.
77. ORIZZONI'S INTECTUS, Thomas
1921. Ann. Mag. Nat. Ifist. 9, VIII, p. 356.

Santa Elena, Medellin, Antioquia district, Colombia.
(This species is, I think, a Nectomys, not an Oryzomys.)
78. ORYZONYS KEAYSl, Allen
1900. Bull. Amer. Mus. Nat. Hist. XIII, p. 225.

Inca Mines, Rio Inambari, S.-E. Peru.
79. ORIZONIS LAMIIA, Thomas
1901. Ann. Mag. Nat. Hist. 7, VII1, p. 528.

Paranahyba, Rio Jordão, S.-W. Minas Geraes, E. Brazil.
8o. ORYZOMIYS LATICEPS LATLICEPS, Lund
1841. K. Danske Vidensk. Selsk, Afhandl. VIII, p. 279.

Lagoa Santa, Rio des Velhas, Minas Geraes, E. Brazil.
Synonym: saltator, Winge, 1888 , E. Nuseo Lundii, 1, 3, p. 48.
81. ORYZOMIY'S LAATICEPS INTERMEDIUS, Leche 1886. Zool. Jahrb. I, p. 693.

Taquara de Mundo Novo, Rio Grande do Sul, S. Brazil.
82. ORV'ZOMY'S LATICEPS MAGDALENAE, Allen 1899. Bull. Amer. Mus. Nat. Hist. NII, p. 209.

Minca, Santa Marta district, N.-E. Colombia.
83. ORV゙ZOMY'S LATICEPS NITIDLS, Thomas

1 $88_{4}$. Proc. Zool. Soc. London, p. 452.
Amable Maria, Rio Chanchamayo, Peru.
84. ORYZOMY'S JATJCEPS PERENENSIS, Allen 190r. Bull. Amer, Mus. Nat. Hist. NIV, p. 406.

Pcrene, Junin district, Central Peru.
85. ORY"\%OMIS' LEEGATLS, Thomas
1925. Ann. Mag. Nat. Hist. 9, XV, p. 577.

Carapari, Yacuiba, Tarija district, S. Bolivia.

St. ORVZOMIYS LEVIPES, Thomas
1902. Ann. Mag. Nat. Hist. 7, IX, ए. 129.

Limbane, Puno district, S.-E. Peru.
(Probably identical with keayst, according to Gyldenstolpe.)
s. ()RYZOMIY LONGICALDATLS LONGICALDATUS, Bennet
1832. Proc. Zool. Soc. London, P. 2.
W. Chile.

Synonym: philippii, Landbeck, Arch. für Naturgesch. XXIV, i, 1858, p. So. Chile.
macrocirchs, Philippi, 1900, Ann. Mus. Nac. Chile, p. 30. Colchagua Province, Chile.
migribarbis, Philippi, same reference, p. 3r. Talcaregue Andes, Chile.
saltator, Philippi, same reference, p. 32. Peine, Santiago Province, Chile.
amblyrhynchus, Philıppi, same reference, p. 36. Valdivia Province, Chile.
dimimitious, Philippi, same reference, p. 43. Illapel, ()'Higerns Province, Chile.
petroamus, Philippi, same reference, p. 56. Peteroa, Curica Province, Chile.
S8. ORYZONYS LONGICALDATLS DESTTRLCTOR, Tschudi
18+4. Unters. u. d. Fauna Peruana, i, p. IS2.
E. Peru.

Synonym: (?) mulemostroma. Tschudi, same reference. Peru.
So ()RYZOMIY LONGICALDATE゙S MAGELLANICLS, Bennet 1835. Proc. Zool. Soc. London, p. I91.

Port Famine, Sitraits of Magellan, S. Chile.
90. ORYZOAIY LONGGLALDATLS MIZLRLS, Thomas 1916. Ann. Nag. Nat. Hist. 8, XVII, p. 186.

Koslowsky Valley, Chubut Territory, S. Patagonia.
(Probably - 1. longraudatus (Gyldenstolpe).)
(31. ORVZOMIS MACCONNVILLI. Thomas 1910. Ann. Jag. Nat. Hist. 8, V1, p. 186.

Rıo Supinaam, Denecrara district, British Guiana.
122. ORYZoMIS MEDHLS, Ruhmson \& I yon
1901. Proc. U.S. Nat. Mus. XXIV, 1246, p. 142.
ban Julian, cast of La Guaira, N. Venezuela.
(Belonging to Nearctic talamancac group (Goldman).)
43. ORYZOMIY M MERIDLNALS, Thomas
1894. Ann. Mag. Nat. I fist. 6, XIV , P. 35 I.

Merida, W. Venezucla.
(Belonging to Nearetic dezius цroup (Goldman).)

1Sy9. Bull. Amer. Mus, Nat. Hist, Xll, p. 212.
Campo Alegre, ('umana district, Venezuela.

Sot. Bull. Amer. Nus. Nat. Itist. SIl, p. 20 S.
Valparaiso, Santa Marta district, N.-F. Colombia.
(Belonging to Nearctic talamancae group (Cioldman).)
96. ORY'ZOMY'S MLRELIAE, Allen
1915. Bull. Amer. Mus. Nat. Hist. XXXIV, p. 630.

Muralla, Rio Bodoquena, Caqueta region, E. Colombia.
Synonym: intertus, Allen, 1913 , Bull. Amer. Mus. Nat. Hist. XXXII, p. 598 (preoccupied).

```
97. ORYZOMYS O'CONNELLI, Allen 1913. Bult. Amer. Mus. Nat. Itist. XXXII, p. 597. Buenavista, E. Colombia.
98. ORYZOMIS ONISCLS, Thomas 1904. Ann. Mag. Nat. Hist. 7, XlII, p. 142. São Lorenzo, Pernambuco Province, E. Brazil.
99. ORYZOMYS PALMARIE'S, Allen
1899. Bull. Amer. Mus. Nat. Hist. XII, p. 210.
Quebrada Secca, Cumana district, N. Venezuela.
(Belonging to tectus group (Goldman).)
100. ORYZOMY'S PALMIRAE, Allen
1912. Bull. Amer. Mus. Nat. Hist. XXXI, p. 83.
Palmira, Central Colombia.
101. ORYZOMY'S PECTORALIS, Allen
1912. Bull. Amer. Mus. Nat. Hist. XXXI, p. 83.
Popayan, Cauca district, W. Colombia.
102. ORYZOMIS POLILS, Osgood
1913. Field Mus. Nat. Hist. Zool. ser. X, 9, p. 97.
Tambo Carrizal, east of Balsas Mountains, N. Peru.
103. ORYZOMYS RATTICEPS RATTICEPS, Hensel
1873. Abhandl. K. Preuss. Akad. Wiss. Berlin, 1872, p. 36.
Rio Grande do Sul Province, S. Brazil.
104. ORYZOMY'S RATTICEPS PARAGANUS, Thomas
1924. Ann. Mag. Nat. Hist. 9, XIV, p. 144.
Sapucay, Paraguay.
105. ORYZOMYS RATTICEPS TROPICIUS, Thomas
1924. Ann. Mag. Nat. Hist. 9, XIV, p. \({ }^{2}+3\).
Piquete, Sào Paulo Province, Brazil.
106. ORYZOMIS RIVLLARIS, Allen
1901. Bull. Amer. Mlus. Nat. Hist. X1V, p. 407.
Rio Verde, N. Ecuador.
107. ORYZOMYS SPECIOSL'S, Allen \& Chapman
1S93. Bull. Amer. Mus. Nat. Hist. V, p. 212.
Princestown, Trinidad.
10\%. ORYZOMYS SLBFLAVLS, Wagner
1842. Arch. für Naturgesch. VIII, p. 362.
Brazil.
Synonym: zulpinoides, Schinz, Syn. Namm. ii, p. 193, 1845. zulpimus, Lund, K. Danske. Vidensk. Selsk, Afhandl. VIII. 1841, p. 279.
109. ORYZOMYS SYLVATICL'S, Thomas
1900. Ann. Mag. Nat. Hist. 7, V, p. 272.
Santa Rosa, S. Ecuador.
12-Living Rodents-II
```

110．ORY゙ZONIS TENETCALDA，Allen 1890．Bull．Amer．Mus．Nat．Hist．NII，p． 211. Las Palmales，Cumana district，N．Venezuela．
111．ORYZOXIY＇S TRICIICRLS，Allen 1899．Bull．Amer．Mus．Nat．Hist．X11，p． 20 r． Bonda，Sianta Marta district，Colombia．
t12．ORYZODIY＇S TRINITATIS，Allen \＆Chapman 1893．Bull．Amer．Mus．Nat．Hist．V，p． 213. Princestown，＇Trinidad．

143．ORVZOMIS VETLLINL＇S，Alten \＆Chapman 1893．Bull．Amer．Nus．Nat．Ilist．V，p．214． Princestown，Trimidad．

114．ORVZO．MY＇S VH，ODSUS，Allen 1899．Bull．Amer．Mus．Nat．Hist．N11，p． 210. Valparaiso，Santa Marta district，N．－E．Culombia．
115．ORIZOMI＇S VINCENTANLS．Allen 1913．Bull．Amer．Mus．Nat．Hist．XXXII，p． 598. Villavicencio，E．Colombia．
156．ORYZOMYS WAVRINI，Thomes 1921．Ann．Mag．Nat．Hist．9，VII，p． 177.

N．Chaco，Jesematathla，Paraguay．
（For note on the peculiarities of this species see page $3+1$ ．）
117．ORVZOMIS NANTHAEOLLS XANTHAEOLC゚S．Thomas i Sgq．Ann．Mag．Nat．Hist，6，XIV，p．354．

Tumbez，Pirua，district，N．－W．Peru．
18．ORYZONIYS XANTHAEOLLS BARONI，Allen
1897．IBull．Amer．Mus．Nat．Hist．IX，p． 117.
Malca，Cajabamba district，N．－W．Peru．
（Considered by Gyldenstolpe as not a valid race．）
11\％．ORYZOMY゙S YUNGANUS，Thomas
1902．Amm．Mag．Nat，Hist，7，IN，p．130．
Charuplaya，Rı Securé，Bolivia．

## Subgenus Oligoryzomys，Bangs

（Forms occurring north of Panama，revised by Goldman，North Amer． Fauna，no．43，1918．）

120．ORYZOMIS FLTJEESCENS FUTVERCDNS，A Aussure t860．Rev．et．Mag．Zool．p．102，2，ぶ11．

State of Vera Cruz，Nexico．
121．（ORYZOMVS FLLDESCENS LEN1S，Goldman 1915．Proc．Biol．Soc．Washangton，NXVIII，p． 130.

Los Reyes，Michoacan，Mexico．
122．（ORYZOMYS FLLVESCLNS MAYENSIS，（suldman
101 H ．North Amer，Fauna，no．＋3．p． 92.
Apazote，near Yohaltum，Campeche，Nexico．
123. ORYZOMIS FLINESCENS COSTARICENSIS, Allen
1893. Bull. Amer. Mus. Nat. Hist. V, p. 239.

El General, Costa Rica.
Synonym: nicaraguae, Allen, 1910, Bull. Amer. Mus. Nat. Hist. XXVIII, p. 100. Nicaragua.
124. ORYZOMIS FULVESCENS VEGETUS, Bangs
1902. Bull. Mus. Comp. Zool. Harvard Coll. XXXIX, p. 35.

Boquete, Chiriqui, Panama.

## South American Forms

125. ORIZOMI'S ANDINUS, Osgood 1914. Field Mus. Nat. Hist. Zool. ser. X, p. 156.

Hacienda Llagueda, Upper Rio Chicama, N. Peru.
126. ORYZONI'S ARENALIS, Thomas 1913. Ann. Mag. Nat. Hist. 8, XII, p. 571. Eten, N.-W. Peru.
127. ORYZOMIYS DELICATUS, Allen \& Chapman 1897. Bull. Amer. Mus. Nat. Hist. IX, p. 19.

Caparo, Trinidad.
128. ORYZOMIY FULVIROSTRIS, Allen 1912. Bull. Amer. Mus. Nat. Hist. XXXI, p. 86.

Munchique, Cauca district, Colombia.
129. ORI'ZOMI'S GRISEOLUS, Osgood
1912. Field Mus. Nat. Hist. Publ. Zool. ser. X, p. 49.

West of Paramo de Tama, Upper Rio Tachira, W. Venezuela.
130. ORIZOMI'S MATTOGROSSAE, Allen 19r6. Bull. Amer. Mus. Nat. Hist. XXV, p. 528.

Utiarity, Rio Papagaio, Matto Grosso, S. Brazil.
131. ORVZOMI'S MCROTIS, Allen
1916. Bull. Amer. Mus, Nat. Hist. XXXV, p. 525.

Lower Rio Solimoes, Central Brazil.
132. ORYZOMYS MUNCHIQUENSIS, Allen
1912. Bull. Amer. Mus. Nat. Hist. XXXI, p. 85.

La Florida, Cauca district, W. Colombia.
133. ORYZONIY'S NAVL'S NAVUS, Bangs
1899. Proc. Biol. Soc. Washington, XIII, p. 9.

Pueblo Viejo, Sierra Nevada de Santa Marta, Colombia.
134. ()RYZOMI'S NAVUS MESSORIU'S, Thomas
1901. Ann. Mag. Nat. Hist. 7, VIII, p. ${ }^{1} 51$.

Kanuku Mountains, British Guiana.
135. ORYZOMY'S STOIZNIANNI STOLZNIANXI, Thomas
1894. Ann. Mag. Nat. Hist. 6, XIV, p. 357.

Iluambo, N. Peru.
536. ORYZOMIS STOLZMIANNI MARANOXICL'S. Osgood
1914. Field Mus. Nat. Hist. Publ. Zool. ser. XX, p. 5.

Hacienda Limon, Balsus, Rio Marañon, Peru.

137．ORY＇ZONIY TENUlPES，Allen
1904．Bull．Amer．Nus．Nat．Hist．XX，p． 328.
Sierra de Nerida，W．Venezuela．
138．ORYZONY＇S UTIARITENSIS，Allen
1916．Bull．Amer．Mus．Nat．Hist．XX゙ソV＇，p． 527.
Utiarity，Rio Papagaio，Matto Grosso，Brazil．

Subgenus Microryzomys，Thomas
（Synonym：Thallomiscus，Thomas；fide Osgood）
139．ORYZOJIY゙S MINUTUS MINCTUS，Tomes 1860．Proc．Zool．Soc．London，p． 215.

Pallatanga，Central Ecuador．
Synonym：dryas，Thomas，i S98，Ann．Mag．Nat．Hist．7，I1，p． 267. Pallantanga，Ecuador．（Status fide Osgood．）
140．ORYZONY゙S MINUTES AURILLUSS．Thomas 1917．Smiths．Misc．Coll．Lイ゙VIlI，p．I．

Torontoy，Cuzco district，Central Peru．
141．ORYZOMYS MINUTES ALTLSBIMLS，Osgood
1933．Field Mus．Nat．Hist．Publ．Zool．ser．XX，p． 5.
La Quinua，mountains north of Cerro de Pasco，Peru．
142．ORYZONYS MINUTE S HUMILIOR，Thomas
1898．Ann．Mag．Nat．Hist．7，II，p． 268.
Bogota region，Central Colombia．
Subgenus ．Melanomys，Thomas
（Forms occurring north of Panama，revised by Goldman，1918，North Amer． Fauna，no．43．See also Allen，Bull．Amer．Mus．Nat．I Iist．，XXXII，p．533，1913．）

143．ORIZZOMY゙S AFFINIS AFFINIS，Allen 1912．Bull．Amer．Mus．Nat．Hist．XXXI，p． 88.

San José，Cauca district，IV．Colombia．
144．ORYZOMY゙S AFFINIS MONTICOI，A，Allen
1913．Bull．Amer．Mus．Nat．Hist．XXXIl，p． 540.
Gallera，Cauca district，W．Colombia．
145．ORYZONY＇BLENAVISTAE，Allen
1913．Bull．Amer．Mus．Nat．Hist．XXXIl，p． 547.
Buenavista，E，Colombia．
146．ORYZOMYS CALJGLNOAC S CALICINOSUS，Tomes
1860．Proc．Zool．Soc．London，p． 263.
Esmeraldas，W．Ecuador．
147．ORYZOMYS CALIGINOSE（HRYOSOMEI．AS，Allen
1897．Bull，Amer．Mus，Nat．Hist．IX，p． 37.
Suerre，Costa Rica．
178．ORYZONYS（ALIGINOSLS IDONEUS．Goldman
1912．Smiths．Misc．Coll．LVI，36，p． 5.
Cerro Azul，near headwaters of Chagres River．Panama．
149. ORYZOMI'S CALIGINOSLS OROENSIS, Allen
1913. Bull. Amer. Mus. Nat. Hist. XXXII, p. 538.

Rio de Oro, Manavi Province, W. Ecuador.
150. ORYZO.MYS COLUMIBIANUS, Allen
1899. Bull. Amer. Mus. Nat. Hist. XII, p. 203.

Manzanares, Santa Marta district, N.-E. Colombia.
151. ORYZOMYS LOMITENSIS, Allen
1913. Bull. Amer. Mus. Nat. Hist. XXXII, p. 545.

Las Lomitas, IV. Colombia.
152. ORYZOMIYS OBSCLRIOR, Thomas
1894. Ann. Mag. Nat. Hist. 6, XIV, p. 356.

Concordia, Medellin, Antioquia district, Colombia.
153. ORYZOMY'S PHAEOPUS PHAEOPUS, Thomas
1894. Ann. Mag. Nat. Hist. 6, X1V, p. 355.

Pallatanga, Central Ecuador.
154. ORYZOMYS PHAEOPUS OLIVINUS, 'Thomas 1902. Ann. Mag. Nat. Hist. 7, X, p. z47.

Zaruma, S.-E. Ecuador.
155. ORYZOMY'S PHAEOPUS TOLIMENSIS, Allen 1913. Bull. Amer. Mus. Nat. Hist. XXXII, p. 544. Rio Toché, Tolima district, Colombia.
156. ORYZONIV PHAEOPUS VALLICOLA, Allen 1913. Bull. Amer. Mus. Nat. Hist. XIXII, p. 544. Rio Frio, Cauca district, Central Colombia.
157. ORYZOMY'S ROBL'STULLS, Thomas
1914. Ann. Mag. Nat. Hist. 8, XIV, p. z.43.

Gualaquiza, Ecuador.

Subgenus Oecomys, Thomas
158. ORYZONI'S BENEVOLENS. Thonas
1901. Ann. Mag. Nat. Hist. 7, VII, p. 369.

Chirimote, N. Bolivia.
159. ORYZOMIYS BICOLOR, Tomes
1860. Proc. Zool. Soc. London, p. 217.

Guayaquil, S.-W". Ecuador.
Synonym: dryas, Thomas, 1900, Ann. Mag. Nat. Hist. 7, V, p. 271.
160. ORYZOMYS CATHER1NAE, Thomas
1909. Ann. Mag. Nat. Hist. S, JV, p. 234.

Joinville, Santa Catherina, S.-E. Brazil.
161. ORYZOMI'S CAICARAE, Allen
1913. Bull. Amer. Mus. Nat. Hist. XXXII, p. 603. Caicara, Rio Orinoco, Central Venezuela.
162. ORYZOMYS EM1llIAE, Allen
1916. Bull. Amer. Mus. Nat. Hist. AXXV, p. 525. Rio Mojí, Pará, N.-E. Brazil.
163. ORYZOMY'S ENDERSI, Goldman
1933. Journ. Washington Acad. Sci. XXIII, p. 525. Barro Colorado Island, Canal Zone, Panama.
164. ORYZOAYS FlORENCIAE, Allen
1916. Bull. Amer. Mus. Nat. Hist. XXXV, p. 524. Florencia, Rio Caqueta, E. Colombia.
165. ORYZOMYS GUTJANAE, Thomas
1910. Ann. Mag. Nat. Hist. 8, V1, p. 187.

Rio Supinaam, Demerara district, British Guiana.
166. ORYZOMI'S ILLECTL'S, Bangs
r898. Proc. Biol. Soc. Washington, XII, p. 164.
Pueblo Vieijo, Sierra Nevada de Santa Marta, Colombia.
167. ORYZOMYS MANJORAE, Thomas
1906. Ann. Mag. Nat. Hist. 7, XVIII, p. 445.

Mosetenes, Upper Rio Mamore, N.-E. Bolivia.
168. ORYZOMYS MARDIOSURUS, Thomas
1899. Ann. Mag. Nat. Hist. 7, IV, p. 37 S.

Maipures, Upper Rio Orinoco, S.-W. Venezuela.
169. ORYZONI: MIELLIEL's, Anthony
1924. Amer. Mus. Nov. 139, p. 4.

Zamora, S.-E. Ecuador.
170. ORYZOMY'S MILLERI, Allen
1916. Bull. Amer. Mus. Nat. Hist. XLXV, p. 523.

Barao de Malgaço, Matto Grosso, S. Brazil.
171. ORYZONIYS MINCAE, Allen
1913. Bull. Amer. Mus. Nat. Hist. XLXII, p. 603.

Minca, Santa Marta district, N.-E. Colombia.
172. ORYZOMIY' NITEDULUS, Thomas
1010. Ann. Mag. Nat. Ifst. S, VI, p. 505.

Lower Rio Essequibo, Demerara district, British Guiana.
173. ORYZONIYS (ISGOODI, Thomas
1924. Ann. Mag. Nat. Hist. 9, XIV, p. 287.

Moyobamba, N. Peru.
174. URYZOMYS PARICOLA, Thomas
1904. Ann. Mag. Nat Hist. 7. XIV, p. 194.

Igarapé-Assu, Pará, N.-E. Brazıl.
175. ORYZOMYS IPHAEOTIS, Thomas
1901. Ann. Mag. Nat. Hist. 7, VII, p. 181.

Segrario, Rio Inambari, S.-E. Peru.
15f. ()RYZOMIYS ROBIRTI, Thomas
1903. Proc. Zool. Soc. London, 11, p. 237.

Santa Anna de Chapada, Matto Girtosa, Brazil.
177. ORYZOMIS REX, Thomas 1910. Ann. Mag. Nat. Hist. 8, V1, p. 504.

Rio Supinaam, Demerara district, British Guiana.
178. ORY\%OMY'S ROSILLA, Thomas
1904. Ann. Mag. Nat. Hist. 7, XIV, p. 35.

La Union, Lower Rio Orinoco, E. Venezuela.
179. ORYZOMYS RU'TILUS, Anthony
1921. Amer. Mus. Nov. 19, p. 4.

Kartabo, British Guiana.
180. ORYZOMYS SUPERANS, Thomas 1911. Ann. Mag. Nat. Hist. 8, V1II, p. 250.

Canelos, Rio Bobonaza, E. Ecuador.
Synonym: palmeri, Thomas, Ann. Mag. Nat. Hist. 8, VIII, 1915, p. 251. Canelos, Rio Bobonaza, Ecuador.
181. ORYZOMI'S TAPAJINUS, Thomas
1909. Ann. Mag. Nat. Hist. 7, IV, p. 378.

Santa Rosa, Rio Jamauchim, Central Brazil.
182. URYZOMYS TRABEATUS, Allen \& Barbour
1923. Bull. Mus, Comp. Zool. Harvard Coll. LXV, p. 262.

Rio Jesusito, E. Panama.
Subgenus Nesoryzomys, Heller
183. ORYZOMIY'S DARWLNI, Osgood
1929. Field Mus. Nat. Hist. Zool. ser. XVII, 2, p. 23.

Indefatigable Island, Academy Bay, Galapagos Islands.
184. ORYZZOMYS INDEFESSUS, Thomas
1899. Ann. Mag. Nat. Hist. 7, IV, p. 280.

Indefatigable Island, Academy Bay, Galapagos Islands.
185. ORY"ZOMIYS NARBOROUGHI, Heller
1904. Proc. Cal. Acad. Sci, III, p. 242.

Narborough Island, Mangrose Point, Galapagos Islands.

## incertae sedis

186. ORYZOMY'S SIMPLEX, Winge
187. E. Museo Lundii, Bd. 1, 3, p. Iı.

Lapa de Escrivania, Minas Geraes, Brazil.

## Genus 2. MEGALOMY'S, Trouessart

1881. Negalomys, Trouessart, Le Naturaliste, vol. 1, p. 357.
1882. Moschomys, Trouessart, Ann. Mag. Nat. Hist. 7, XI, p. 388. (To replace Megalomys, under the impression that it was preoccupied by Megamys, Laurrilard, 1848.) Sce Miller, N.A. Recent Mammals, p. 365, 1923. (Preoccupied.)
1883. Moschophoromys, Elliot, Field Columb. Mus. Pub. 90, z.s. 3, p. 270. (To replace Moschomys, Trouessart.)

Type Species.-Mus pilorides, Desmarest (not of Pallas).
Range.-Martinique, and St. Lucia, Lesser Antilles. The genus is now thought to be extinct.

Sumber of Forms.-Two.
Characters.-Skull with much narrowed braincase, little interorbital constriction in adult, and extremely powerfully ridged supraorbital region, the ridges extending back to the supraoccipital; occipital region upstanding, powerfully ridged. Zygomatic plate very slightly cut back above. Incisive foramina short, considerably in front of toothrows. Palate as Oryzomys. Bullae extremely small. Molars of Oryzomys type.

Size very large, much larger than any Orywomy, though perhaps not more so than large forms of Tylomys; ear relatively small; tail long, moderately haired; feet not specialized; claws prominent.

Very few specimens seen. Forsyth Major considered this genus was not distinguishable from Oryzomys, and it seems to be very poorly differentiated from that genus; but it is retained as a valid genus by Niller, North American Recent Mammals.

Forms seen: desmarestii, luciae.

## List of Named Forms

I. MEGALONY: DESALARESTII. Fischer
1829. Synopsis Mamm. p. 316.

Martinique, Lesser Antilles.
2. Megalomys ldelae, Forsyth Major
1001. Ann. Mag. Nat. Hist. 7, VII, p. 206. St. Lucia, Lesser Antilles.

## Genus 3. NEACONIS, Thomas

1900. Neacomys, Thomas, Ann. Mag. Nat. Hist. 7, V, p. 153.
'Type Species.-Hesperomy's (Calomys) spinosus, Thomas.
Range,-Panama, British Guiana, Colombia, Peru, Southern Brazil. Extends to East Eeuador.

Number of Formis.-Six.
Characters.-skull small, but apparently always with well-developed supraorbital ridges. Zygomatic plate nearly straight anteriork: Palate as Orizoms, with well-marked lateral pits. Incisive foramina usually not approching toothrows. Bullae small. Interparietal well developed. Dentition very much as in Oligoryzomys. . . guianae must he noted as a very small form with rather reduced toothrow.

Externally peculiar in the fact that the fur of the back is composed of spines or bristles. Tail subequal in length to head and body, not well haired. Outer digits of hindfoot considerably shorter than the central three.
'The main distinction between Oryzomys and this genus is the spiny fur in the present genus, perhaps scarcely a valid character if one takes into account the variability which may be found in this character within genera of Murinae, but evidently quite unique in the present subfamily.

Forms seen: guianae, amoenus, spinosus.

## List of Named Forms

1. NEACOMYS GULANAE, Thomas
2. Ann. Mag. Nat. Hist. 7, XVI, p. 310.

Demerara River, British Guiana.
2. NEACOMIYS PICTUS, Goldman
1912. Smiths. Misc. Coll. LX, 2, p. 6.

Cana, mountains of E. Panama.
3. NEACOMIYS PUSILLUS, Allen
1912. Bull. Amer. Mus, Nat. Hist. XXXl, p. 8i. San José, Cauca district, W. Colombia,
4. NEACOMY'S SPINOSUS SPINOSUS, Thomas 1882. Proc. Zool. Soc. London, p. 105.

Huambo, N. Peru.
5. NEACOMY'S SPINOSUS AMOENUS, Thomas 1903. Proc. Zool. Soc. London, ii, p. 239.

Santa Anna de Chapada, Matto Grosso, S. Brazil.
6. NEACOMI'S SPINOSUS TENUIPES, Thomas
1900. Ann. Mag. Nat. Hist. 7, V, p. 153.

Guaquimay, Bogota region, Colombia.

## Genus 4. NECTOMYS, Peters

1861. Nectomys, Peters, Abhandl. k. Preuss. Akad. Wiss. Berlin, 1860, p. 151.
1862. Sigmodontomys, Allen, Bull. Amer. Mus. Nat. Hist. IX, p. 38. (Sigmodontomys alfari, Allen.)

Type Species.--Mus squamipes, Brants.
Range.-Nicaragua, Costa Rica, Panama; Ecuador, Colombia, Peru, British Guiana, Trinidad, Southern Brazil, Paraguay.
Number of Forms.-About seventeen.
Characters.-Skull with supraorbital ridges evidently always developed, usually extending over parietals, but not heavy on that area. Interparietal well developed. Nasals often tending to narrow to a point posteriorly and to extend somewhat behind the premaxillo-maxillary suture. Jugal short and reduced. Incisive foramina usually broad, extending to toothrow, but short and reduced in the species esmeraldorum and russulus, which probably would form a specific group (see note on external characters below).

Palate with large lateral pits, and about as Oryzomy's posteriorly. Bullae relatively small. Coronoid process well developed.

Upper cheekteeth originally as Oryizomys, but cusps not well marked even when cutting, and the molars tend to become flatcrowned, with the outer folds isolated on crown surface. Clear traces of the subsidiary ridges always present. The molars are more hypsodont than Oryzomys, and are clearly distinct from the majority in pattern, though they may be approached by the subgenus .Melanomys.

In old age, M. 3 has all folds suppressed; M.I has two, and M. 2 has onc inner fold more or less persistent ; M.I has four outer isolated narrow islands, the first and the third shorter than the others; M. 2 like M.r in this respect except that the anterior fold tends to wear out so that only three are left; pattern long preserved. Lower cheekteeth originally not far removed from the Oryaomys type, but repeating the peculiarities of the upper series; the outer folds more persistent, two on M.1, one on other teeth; inner folds isolating; usually four in M.I, two on other teeth, though M. 2 may have three, one of which tends to disappear.

Fur usually soft ; size typically large, up to 290 mm . head and body; external form slightly modified for aquatic life in more specialized species; hindfoot with the three centre digits long, the outer toes shorter; toes often partly webbed: tail long, not reduced, moderately or poorly haired, sometimes with a weak swimming-fringe developed.

Hindclaws frequently prominent; forefoot smaller than hindfoot. Feet least modified, on those seen, in the small species esmeraldorum, and aecording to Goldman in alfari, type of Allen's genus "Sigmodontomys" (for status of which see Goldman, Proc. Biol. Soc. Washington, XXIX, 1916, p. 127). Goldman notes that in this species, the plantar pads may vary from five to six individually, or even there may be six present on one foot, five on the other.
$N$. dimidiatus must be noted as an unusually small form. $N$. hammondi does not appear to be at all typical of the genus dentally, and may belong elsewhere; the cusps appear to show no tendency to become suppressed. "Oryzomys" intectus probably belongs to this genus.

Forms seen: apicalis, dimidiatus, esmuraldorum, fulzimus, gurleppi, grandis, liammondi, melanius, magdalenae, mattensis, palmipes, mussulus, saturutn..

## List of Nanied Formis

1. NECTONYS ALFARI AIFARI, Allen
2. Bull. Amer. Mus. Nat. Hist. IX, p. $3^{8}$. Jimenez, Costa Rica.
Synonym: ochraceus, Allen, 1908, Bull. Amer. Mus. Nat. Ilist. XXIV, p. 655. Nicaragua.
```
    2. NECTONHY'S ALFAKI EFFICAX, Goldman
1913. Smiths. Misc. Coll. L\̇, no. 22, p. 7.
        Cana, E. Panama.
    3NCTMMIY& APICALIS, I'eters
I86r. Abhandl. K. Preuss. Akad. Wiss. Berlin, i$60, p. I52.
        Guayaquil, S.-WV. Ecuador.
    4. NECTONIY: DINIDDATCS, Thomas
1905. Ann. Mar. Nat. Hist. 7, XV, p. 586.
            Escondido River,7 miles lelow Rama, Nicaragua.
    5. NECTOMIY ESAHERALDORLM, Thomas
foot, Ann. Nag. Nat. H1st. 7, SIII, p. }250
        San Janver, N.-\1. Ecuador.
```

6. NECTOMYS FULVINES, Thomas
7. Ann. Mag. Nat. Hist. 6, XIX, p. 499.

Quitos, W. Ecuador.
7. NECTOMYS GARLEPPII, Thomas
1899. Ann. Mag. Nat. Hist. 7, I1I, p. 4I.

Ocabamba Valley, Cuzeo district, Central Peru.
8. NECTOMY'S GRANDIS, Thomas
1897. Ann. Mag. Nat. Hist. 6, XIX, p. 498.

Concordia, Medellin, Antioquia district, Colombia.
9. NECTOMYS HAMMONDI, Thomas
1913. Ann. Mag. Nat. Hist. 8, XII, p. 570.

Mindo, W. Ecuador.
10. NECTOMYS MAGDALENAE, Thomas
1897. Ann. Mag. Nat. Hist. 6, XIN, p. 499.

Rio Magdalena, Cundinamarca district, W. Colombia.
11. NECTOMYS PALMIPES, Allen \& Chapman
1893. Bull. Amer. Mus. Nat. Hist. V, p. 209.

Princestown, Trinidad.
12. NECTOMIS RL'SsLLCS, Thomas
1897. Ann. Mag. Nat. Hist. 6, XX, p. 547.

Valdivia, Cauca district, W. Colombia.
13. NECTOMYS SATURATUS, Thomas
1897. Ann. Mag. Nat. Hist. 6, XX, p. 546.

Ibarra, N. Ecuador.
14. NECTOMYS SQLAMIPES SQUAMIPES, Brants
1827. Het geslacht der Muizen, p. 138.

São Paulo Province, S. Brazil.
Synonym: aquaticus, Lund, 1841, K. Danske Vidensk. Selsk. Afhandl. VIII, p. 294. Rio Grande do Sul. robustus, Burmeister, 1854 , Syst. Ueb. Thiere. Brasiliens, 1, p. 164.
15. NECTOMYS SQUAMIPES NATTENSIS, Thomas
1903. Proc. ZooI. Soc. London, ii, p. 238.

Santa Anna de Chapada, Matto Grosso, S. Brazil.
1\%. NECTOMYS SQUAMIPES NELANIUS, Thomas
1910. Ann. Mag. Nat. Hist. 8, V I, p. 185.

Rio Essequibo, Demerara district, British Guiana.
17. NECTOMYS SQUANIPES POLLENS, Hollister
1914. Proc. Biol. Soc. Washington, XXVII, p. 104.

Sapucay, Paraguay.

## Genus 5. RHIPIDOMIS, Tschudi

${ }_{1844}$ Rhipidomys, Tschudi, Unters, u. d. Fauna Peruana, 1, p. 183.
'I'pe Species.-Hesperomys lencodactylus, 'I'schudi.
Range.-Panama, Colombia, Ecuador, Peru, Bolivia, North Argentina (Jujuy), Eastern Brazil, British Guiana, Venezuela, Trinidad.

Number of Forms.--Thirty-four.
Characters.--Supraorbital ridges present or absent but when present not very strong; parietals may be weakly ridged, but never extremely so. Interparietal very large. Zygomatic plate relatively narrow, straight anteriorly. Incisive foramina well open, extending to toothrows. Palate short, not quite reaching posterior part of toothrows, the lateral pits not well marked, or vestigial. Bullae small. Cheekteeth much as in Oryzomys.入. i may have the anterointernal cusp a little reduced, but never as in Phacnomys or Nyctomys. Coronoid process not reduced. Mammae 1 - $2=6$. Fect broad, large, arboreal, with large claws and long fifth digit to hindfoot; but hallux clawed and not fully opposable (at least as compared with specialized IndoMalayan arboreal Murinae). Tail longer than head and body normally, well haired, tufted terminally. Rather large; usually over 100 head and body; R. rex is over 200.

Forms seen: austrinus, bozalli, callinus, cearanus, coucsi, cumancus, equatoris, fulvizenter, furvidus, goodfellozi, latimamus, lcucodactylus, lucullus, macrurus, microtis, modicus, nitcla, ochrogustcr, pictor, rex, sclatcri, zcneæuelac, vcmustus.
(All the forms in London seem very closely allied, and I should not be surprised if in a revision all were considered as races of one or perhaps two species.)

## List of Named Forms

r. RHIPIDOMY's Alistrinus, Thumas
1921. Ann. Mag. Nat. Iist. 9, VII, p. 183.

Sunchal, Sierra de Santa Barbara, Jujuy, N.-W. Argentina.
2. RHIPIDOMIS BGOVALLII, Thomas
1911. Ann. Mag. Nat. Ilist. 8, VII, p. itt.

Potaro Highlands, Britısh Guiana.
3. RHIPIDONIS CAL CFNSIS, Alem
1913. Bull. Amer. Mus. Nat. ITist. XXXII, p. 601.

Munchigue, Cauca district, Colombia.
4. RHIPIDOMIY' (OCALENSIS, Allen
1912. Bull. Amer. Mus. Nat Hist. XXX1, p. 79.

Cocal, Cauca district, Colombia.
5. RHIPIDOAISS (oldiNt's. Thomas
1925. Ann. Mag. Nat. Hist. 9, XVV, p. 578.

Itan, Sierra santa Rosa, S. Bolıvia
6. RHIPlDOMIS (oULSI, Allen \& Chapman
${ }_{180}$ So Bull. Amer. Mus. Nat. Hist. V, p. 21 I.
Princestown, Trinidad.
7. RHIl1DOMIS FOLATOR1S, Thomas
1915. Ann. Mag. Nat. Ilist. S, XVT, p. 312.

Santo Domingo, W. Ecuador.
s. RHIPIDOMIS FlLNINFNTER FLLXIVENTER, Thomas
sho6. Ann. Mag. Nat. Ilist. 6, SVIII, p. 304.
Aqua Dulce, Cundinamarca district, Colombia.
9. RHIPIDOMYS FULVIVFNTER ELATTURUS, Osgood
1914. Field Mlus. Nat. Hist. Zool. ser, X, II, p. 140.

West of Paramo de Tarma, Upper Rio Tachira, W. Venezuela.
10. RHIPJDOMI'S GOODFELLOWI, Thomas
1900. Ann. Mag. Nat. Hist. 7, V, p. 270.

Rio Napo, at mouth of Rio Coca, E. Ecuador.
11. RHIPIDOMI'S K1.AGESI, Allen
1904. Bull. Amer. Mus. Nat. I Iist. XX, p. 327.

El Llagual, Central Venezuela.
12. RHIPIDOMV'S LATIMIANUS, Tomes
1860. Proc. Zool. Soc. London, p. 213. Pallatanga, Central Ecuador.
13. RHIP'DOMYS LELCODACTYLUS, Tschudi
1844. Unters. u. d. Fauna Peruana, 1, p. 183.
E. Peru.
14. RHIPIDONI'S LUCULLUS, Thomas

191i. Ann. Mag. Nat. Hist. 8, VII, p. 115. Garita del Sol. Vitoc Valley, Upper Rio Perené, Peru.
15. RHIPIDOMIS MACRURUS, Gervais
1855. In Castelnau, Exp. Amer. Sud. vii, i, p. 11 I.

Trixas, Brazil.
16. RHIPIDOMY'S MASTACALIS, Lund
1841. K. Danske Vidensk. Selsk. Afhandl. VIII, p. 240.

Lagoa Santa, Rio des Velhas, S.-W. Minas Geraes, E. Brazil.
17. RHIPIDOMIYS MICROT1S, Thomas 1896. Ann. Mag. Nat. Hist. 6, XVIll, p. 304.

Salina del Vatan, Cundinamarca district, Colombia.
18. RHIPIDOMYS MODICUS, Thomas
1926. Ann. Mag. Nat. Hist. 9, XVIII, p. I6i. I'uca Tambo, Chachapoyas, N. Peru.
19. RHIPIDONIS NOLLISSIMUS, Allen
1912. Bull. Aner. Mus. Nat. Hist. XXXI, p. 78.

Mira Flores, Cauca district, Colombia.
20. RHIPIDOMI'S OCHROGASTER, Allen
1901. Bull. Amer. Mus. Nat. Hist. XIV, p. 43.

Inca Mines, Rio Inamhari, S.-E. Peru,
21. RHIPIDOMIYS I'ICTOR, Thomas
1904. Ann. Mag. Nat. Hist. 7. XIV, p. 193.

Rio Verde, N.- WV. Ecuador.
22. RHHPHDOMI'S QtINDJANC'S, Allen
1913. Bull. Amer. Mus. Nat. Ilist. XXXII, p, 600.

Eil Roble, Bogota district, Colombia.

23．RIIIPID（INIYS REX．Thomas 1027．Ann．Mag．Nat．Hist．9，XX，p． 600.

Chinchavita，Huanucu Province，Central Peru．
24．RHIPIDOXIYミ \＆CANDENS，Goldman
1913．Smiths．Misc．Coll．LX，no．22，p． 8.
Near head of Rio Limon，Mt．Pirri，E．Panama，
25．RHIPIDOAIY゙s sCLATERI，Thomas
1887．Proc．Zool．Soc．London，P． 152.
Naccasseema，Demerara district，British Guiana．
2h．RHIPIDOMIY SIMILLS，Aifen
1912 Bull．Amer．Mus．Nat．Hist．XXXI，p． 79.
Cocal，Cauca district，Colombia．
27．RHIPIDOMIS YEXEZLELAE VENEZし＇ELAK，Thoma－ 1896．Ann．Mag．Nat．Hist．6，NVIII，p． 303.

Merida，W：Venezuela．
2\＆．RHIPIDOAI＇S Y゙ENEZUELAE CEARANL＇s，Thoma， 1910．Ann．Nag．Nat．Mist．8，VI，p． 501.

Sierra de Ibiapaba，Ceara Province，N．－E．Brazil．
29．RHIPIDONIY SENEZUELAE CLNLANANL゙今，Thomas 1900．Ann．Mag．Nat．Hist．7，V，p． 271.

Ipure，Cumana district，Venezuela．
30．RHIPIDO．VIY V VNEZLELAE FERVIDL＇S，＇Thomas
1904．Ann．Mag．Nat．Hist．7，XIV，p．34．
La Union，Lower Rio Orinoco，E．Venezuela．
31．RHIPIDOMIS VENEZLELAE MILLERI，Allen
1913．Bull．Amer．Nus．Nat．Hist．KXXII，p． 602.
Minehaha Creek，Lower Rio Essequibo，Demerara district，British Guiana．
32．RHJPIDOMIY VEVEZLELAE NITELA，Thomas
Igor．Ann．Mag．Nat．Hist．7，V＇III，p．Iq8．
Kiwaimatta，Kanuku Mountains，British Cuiana．
33 RHIPIDOMS゙ VENFZLELAL YLRUANLS，Allen 1913．Bull．Amer．Mus．Nat．Hist．NXXII，p． $60 t$.

Rio Yuruan，E．Venezuela．
34．RHIPIDONIYS VEXUSTCS，Thomas
1900．Ann．Nag．Nat．Hist．7，V，p． 152.
Las Vegas del Chansa，Xerida，Venezuela．
Cenus 6．THOMASOMIYS，Coucs
1884．＇Thomasomis．Coues，Amer．Naturahst．XVIII，p． 1275.
tSg8．Aepeomys，Thomas，Ann．Nag．Nat．Hist．7，I，p．45z．（Oryomys lugens，
Thomeas．）
1917．INom1＇s，Thomas，Ann．Mag．Nat．H1st．8，XX，p．197．（Oryzomys incamis，
Thomas．）
1900．Erioryzomis，Bangs，Proc．New Engl．Club，i，p．96．（Oryzomys monochromus， Bangs．）
1417．Deloarys，Thomas，Ann．Mag．Nat．Hist．8，XX，p．19h．（Hisperomys dorsalis， Ilensel．）

Type Speches.-Hesperomys (Rhipidomys) cinereus, Thomas.
Range.-British Guiana, Venezuela, Colombia, Ecuador, Peru, Bolivia, North Argentina, South-eastern Brazil.
Number of Forus.-Fifty-one.
Characters.-Skull as a rule rather noticeably different from Rhipidomys, and in extremc forms becoming reminiscent of that of $O x y$ mycterus. Rostrum long and pointed; braincase large and rounded (though less so than in forms like Tylomys), supraorbital ridges scarcely developed. Interorbital constriction well marked in forms like gracilis, and the large T. aureus, but scarcely marked at all in the lugens group; intermediate between the two types in forms like ischyurus and incanus. Zygomatic plate narrow, but strongly tilted upwards, thus differing from Oxymycterus; the anterior border is straight. Interparictal well developed. Palate as in Rhipidomy's, short. Incisive foramina extending to the toothrows. Bullae medium or small except, of those seen, in pyrrhonotus, in which they are considerably enlarged. Cheekteeth of Oryzomys type; but in the T. aureus group, as here understood, the inner and outer folds are unusually broad and well marked, and give the pattern rather a different aspect from that of the typical forms. T. pyrrhonotus approaches this type of dentition. Lower teeth of usual type, except that the above-mentioned peculiarity is repeated in the aureus group.

Nammae $\mathbf{x - 2}=6$ or may be $2-2=8$ in dorsalis group (variable). Fur very thick and soft. Tail longer than head and body, normally moderately haired. Hindfoot usually not much modified for arboreal life, but in the aureus group it may become nearly as much so as in Rhipidomys, making it only possible to separate this genus from Rhipidomys on average characters, though 1 think both form natural groups. In T. dorsalis and allies there is a faint middorsal stripe sometimes present, and the tail is poorly haired. The "genera" Aepeomys and Inomys have already been placed in synonymy by Osgood (1933, Journ. Mamm. Baltimore, 14, p. 161); so beyond saying that I fully agree with this classification nothing need be added. Nor can I find any difference of generic value between Thomasomys and "Delomys" (the dorsails group); as a species group it is clearly distinct, but none of its characters are of generic value. The zygomatic plate is in this species cut back above (a character which may be present or absent in any large genus). T. dorsalis was referred to Thomasomys by Thomas when he indicated what species should be referred to it from Oryzomys, and in my opinion should never have been separated from it.

Forms seen: aureus, baeops, cinercizenter, cinereus, collimus, dapline, dorsalis, eleusis, emeritus, fraternus, gracilis, hylophilus, incanus, ischyrus, kalinozskzii, laniger, hugens, macconnelli, nicefori, niveipes, notatus, oenax, paramorum, popayanus, praetor, princeps, pyrrhonotus, rosalinda, rhoadsi, sublineatus, taczanozuskii, restitus, zulcani.

In British Museum material, five quite well-marked groups are apparent:
aureus group: large forms, with feet more or less modified for arboreal life, and dentition as already indicated; includes popayamus, praetor, princeps, micefori, and aureus.
pyrrhonotus group: like the last but with much enlarged bullae; includes, according to description, auricularis, as well as pyrrhonotus.
dorsalis group: moderate-sized species with the characters indicated above, and differing chiefly in the fact that the zygomatic plate is cut back above. Includes sublineatus, dorsalis.
lugens group: differing from the cinereus group in the almost complete absence of interorbital constriction, and Oxymycterus-like skull. There are, however, intermediate forms, and it may be that in a full revision this group would not stand. Includes lugens, vulcani, and according to description, fuscatus.
sinereus group: the other forms seen; with no special peculiarities. Forms unrepresented in London have been provisionally referred here.

List of Named Forms<br>aureus Group

1. THOMASOMY'S AL'RELS ALRELS, Tomes
2. Proc. Zool. Soc. London, p. 219.

Pallantanga, Ecuador.
2. THOALASONY'S ALTRECS ALTORLM, Alten 1914. Bull. Amer. Mus. Nat. Hist. XXXIII, p. 200.

Mt. Pichincha, W. Ecuador.
3. THONLASOAY'S AL REL'S POPAYANLS, AHEn
1912. Bull. Amer. Mus. Nat. Hist. XXXI, p. 81.

Popayan, Cauca district, Colombia.
4. THOMLASOMYS NICLEFORI, Thomas
1921. Ann. Mag. Nat. Hist. 9, VIII, p. 355.

Sian Pedro, Medellin, Antioquia district, Colombia.
5. THOMASOMIYS PRAETOR, Thomas
1900. Ann. Mag. Nat. Hist. 7, V, p. 354.

San Pablo, Cajamarca district, N. Peru.
6. THOMASOMY:S PRINCEPS, Thomas
1895. Ann. Mag. Nat. Ilist. 6, XVI, p. 58.

Bogota region, Central Colombia.

## fyrrhonotus Group

7. THOMLAGOMIS AL RICLIARIS, Anthony
8. Amer. Mus. Nov. 55, p. 6.

Taraguacocha, Provincia del Oro, S. Ecuador.
8. THOMASOMIS PYRRHONOTCA, Thomas
1886. Ann. Mag. Nat. Hist. 5, XVIII, p. $4=1$.

Tambillo, Rıo Malleta, Cajamarca district, N. Peru.
dorsalis Group
9. THOMASOMIY DORSALAS DORSALIS, Hensel
1873. Abhandl. K. Preuss. Akad. Wiss. Berlin, 1872, p. 42.

Rıo Grande do Sul Province, S. Brazil.
10. TIIOMASOMYS DORSALIS COLLINUS, Thomas
1917. Ann. Mag. Nat. Hist. 8, МX゙, p. 197.

Itatiaya, Rio de Janeiro Province, E. Brazil.
11. THOMASOMY'S DORSALIS LECHEI, Trouessart 1904. Cat. Mamm. Suppl. p. 434.

Taquara de Mundo Nova, Rio Grande do Sul, E. Brazil. (Probably a synonym of $d$. dorsalis, according to Gyldenstolpe.)
Synonym: obscura, Leche, 1886, Zool. Jahrb. p. 696. Preoccupied.
12. THONLASOMYS SLBLINEATLS, Thomas
1903. Ann. Mag. Nat. Hist. 7, XII, p. 240.

Engenheiro Reeve, Espiritu Santo Province, E. Brazil.

## lugens Group

13. THOMLASOMY'S FUSCATUS, Allen
14. Bull. Amer. Mus. Nat. Hist. XXXI, p. 89.

San Antonio, Cuaca district, W. Colombia.
14. THOMASOMYS LLGENS, Thomas 1896. Ann. Mag. Nat. Hist. 6, XVIII, p. 306.

La Loma del Morro, Merida, W. Venezuela.
Synonym: ottleyi, Anthony, 1932, Amer. Mus. Nov. 548 , p. 1. Status fide Osgood.
15. THOMLASOMYS VULCANI, Thomas 1898. Ann. Mag. Nat. Hist. 7, I, p. 452.

Mt. Pinchincha, IW. Ecuador.

## cinereus Group

16. THOMASOMYS BAEOPS, Thomas
17. Ann. Mag. Nat. Hist. 7, III, p. 152.

Rio Pita, Chillo Valley, Ecuador.
17. THOMLASOMIS BOMBYCINL'S, Anthony 1925. Amer. Mus. Nov. no. 178, p. 1.

Paramillo, Antioquia district, Colombia.
18. THOMASOMYS CAUDIVARIL'S, Anthony 1923. Amer. Mus. Nov. no. 55, p. 4 .

Taraguacocha, Provincia del Oro, S. Ecuador.
19. THOMASOMYS CINEREIVENTER CLNEREIVENTER, Allen 1912. Bull. Amer. Mus. Nat. Hist. XXXI, p. So. Popayan, Cuaca district, W. Colombia.
20. THOMASOMYS CINEREIVENTER CONTRADICTLS, Anthony 1925. Amer. Mus, Nov, no. 178, p. 3.

Santa Isabel, Quindio, Andes, Colombia.
21. THOMLASOMY'S CINEREIVENTER DISPAR, Anthony 1925. Amer. Mus. Nov. no. 178, p. 2.

Andalucia, I luila district, E. Colombia.
22. THOMASOMYS CINEREUS, Thomas 1882. Proc. Zool. Soc. London, p. 108.

Cutervo, Cajamarca district, N. Peru.
23. THON1ASOA1YS C1NNANHELS, Anthony

I924. Amer. Nus. Nov. 139, p. 5.
Hacienda San Francisco, Ambato, Central Ecuador.
2+. THOMIASOMII DAPHXF DAPHXF, Thomas
1917. Smiths. Misc. Coll. LXVHII, no. 4, p. 2.
25. 'HHOXIASOAIY DAPHNE ALETTRALIS, Anthony
5925. Amer. Nus. Nov, 178, p. 4.

Icanchaca, Cochabamba district, Central Bolivia.
26. TH()NtASON1Y'S ERR(), Anthony
1926. Amer. Mus. Nov. 240, p. 5.

Nlt. Sumaco, Ecuador.
27. THO OMASOMIYS GRAC'ILIS, Thomms
1917. Smiths. Misc. Coll. LAVIII, no. 4, p. 2.

Machu Picchu, Cuzco district, Peru.
25. THONASOMNS HUDGON1, Anthony
1923. Amer. Mus. Nov. 55, p. 3.

Bestion, Provincia del Azuay, S.-E. Ecuador.
29. THONLASOALI'S HVi,OPHILL二. ()sgood
1912. Field Mus. Nat. Hist. Zool. ser. S. no. 5, p. 50.

Paramo de Tama, Upeer Rio Tachira, Santander district, Culambia.

1594 . Ann. Mag, Nat, Hist. 6, NIV, p. 350.
Vitoc Valley, Central Peru.
31. 'THON1ASONIYS 1NCAN゙L $\&$ FRATERNLS, Thomas
1927. Ayın. Mag. Nat. Hist. 9, XX, p. 692.

Alcas, north-east of Cerro, Junin Province, Central Peru.
32. THONAASOMIS 1 SCHYRLS $1 S C H$ CRLS, Osgood
1914. Field Mus. Nat. Hist. Zool. ser. S, no. 12, p. 162.
'Tambo Almirante, Uchco, Peru.
33. THONIASOATS ISCHIRI'S ELELSIL, Thomas
1926. Ann. Mag. Nat. Hist. 9, SVII, p. 614.

Tambo Jenes, cast of Balsas, Cajamarca district, N. Peru.
34. TH(M1ASOA1Y KALINOWSK11, Thomas
1894. Ann. Nag. Nat. Hist. 6, XIV, p. 349.

Vitoc Valley, Central Peru.
35. THOMIASOMIS LADHEWI, Anthomy
1926. Amer. \us. Nor. no. 239, f. 1.

Rso Aceramarca, La Paz Province, Bolivia
3t. THOMLASOMIS LANIC,IR 1.ANIGER, Thomas 1895. Ann. Mag. Nat. Hist. 6, XVI, P. 59.

Bognta region, C'olombia.
37 THONASOMY LANIC;R:R R MIERITLS, Thomas 1916. Ann. Nag. Nat. Hist. S, XVIII, p. 479.

Iontés de Escaguer, Merda, Venezuela.
38. THOMASOMIS MLACCONNELLI, de Winton
1900. Trans. Linn. Soc. London, VIl1, p. 52.

Mt. Roraima, British Guiana.
39. THOMLSOMIS MONOCHROMOS, Bangs
1900. Proc. New Engl. Club, 1, p. 97.

Macotona, Sierra Nevada de Santa Marta, N.-E. Colombia.
to. THOMASOMYS NHEMPES, Thomas
1896. Ann. Mag. Nat. Hist. 6, XVIII, p. 305.

La Oya del Barro, Cundinamarca district, Colombia.
+1. THOMASOMY'S NOTATL'S, Thomas
1917. Smiths. Misc, Coll. LXVIII, 4, p. 2.

Torontoy, Cuzco district, Central Peru.
42. THOMASOMYS OENAX, Thomas

192S. Ann. Mag. Nat. Hist. 10, I, p. 154.
San Lorenzo, Rio Grande do Sul, S. Brazil.
+3. THOMASOMY'S OREAS, Anthony
1926. Amer. Mus. Nov. 239, p. 2.

Cocopunco, La Paz Province, Bolivia.
44. THONAASOMY'S PARANORUN, Thomas
iSgS. Ann. Mag. Nat. Hist. 7, 1, p. 453.
Paramo, south of MIt. Chimborazo, Ecuador.
+5. Thomiasomis plctipes, Osgood
1933. Field Mus. Nat. Hist. Publ. Zool. ser. XX, no. 2, p. 11.

Caraguatay, Rio Parana, 100 miles south of Rio Iguassu, Nisiones, Argentina,
46. THOMASOMYS ROSALINDA, Thomas \& St, Leger
1926. Ann. Mag. Nat. Hist. 9, XVIII, p. 347.

Goncha, Peruvian Amazonas, N. Pcru.
47. THOMASONHS RHOADSI RHOADSI, Stone 1914. Proc. Acad. Nat. Sci. Philadelphia, LXVI, p. 12.

Hacienda Garzon, Mt. Pichincha, Ecuador.
48. THOMASOMY'S RHOADSI FLMELS, Anthony
1924. Amer. Mus. Nov. 139, p. 6.

Hacienda San Francisco, Ambato, Central Ecuador.
49. THOMAASONYS SILIESTRIS, Anthony
1924. Amer. Mus. Nov. 114, p. 2.

Las Maquinas, west of Mt. Corazon, W. Ecuador.
50. THOMIASOMY'S TACZANOWSKIf, Thomas
1882. Proc. Zool. Soc. London, p. 109.
'Tambillo, Rio Malleta, Cajamarca district, Peru.
51. THOMASOMYS VESTITLS, Thomas
1898. Ann. Mag. Nat. Hist. 7, 1, p. 454.

Rio Milla, Merida, W. Venezucla.

## Genus j. PHAENOMIS, Thomas

1917. Phaenomys, Thomas, Ann. Mag. Nat. Hist. 8, XX, p. 196.

Type Specifs.-Oryzomys ferrugineus, Thomas.
Range.-Deseribed from Rio de Janeiro, East Brazil.
Number of Forms.-One.
Charactirs.-(Two broken skulls, buth lacking bullae, available for examination only.) Posterior palate as in Thomasomys. Zygomatic plate straight anteriorly, Pialatal foramina broad, almost extending to toothrow. Supraorbital ridges well developed. Braincase narrower than in Nictomys, and frontals much narrower than in that genus. Anterointernal cusp of M1.1 strongly reduced, about as in Vyctomys. General dental characters otherwise as in Oryzomys.

Tail very long, relatively well haired; hindfoot slightly modified for arboreal life. Nammac $2-2=8$. Colour light red.

A little-known form, the status of which is not clear, but which may probably be given generic rank.

Forms secn: fermgineus.
List of Named Forvis
a PHAEDOAYS FERRLGINEL's, Thomas
$1894^{4}$ Ann. Mag. Nat. Hist. 6, XIV, p. 352.
Rio de Janeiro, E. Brazil.

## Genus 8. CHILOMIS, Thomas

1897. Chllomys, Thomas, Ann. Mag. Nat. Hist. 6, XIX, p. 500.

Type Specifs.-Oryzomys instans, Thomas.
Range.-Colombia.
Number of Forms.- Two are named.
Cilaracters.-Differing from Oryzomy's in the following characters: braincase extremely heavy, large and rounded, but skull without supraorbital or parietal ridges. Rostrum narrowed. Upper incisors pro-odont; lower incisors compressed. Anterior zygomatic plate is straight, and M. 3 is evidently rather reduced (one skull seen only).

Externally with no special peculiarities: Mouselike, with soft fur, and long tail.
Forms seen: instans.

## List of Namifi Forvis

t. Childiniss FLMELS, Osenod
1912. Field Mus. Nat. Hist. Publ. Zool. ser. X, no. 5, p. 53.

I'aramo de 'Tama, Upper Rio Tachira, Santander district, E. Colombia. (Considered a synonym of instans by Gyldenstolpe.)
2. (HILOMIYS INSTANS, Thomas
1895. Ann. Nag. Nat. 1 list. 6, XV1, p. 368.

La Selva Estate, Bogota region, Central Columbia.

## Genus 9. TYLOMYS, Peters

1866. Tylomys, Peters, Monatsber. K. Preuss. Akad. Wiss. Berlin, p. 404.

Type Species.-Hesperomys (Tylomys) nudicaudus, Peters.
Range.-Known from Mexico, Guatemala, Panama, and Ecuador.
Number of Forms.-Seven.
Characters.-Skull in all essential characters similar to Nyctomys (below), but very much larger; highly specialized, and with supraorhital ridges extremely powerful. Incisive foramina very broad, but narrowed anteriorly. Occipital region prominently ridged, but low. Mandible with coronoid process not reduced; the back of the jaw more or less flattened.

Upper cheekteeth of Oryzomys type, but the subsidiary ridges in the main outer folds, though clearly marked, do not extend to the outer border of the crown. M. 3 appears to be essentially as M. 2 in elements.

Lower cheekteeth of Oryzomys type; very complex; M. 3 scarcely reduced, and almost exactly as in M.2.

Size large; up to 228 mm . head and body in B.M. material; tail subequal in length to head and body; almost completely naked. Hindfoot considerably specializcd for arboreal life, as in Rhipidomy's, Ototylomys, and Nyctomys.

The specialized skull, which is characteristic of many arboreal Rodents, distinguishes this genus from more generalized types as Rhipidomys.

Forms seen: mirae, nudicaudus, panamensis, watsoni.

## List of Named Forms

1. TYLOMYS BULLARIS, Merriam
2. Proc. Washington Acad. Sci. III, p. 561. Tuxtla, Chiapas, Mexico.
3. TYLONIY FLLVIVENTER, Anthony
4. Bull. Amer. Mus. Nat. Hist. XXXXV, p. 366. Tacarcuna, district of Darien, Panama.
5. TYLOMY'S MIRAE, Thomas
6. Ann. Mag. Nat. Hist. 7, IV, p. 278.

Paramba, Rio Mira, N.-W. Ecuador.
4. TYLOMY'S NLDICAl京US, Peters
1866. Monatsber. K. Preuss. Akad. Wiss. Berlin, p. 4o4. Guatemala.
5. TYLOMY'S PANAMENSIS, Gray
1873. Ann. Mag, Nat. Hist. 4, XII, p. 417.
l'anama.
6. TYI.OMYS TLMBALENSIS, Merriam
1901. Proc. Washington Acad. Sci. III, p. 560.

Tumbala, Chiapas, Mexico.
7. TYLOMY'S WATSONI, Thomas
1899. Ann. Mag. Nat. IIist. 7, IV, p. 278.

Bogava, Chiriqui, Panama.

Genus io. OTOTYLOMYS, Merrian.
1901. Ototylowis, Merriam, Proc. Washington Acad. Sci. III, p. 56i.

TYpf Species.-Ototylomy phyllotis, Merriam.
Raxge.-.-Central America: Mexico, Guatemala, Nicaragua, Costa Kic
Nuaber of Forms.-Six.
Characters.-(Few forms seen; these notes based on guatemalae and the type.) Skull like Tylomys, but much smaller; incisive foramina not narrowed anteriorly; bullae inflated and enlarged. Coronoid process reduced, and mandible less tlattened posteriorly. Nolars evidently differing somewhat from other Oryzomy's genera. Cusps more symmetrical than is usual, in upper molars, the folds of the teeth strictly opposite, very deep and wide. nearly meeting in middle of teeth; each pair of cusps with a deep more or less isolated pit separating them; M. 3 exactly similar to $\mathbf{M} .2$ in elements; each of these tecth with only one inner and one outer main fold; the subsidiary ridges in the main folds of the upper molars considerably reduced; the cheekteeth broad. Lower molars repeating the peculiarities of the upper series; pits well marked; inner cusps rather high; XI. 3 relatively large.

Essential external characters, other than considerably smaller size, as in Tylomys. The palate is short posteriorly, as in Rhipidomys.

Forms seen: guatemalae, pliyllutis.

## List of Named Forais

```
    1 WTOTYLONF゙ CONNECTENS, sanhom
1935. Field. Mus. Nat. Hist. Publ. Zool. ser. XX, p. X2.
            Coban, Alta Verapaz,Guatenzala.
    ()TOTTYLOM\^ F WLWELS, Allen
1908. Bull. Amer. Mus. Nat. Hist. NXIV, p. 658.
            Matagalpa, Nicaragua.
    जTOTYLOMIS GLATEMIALAI. Ti m,.*
190y. Abstr. Proc, Zool. Soc. London, p. 32; Proc. Zool. Soc. London, p. }670
                            Tucuru, Polochic River, about 50 mmles east of Coban, (funter:a'1
& 'TOTMLONIY PIIYILOTIN PHYLLOTIK. NETr:N
1901. Proc. Washington Acad. Sci. III. p. 56z.
            Tunkas, Yucatan, \Iexico.
```



```
1931. Fikld. Mus. Nat. Hist. Publ. Zook. ser. NVlII, p. I45.
    San Geronimo, near Pozo, Azul de Pirris. Costa Rica.
```



```
1001. Pruc. Washington Acad. Sci. III, p. 563.
        Apazote, near Iohaltun, Campeche, Nexico.
```

            rienus in. NYCTOMYS, Saussure
    ISho. Nyctomys, Saussure, Rev. et. Mag. de Zook. ser. 2, vol. XII, p. 106.

Type Species.--Hesperomys sumichrasti, Saussure.
Rasige.-Central America; Mexico, Honduras, Guatemala, Nicaragua, Panama.

Number of Forms.-Five.
Characters.-Skull with extremcly broad braincasc, very broad frontals, supraorbital ridges powerful, and extending over the parietals to occiput; interparietal very broad and large, completely separating parietals from supraoccipital; rostrum short; zygomatic plate very narrow; straight antcriorly; infraorbital foramen well open. Bullae small. Palate broad, ending in front of posterior part of toothrow, and without lateral pits. Incisive foramina broad, but scarcely reaching toothrows. Cheekteeth of Oryzomys type, but extremely complex, reminiscent in general effect somewhat of complex-toothed Indo-Malay Squirrels. Anterointernal cusp of M.i strongly reduced. Isolated islands between each pair of cusps well marked. Lower molars evidently with pattern preserved longer than Oryzomys, and extremely complex; M. 3 large. Coronoid process low.

Nammae 4. Hindfoot considerably modified for arboreal life, in formation like that of Rhipidomys. Tail well haired, and tufted terminally. In both this genus and Rhipidomy's, the pad representing the pollex may be prominent. The hallux in Nyctomys is clawed.

Forms seen: nitellimus, salzini, sumichrasti.

## List of Named Forms

1. NYCTOMYS SUMICHRASTI SUMICHRASTI, Saussure
2. Rev. et. Mag. Zool. ser. 2, XII, p. 107.

Eastern slopes of mountains in Vera Cruz, Mexico.
2. NYCTOMYS SLMICHRASTI DECOLORUS, True
1894. Proc. U.S. Nat. Mus. XVI, 1893, p. 689.

Rio de las Piedras, Honduras.
ㅅ. NYCTOMYS SLMICHRASTI NITELLINUS, Bangs
1902. Bull. Mus. Comp. Zool. Harvard Coll. NXXIX, p. 30. Boquete, Chiriqui, Panama.
4. NYCTOMYS SLMICHRASTI SALVINI, Tomes

186r. Proc. Zool. Soc. London, p. 284.
Dueñas, Guatemala.
5. NYCTOMIS SUMICHRASTI VENUSTLLLUS, Goldman 1916. Proc. Biol. Soc. Washington, XXIX, p. 155.

Greytown, Nicaragua.

## Genus 12. NESOMYS, Peters

1870. Nesomys, Peters, Sitz. Ber. Ges. NaI. Fr. Berlin, p. 54 . 18ラ9. Hallomys, Jentink, Notes Leyden Mus. I, p. 107. (Haltom's amb-h-7ti. Jentuk.) (Not seen. Status fide Forsyth Major.)

Type Specu:s.-Nesomys rufus, l'eters.

Ravge. - Jadagascar.
Number of Formis.-Three.
Characters.-Skull with relatively wide and unridged frontals, interparietal large, rostrum long. Jugal long; infraorbital foramen well open; zygomatic plate relatively low. Palate extending behind $\mathrm{Ml}_{3} 3$, and broad. Bullat comparatively large. Incisive foramina well open, broader posteriorly, but not reaching toothrow:

Upper cheekteeth complex, though evidently more simplified than in Oryzomys; not flatcrowned, but cusps relatively low. M.i with two main outer, one main inner folds, the inner fold extending right across tooth and joining the front outer fold. Isolated islands are present in front of each of the outer folds, and there is one behind the second outer fold. M.2 is similar in elements to M.I. M.i appears to bear no trace of the anterointernal cusp, or its corresponding element, found in Oryzomys genera. What I take to correspond to the subsidiary ridges of the Orysomys genera are present in the main folds of the upper molars. N. 3 relatively reduced, with usually all its elements isolated as islands, but with traces of what appear to be four outer, one inner folds. 'The anteroexternal fold, usually strong in Oryzomys and allies, seems to be almost obliterated in this genus, and to disappear early. The main folds evidently do not isolate as islands. Lower teeth with a pattern rather specialized and definite for the present group, consisting of, in each tooth, one wide inner and outer fold, opposite to each other and retained, and in front of which and behind which respectively is a wide isolated island. There are also traces of extra anterior folds in M.I and M.z. This type of lower molar can be matched by Ototylomys, though Ototylomys is much more complex in general effect; also by such non- 1 lurine genera as Erethison, Funisciurus, and Anomalurops. Four totally unrelated genera appear therefore to be undergoing similar dental specialization. It is the most highly specialized form of dentition (apparently) known in the Sciuridae, and the least specialized known in the Hystricoidae.

Hindfoot rather long, with the three centre digits considerably longer than the outer pair. 'Fail long, moderately haired, sometimes slightly tufted. Large; over 200 mm . head and hody.

Forms seen: rufius.
"Hallomys" is regarded as a Nesomss by Forsyth Major. The original description indicates that the animal in question is a lesomys.

## List of Named Forms

[^9]Genus 13. RIIAGONIIS, Thomas
1917. Rhacomys, Thomas, Ann. Mag. Nat. Hist. 8, XX, p. 192.

Type Species.-Hesperomys rufescens, Thomas.
Range.-Described from Rio de Janeiro, East Brazil.
Number of Forms.--One.
Cifaracters.-Braincase evidently much broadened (two broken skulls seen only). Incisive foramina narrow, not approaching toothrows. Zygomatic plate nearly straight anteriorly. Upper cheekteeth simplified, with the subsidiary ridges evidently suppressed, and each cusp raised, the folds poorly marked, the cheekteeth might almost be described as flatcrowned, but with four (or six in M.J) raised corner projections. M. 3 with posterior elements reduced, as in Oryzomy's. Lower cheekteeth resembling the upper series in general pattern. M.i (upper) is evidently three-rooted.

Mammae $1-2=6$. Externally modified for arboreal life. The hallux in the type skin appears to lack a claw, but more specimens will be necessary before this character can be proved, as the skins examined are very old, and not in good condition. D. 5 hindfoot lengthened; tail long, not well haired. Size small, about 94 mm . Lower incisor root forms noticeable process on outer side of mandible.

This is a little-known genus, and the characters given must be accepted as provisional.

Forms seen: rufescens.

## List of Named Forms

1. RHAGOMYS RUFESCEXS, Thomas
2. Ann. Mag. Nat. Hist. 5, XV'H, p. 250. Rio de Janeiro, E. Brazil.

## Genus \& \&. REITHRODONTOMYS, Giglioli

1874. Reithrodontomys, Giglioli, Bull. Soc. Geogr. Ital. Roma. ir, p. 326.
1875. Ochetodon, Coues, Proc. Acad. Nat. Sci. Philadelphia, p. 18q.
1876. Aporodon, Howell, North Amer. Fauna, no. 36, p. 63. (Reithrodontomys tenuirostris, Merriam.) Valid as a subgenus.

Type Species.-Mus humulis, Audubon \& Bachman.
Range.-U.S.A., extending south into northern South America. California, Lower California, Idaho, Arizona, Colorado, New Mexico, Nebraska, Kansas, Oklahoma, Texas, Louisiana, Florida, South Carolina, Virginia; Mexico, including Iucatan; Guatemala, Honduras, Costa Rica, Nicaragua, Panama; Colombia, Ecuador. For range maps see Howell, also Anthony, Field Book North American Mammals, 192 S.

Number of Forms.-Sixty-five.

Charactirs.-Braincase rather inflated; skull with considerable interorhital constriction, and not developing supraorbital ridges. Palatal foramina reaching toothrows. Bullae rather small. Palate square posteriorly, terminating about on a level with last molars. Zygomatic plate narrow, not projected forwards above. Coronoid process low. Upper incisors strongly one-grooved. Upper cheekteeth of Peromyscus-type in the typical subgenus, with $\mathrm{N}_{.3}$ strongly reduced, M.1 with five cusps, and the re-entrant folds deep and curved (not tending to isolate as islands between the cusps), and with no subsidiary ridges present, though according to Howell they may be present in the rufescens group.

In the subgenus Aporodon the molars are more Oryzomys-like, with M.3 not reduced, the cusps alternating less (at least in South American species), and well-marked subsidiary ridges are developed (less so in chrysopsis group, according to Howell). The lower incisors are plain; the lower molars normal, in the genus; the upper molars are three- or four-rooted (llowell).

There is a wide difference between the two extremes in this subgenus. But 1 have not seen the intermediate types.

Plantar pads 6. Nammae 6. No cheekpouches (llowell). Small, often very small forms; feet narrow; digits not abnormal, D. 5 hindfoot often relatively long. Ear prominent. Tail about head and body length or sometimes considerably more, and moderatcly haired. IJead and body usually under 100 , but up to 107 in B.M. material.

Forms seen: australis, creper, "costaricensis," cherrici, dychei, humulis, longicaudus, modestus, mexicanus, "pallidus," rufescens, saturatus, süderströmi, temuis.
'The genus is revised by Howell, North Amer. Fauna, No. 36, 19I4.
Eight groups are recognized, characterized as follows:

## Subgenus Aporodon

(with subsidiary ridges in main folds of upper molats present)
The first two groups differ from the others in having the outer wall of the anteorbital foramina relatively narrow, the interpterygoid broad, the palatal foramina short, and the tail unicolour, and the pelage dense.
'1'he me vicanus group has the braincase not inflated and the rostrum short and broad;
The temiorostris group differs from this in baving the braincase inflated, and the rostrum long and narrow.
The other groups have, according to Howell's key, the outer wall of the anteorbital foramina hroader, the interpterygoid narrower, the palatal foramina longer.

The chrysopsis group has a bicolour tail, and the pelage is long and full. The subsidiary enamel loops of the upper molars are well developed, but usually not continuous to outer edge of tooth.
The leripes group differs in having the pelage normal, as in Reithrodontomyss.s.

Subgenus Reithrodontomys
(with no subsidiary ridges normally in folds of upper molars)
The rufescens group contains forms distinguishable apparently by dark tawny coloration; sometimes vestigial, subsidiary ridges are said to occur in the molars.
'The fulvescens group differ from megalotis group by longer tail, larger size, and usually the interpterygoid fossa is broader.
'The humulis group is described as containing small forms with narrow skull and bicolour tail.
The megalotis group does not seem from Howell's revision to be clearly distinguishable from the humulis group, the species montanus being apparently intermediate; the members of the humulis group are, however, on average smaller than all other members of Reithrodontomys s.s.
These notes are collected from Howell's paper, for reference purposes; for a key to species and races this paper should be seen.

## List of Named Forms

(Revised by Howell, North Amer. Fauna, No. 36, 1914.)

## Subgenus Reithrodontomys, Giglioli <br> humulis Group

r. REITHRODONTOMY'S HUNIULIS HUMULIS, Audubon \& Bachman 1841. Proc. Acad. Nat. Sci. Philadelphia, p. 97.

Charleston, Charleston County, S. Carolina.
Synonym: dickinsoni, Rhoads, 1895, Amer. Nat. XXIX, p. 590 Willow Oak, Pasco County, Florida.
2. REITHRODONTOAYS HUMULIS IMIPIGER, Bangs
1898. Proc. Biol. Soc. Washington, XII, p. 167.

White Sulphur Springs, Greenbrier County, W. Virginia.
3. REITHRODONTOMIS HUMULIS MERRIAMI, Allen
1895. Bull. Amer. Mus. Nat. Hist. V1I, p. 119.

Austin Bayou, near Alvin, Brazoria County, Texas.
+. REITHRODONTOMIS ALbescens Albescens, Cary
r903. Proc. Biol. Soc. Washington, XV1, p. 53.
18 miles north-west of Kennedy, Cherry County, Nebraska.
$\therefore$ REITHRODONTOMY'S ALBESCIENS GRISEUS, Bailey
1905. North Amer. Fauna, no. 25, p. 106.

San Antonio, Bexar County, Texas.
megalotis Group
6. REITHRODONTOMY'S MoNTANL\&, Baird
1855. Proc. Acad. Nat. Sci. Philadelphia, p. 335.

Probably near upper end of San Luis Valley, Saguache County; Colorado.
7. REITIRODONTOMYS MEGALOTIS MFGALOTIS, Bard
1857. Mamm. N. Amer. p. 451.

Between Janos, Chihuahua and San Luis Springs, Grant County, New Mexico.
Synonym: megalotis desatt, Allen, 1895 , Bull. Amer. Mus. Nat. Hist. V11, P. 127. Oasis Valley, Nye County, Nevada. megalotis sestinensis, Allen, 1903, Bull, Amer. Mus. Nat. Hist. XIX, p. 6oz. Rio Sestin, Durango, Mexico.
8. RLITHIRODONTOMYS MFGALOTIS AZTEC\&S, Allen
1893. Bull. Amer. Mus. Nat. Hist. V, p. 79.

La Plata, San Juan County, New Mexico.
9. REITHRODONTOMYA MIGGALO'TIS DYCHEI, Allen
1895. Bull. Amer. Mus. Nat. Hist. V1I, p. 120.

Lawrence, Douglas County, Kansas.
Synonym: dychei nehrascensis, Allen, 1895 , Bull. Amer. Mus. Nat. Hist. V11, p. 122. Kennedy, Nebraska.
10. REITHRODONTOMYS MEGALOT1A NIGRES(INNS, Howell 1914. North Amer. Fauna, no. 36, p. 32.

Payctte, Canyon County, Idaho.
11. REITIIRODONTOMYS MEGALOTIS LONGICALDL $九$, BaIrd
1857. Mamm. N. Amer. p. 45 I .

Petaluma, Sonoma County, California.
Synonym: pallidus, Rhoads, I893, Amer. Nat. XXV11, p. 835. klamathensis, Merriam, 1899 , North Amer. Fauna, no. 16, p. 93.
12. REITHRODONTONIS MEGALOTIS PENINSLLAE, Elliot 1903. Field Columb. Mus. publ. 74, z.s. 3, p. 164.

San Quintin, Lower California.
13. REITHRODONTOAIS MEGALOTIS CINERFLS, Merriam 1901. Proc. Washington Acad. Sci. IlI, p. 556.

Chalchicomula, Puebla, Mexico.
14. REITHRODONTOMY'S MEGALOTIS ALTICOLA, Merram 1901. Proc. Washington Acad. Sci. 1II, p. 556.

Cerro San Felipe, Oaxaca, Mexico.
15. REITHR(ODONTONIYS MEGALOTIS SATLRATKS, Allen \& (hapman ${ }^{1897 .}$ Bull. Amer. Mus. Nat. Hist. IX, p. 201.

Las Vigas, Vera Cruz, Mexico.
16. REITHRODONTOMIS MEGALOT1S ARIZONENSIS, Allen 1895. Bull. Amer. Mus. Nat. Hist. V1I, p. 134.

Chiricahua Mountains, Cochise County, Arizona.
17. REITHRODONTOMYS NIEGALOTIS ZACATECAE, NErram 1901. Proc. Washington Acad. Sci. 11I, p. 557.

Valparaiso Mountains, Zacatecas, Mexico.
Synonym: megalotis obscurus, Merriam, 1чor, Proe. Washington Acad. Sci. 111, p. 558 . Chihuahua, Mexico.
iא. RIITHRODONTOMIS MEGALOTIS LIMHCOLA, Blocker 1932. Proc. Biol. Soc. Washington, NLV, p. 133.

Playa del Rey, Los Angeles County, California.
19. REithrodontomys megalotis Caryl, Howell
1935. Journ. Mamm. Baltimore, 16, p. 143.

Medano Ranch, 15 miles north-east of Mosca, Alamosa County, Colorado.
20. REITHRODONTOMY'S AMOLES, Howell 1914. North Amer. Fauna, no. 36, p. 40. Pina de Amoles, Queretaro, Mexico.
21. REITHRODONTOMYS CATALINAE, Eliot
1903. Field Columb. Mus, publ. 87, z.s. 3, p. 246. Santa Catalina Island, Santa Barbara Islands, California,
22. REITHRODONTOMIY RAVIVENTRIS RAVIVENTRIS, Dixon 1908. Proc. Biol. Soc. Washington, XXI, p. 197.

Redwood City, San Mateo County, California.
23. REITHRODONTOMI'S RAVIVENTRIS HALICOETES, Dixon 1909. Univ. Calif. Pub. Zool. V, p. 271. 3 miles south of Petaluma, Sonoma County, California.
fulvescens Group
24. REITHRODONTOMYS FULVESCENS FULVESCENS, Allen 1894. Bull. Amer. Mus. Nat. Hist. VI, p. 319.

Oposura, Sonoma, Mexico.
25. REITHRODONTOMYS FULVESCENS TENUIS, Allen 1899. Bull. Amer. Mus. Nat. Hist. XII, p. 15.

Rosario, Sinaloa, Mexico.
Synonym: griseoflaz us, Merriam, 1901, Proc. Washington Acad. Sci. III, p. 553. Ameca, Jalisco.
26. REITHRODONTOMYS FULVESCENS INTERMEDIUS, Allen 1895. Bull. Amer. Mus. Nat. Hist. VII, p. 136.

Brownsville, Cameron County, Texas.
Synonym: laceyi, Allen, 1896, Bull. Amer. Mus. Nat. Hist. VIll, p. 235. Watson's Ranch, Bexar County, Texas.
27. REITHRODONTOMYS FULVESCENS AURANTILS, Allen
1895. Bull. Amer. Mus. Nat. Hist. V11, p. 137.

Lafayette, Lafayette Parish, Louisiana.
Synonym: chrysotis, Elliot, 1899, Field Columb. Mus. publ. 37, z.s. I, p. 281. Oklahoma.
28. REITHRODONTOMISS FULVESCENS DIFFICILIS, Merriam 1901. Proc. Washington Acad. Sci. III, p. 556.

Orizaba, Vera Cruz, Mexico.
Synonym: (?) sumichrasti, Saussure, Rev. et. Mag. de Zool. 2, Xlll, p. 3, 1861.
29. REITHRODONTONIS FLLVESCENS TOLTECL'S, Merriam
1901. Proc. Washington Acad. Sci. 111, p. 555.

Tlalpam, Federal district, Mexico.
Synonym: inexpectatus, Eliot, 1903, Field. Columb. Mus. publ. 7r, z.s. 3, p. 145 . Michoacan, Mexico.

30．RFFTIIRODONTOAJY FULVEACENS HELVOLU $\&$ ，Merriam 1901．Proc．Washington Acad．Sci．III，p． 554.

Oaxiaca City，State of Oaxaca，Mexico．
31．REJTHR（）DONTONIY＇S FLLJRSCENS CHIAIENSIS，Howell 1914．North Amer．Fauna，no．36，p． 53. Canjob，Chiapas，Mexico．
32．REITHRODONTONIS FLLVELCENS NELSONI，Howell 1914．North Amer．Fauna，no．36，p． 53.

Colima，State of Colima，Mexico．
33．RIITHRODONTOMYS IUINESCENS MUSTELINE＊，Howell 1914．North Amer．Fauna，no．36，p． 54. Llano Grande，Oaxaca，Mexico．
34．REITHRODONTOMIS AMOIFNL：S，Elliot
1905．Proc．Biol．Soc．Washington，XVIIJ，p． 234.
Reforma，Oaxaca，Nexico．
35．REITHRODONTOMY OTL $\&$ ，Merriam
1901．Proc．Washington Acad．Sci．111，p． 555.
Foothill region of Sierra Nevada de Colima，Jalisco，Nexico．

## rufescens Group

36．REITHRODONTONYS RUFEACENS RUFELC＇ENS，Allen \＆Chapman 1897. Bull．Amer．Mus．Nat．Hist．IX，p． 199. Jalapa，Vera Cruz，Mexico．
37．REJTHER（DONTONIS RLFEACENS LLTEOLU心，Howell
1914．North Amer．Fauna，no．36，p． 57.
Juquila，Oaxaca，Mexico．
3\％．REI＇lHRODONTONIY ALIENI，Howell
1914．North Amer．Fauna，no．36，p． 59.
Mountains near Ozolotepec，Oaxaca，Alexsco．
39．REITHRODONTOMIY゙（＇OLIMAE COIINIDE，Merriam rgor．Proc．Washington Acad．Sci．III，p． 551.

Near timberline，Sierra Nevada de Colima，Jalisco，Mexico．
fo．REITIIRODONTONIY＇今 COI．IMAE NERTERLS，Nerriam 1901．Proc．Washington Acad．Sci．111，p． 551.

Foothill region of Sierra Nevada de Culima，Jaliseo．
4．REITHRODONTOM18 DORSALJS，Nerriam
1no1．Proc．Washington Acad．Sci．III，p． 557.
Calel，Guatemala．
42．RELTHRODONTOXIS ALSTRALIS ALSTRALIS，ALET
1895．Bull．Amer．Mus．Nat．I Iist．VII，p． 328
Volcan de Irazu，Costa Rica．
Synonym：australis zulcamius，Banes，1902，Bull．Dus．Comp．Zool． Harvard Coll．SX．SIX，p． 3 \％．Volcan de Chiriqui， Panama．

1907．Ann．Mag．Nat．Hist．7．ХХ，p．163．
Jinotega，Nisarimua．

Subgenus Aporodon, Howell

## levipes Group

44. REITHRODONTOMYS LEVIPES, Merriam
45. Proc. Washington Acad. Sci. III, p. 554.

San Sebastian, Jalisco, Mexico.
45. REITHRODONTOMYS HIRSUTUS, Merriam
1901. Proc. Washington Acad. Sci. III, p. 553.

Amcca, Jalisco, Mexico.

## chrysopsis Group

46. REITHRODONTOMYS CHRY'SOPSIS CHRYSOPSIS, Merriam 1900. Proc. Biol. Soc. Washington, XIII, p. 152.

Mt. Popocatepetl, State of Mexico, Mexico.
47. REITHRODONTOMYS CHRYSOPSIS TOLUCAE, Merriam 1901. Proc. Washington Acad. Sci. III, p. 549.

North slope of Volcan Toluca, State of Mexico, Mexico.
48. RIEITHRODONTOMIS CHRYSOPSIS ORIZABAE, Merriam 1901. Proc. Washington Acad. Sci. III, p. 550.

Mt. Orizaba, Puebla, Mexico.
49. REITHRODONTOMIYS PEROTENSIS, Merriam 1901. Proc. Washington Acad. Sci. III, p. 550.

Cofre de Perote, Vera Cruz, Mexico.

## mexicanus Group

50. REITHRODONTOMYS PACIFICUS, Goodwin 1932. Amer. Mus. Nov. 560, p. 2.

Hacienda California, 6 miles from Ocos, Guatemala.
5r. REITHRODONTOMYS MEXICANUS MEXICANUS, Saussure i86o. Rev. et. Mag. de Zool. ser. 2, XII, p. 109.

Mountains of Vera Cruz, Mexico.
Synonym: costaricensis jalapae, Merriam, 1901, Proc. Washington Acad. Sci. III, p. 552. Jalapa, Vera Cruz.
52. REITHRODONTOMYS MEXICANUS GOLDMANI, Merriam
1901. Proc. Washington Acad. Sci. III, p. 552.

Metlaltoyuca, Puebla, Mexico.
53. REITHRODONTOMYS MIEXICANL'S CHERRIEI, Alen
1891. Bull. Amer. Mus. Nat. Hist. III, p. 211.

San José, Costa Rica.
Synonym: costaricensis, Allen, 1895, Bull. Amer. Mus. Nat. Hist. VII, p. 139. La Carpintera, Costa Rica.
54. REITHRODONTOMY MIENICANU'S LLCLIFRONS, Hanell
1932. Proc. Biol. Soc. Washington, XLV, p. 125.

Cerro Cantoral, Honduras.
55. REITHRODONTONIS MFXICANU'S MINUSCLLLS, I!owall 1932. Proc. Biol. Soc. Washington, NL, p. 125.

Comayabucla, just south of Teguicigalpa, Honduras.
56. REITHRODONTONYS MEXICANUS HOWELLI, Goodwin
1932. Aner. Mus. Nov. no. 56o, p. 1.

Chichicastenango (Santo Tomas) district of El Quiche, Guatemala.
57. REITHRODONTOMIYS SODDERSTRÖXI1, Thomas
i89S. Ann. Mag. Nat. Hist. 7, I, p. 451.
Quito, WV. Ecuador.
58. REITHRODONTOMIS MILLI:RI, Allen
1912. Bull. Amer. Nus. Nat. Ilist. XXXI, p. 77. Munchique, Cauca district, W:. Colombia.
50. REITHRODONTOANS GRACHLIS GRACILIS, Allen \& Chapman 1897. Bull. Amer. Dus. Nat. Hist. IX. p. 9. Chichemitza, Yucatan, Mexico.
60. REITHRODONTOMES GRACILIS ANTHONYI, (oxdwin 1932. Amer. Nus. Nov. no. 560 , p. 3. Sacapulus, Central Guatemala.
tenumostris Group
hi. REITHRODONTOMY゙S TENEIROSTRIS TEXLIR()STRIS, DErram 1901. Proc. Washingtom Acad. Sci. III, p. 547. Todus Santos, Guatemala.
62. REITHR()DONTOMES TENLTROSTRIS ALRELS, Merram ェno1. Proc. Washington Acad. Sci. III, P, 548. Calel, Guatemala.
63. REITHRODONTOMY'S CREPER, Banes
1902. Bull. Nus. Comp. Znol. Harvard Coll. LXXIX. p. $3 \%$ Volcan de Chiriqui, Chiriqui, Panama.
fit KEITHRODONTOMYS MIICRODON MHCRODON, Mertam 1901. Proc. Washington Acad. Sci, III, p. 548. Todus Santos, Guatemala.
65. REI'THRODONTOMI'S MICRODON ALBIIABRIS, Merraian 1901. Proc. Washington Acad. Sci. III, p. 549.

Cerro San Felipe, Oaxaca, Mexico.

## Genus 15. PEROAISC(S.S, Gloger

1841. Peromyscus, Gloger, Mand. u. Hilfsbuch. d. Naturg. vol. 2, p. 95.
1842. Sitomys, Fitzinger, Sitz. Ber. K. Akad. W'iss. Wien. Math. Nat. Cl. LVI, p. 97. (Cricetus myoides, Gapper.)
1843. Vesperimts, Coues, Proc. Acad. Nat. Lici. Philadelphia, p. 178. (Musculus leucopus, Rafinesque.)
1844. Trinodontomys, Rhoads, Proc. Acad. Nat. Sici. Philadelphia, p. 257. (Sitomys insolatus, Rhoads . Hesperomys sonoriensis, Le ('onte.)
1845. Haplomylomy's, Osgood, Proc. Biol. Soc. Washington, XVII, p. 53. (Hesperomys eremicus, Baird.) Valid as a subgenus.
1846. Negadontomys, Merriam, Proc. Miol. Soc. Washington, X1I, p. I 5 . (Peromyscus thomasi, Merriam.) Valid as a subeenus.
1847. Ochrotomy's, ()sqood, North Amer. Fauna, no. 28, p. 222. (Arvicola muttalli, Harlan.) Valid as a subgenus.
1848. Podomys, Osgood, North Amer. Fauna, no. 28, p. 226. (Hesperomys floridanus, Chapman.) Valid as a subgenus.

Type Species.-Peromyscus arboreus, Gloger - Mus sylzaticus novaeboracensis, Fischer.
Range.-Entirc North American Continent, from Panama northwards to Alaska and Labrador.
Number of Forms.-About a hundred and seventy-eight.
Characters.-Skull with interorbital constriction always apparent; not developing strong supraorbital ridges, which are totally absent as a general rule. Rostrum pointed and relatively long. Nasals usually projecting forwards over incisors; sometimes tending to become broad anteriorly, as in zarhynchus, and other larger tropical forms. Interparietal well developed. Zygoma slender. Zygomatic plate narrow, nearly straight anteriorly. Palate extending about to middle part of M.3. Palatal foramina broad, well open, usually or often reaching M.i. Mandible with coronoid process normally strongly reduced. M. 1 with five cusps, the cusps alternating, the pits separating them not tending to become isolated; between the main cusps are re-entrant folds, four (two each side) in M.r, three (two outer, one inner) in M.2. The main folds have in typical forms well-developed subsidiary ridges. M. 3 is strongly reduced. Upper cheekteeth three-rooted, lower series two-rooted (Osgood). Ml.1 lower with anterior cusps usually fused, and four cusps behind these. M. 2 like M.i, but without anterior cusp; M. 3 reduced, often more or less S-shaped. The cusps alternating, the folds deep. The bullae as a rule are not large.

Cheekpouches "more or less developed" (Osgood). Nammae 6, or in subgenus Haplomylomys, 4. Ear relatively large. Tail usually relatively well haired, sometimes in northern forms completely haired, and tufted. Fur usually soft. Plantar pads 6 (reduced to 5 in subgenus Podomys). Tail not reduced in length. Hindfoot slender, the digits normal; sole sometimes hairy. Form Rat or Mouselike; the subgenus Megadontomys contains the largest species of the genus (up to 150 head and body length in B.M. material).

Megadontomys, from Mexico and Panama, is regarded as a subgenus by Osgood; the cheekteeth are more complex than in Peromyscus, the subsidiary ridges of the lower molars more strongly developed; the anterior cusp of first upper molar may be partly divided. Size largest of genus.
Ochrotomys, Eastern United States, is proposed as a subgenus for $P$. nuttalli; resembling Peromyscus, but posterior palatal foramina placed further backwards; a rudimentary seventh plantar pad present; "molariform teeth relatively wide, the enamel folds much compressed, enamel relatively thicker than in Peromyscus, the pattern as seen in partly worn teeth being much compressed laterally and longtitudinally, so that the folds of the two sides touch in almost all stages of wear, leaving five subtriangular islands of dentine in M.r and four in M.2. Lower molars similarly peculiar" (Osgood). Subsidiary ridges in the main folds present.
Podomys is proposed as a subgenus for $P$. floridanus, from Florida, The plantar pads are reduced to 5 . The subsidiary ridges in the upper molars are very small, not extending to outer edge of toothrow.
13-Living Rodents-II

11aplomylomys is proposed as a subgenus for a few species from the Western United States, in which the upper cheekteeth have the subsidiary ridges in the main folds vestigial ( $P$.crinitus), or altogether suppressed. Mammae reduced to 4. 'Tail longer than head and body.
'There seems to be a tendency, so far as seen, for the tropical Central American species to be much larger in general appearance than the Canadian and United States forms.

Osgood divides Peromyscus s.s. into eight specific groups. Unfortunately from his revision, and keys, the characters of these groups are not clear at all.

Of the four groups which occur north of Mexico, the truei group is apparently distinguishable clearly from the others on account of enlarged ears. The four groups which are confined to Mexico average larger than the northern forms; the melanophrys group appears to be characterized by very long tail; the mexicamus group are said to have the tail poorly haired, the scaly annulations scarcely concealed. The megalops group contains the largest forms of the subgenus.

Forms seen: arcticus, austerus, auritus, aureolus, auripectus, beatae, boylii, cacabatus, califormicus, canadensis, cecilii, coolidgei, comptus, cristobalensis, difficilis, eremicus, eza, felipensis, fraterculus, flazidus, floridanus, furvus, gadoaii, gambelii, gilberti, guatemalensis, gossypinus, gratus, gymnotis, insignis, leucopus, leucurus, madrensis, major, maniculatus, martirensis, mearnsi, medius, megalops, melanotis, mexicamus, michiganensis, "musculoides," mebrasconsis, niveiventris, mudipes, orizabae, palmarius, phasma, pinalis, rufinus, saturatus, sonoriensis, spicilegus, saxatilis, stephensi, tehuantepecus, thomasi, totontepecus, truei, umbrimus, zarhunchus.

## List of Named Forms

(Genus revised by Osgood, North Amer. Fauna, No. 28, 1909. For range maps see Osgood and Anthony, Field Book North American Mammals, 1928.)

Subgenus Iaplomylomys, ()sgood

1. PERONIYSCUS CRINITUS CRINITLS, Merriam

18gi. North Amer. Fauna, no. 5, p. 53.
Shoshone Falls, Snake River, Lincoln County, Idaho.
Synonym: crinitus scitulus, Bangs, 1899, Proc. New Engl. Club. 1, p. 67. Gardnerville, Nevada.
2. PERONIYSCLS CRINITUS ALRIPECTLS, Allen
1893. Bull. Amer. Mus. Nat. Hist. V, p. 75. Bluff City, San Juan County, Utah.
3. PIEROMISCLIS CRINITC:STEPHENS], Mearns
1807. Proc. U.S. Nat. Mus. XIX, p. 721. 3 miles east of Mountain Spring, Imperial County, Idaho.
Synonym: petraius, Elliot, 1903, Field Columb. Wus. publ. z.s. 2, p. 244. California.
4. PEROAVSCL゙S CRINITLS PALI.IDISSINLE\&, Huey
1931. Trans. S. Diego Nat. Hist. Soc. VI, p. 389. Small Island in Gonzana Bay, Lower California.
5. PEROMYSCUS CRINITUS DISPARILIS, Goldman
1932. Proc. Biol. Soc. Washington, XLV, p. 90.

Tinajas Atlas, Gila Mountains, Yuma County, Arizona.
6. PEROMYSCU'S CALIFORNICUS CALIFORNICUS, Gambe!
1848. Proc. Acad. Nat. Sci. Philadelphia, IV, p. 78.

Monterey, Monterey County, California.
7. PEROMYSCUS CALIFORNICUS INSIGNIS, Rhoads
1895. Proc. Acad. Nat. Sci. Philadelphia, p. 33.

Dulzura, San Diego County, California.
8. PEROMYSCL'S CALIFORNICUS BENITOENSIS, Grinnell \& Orr 1934. Journ. Mamm. Baltimore, 15, p. 216.

Near Cook P.O., Bear Valley, San Benito County, California.
9. PEROMYSCU'S CALIFORNICUS MARIPOSAE, Grinnell \& Orr 1934. Journ. Mamm. Baltimore, 15, p. 217.

El Portal, Mariposa County, California.
10. PEROMISCUS EREMIICUS EREMICUS, Baird 1857. Namm. North Amer. p. 479.

Old Fort Yuma, Imperial County, California, on Colorado River, opposite Yuma, Arizona.
Synonym: merriami, Mearns, 1896, Proc. U.S. Nat. Mus. XIX, p. I 38 . Sonoyta, Sonora, Mexico. arenarius, Mearns, i 896, same reference. Near El Paso, El Paso, Texas.
11. PEROMYSCUS EREMICUS FRATERCULUS, Merriam
1892. Amer. Nat. XXVI, p. 261.

Dulzura, San Diego County, California.
Synonym: homochroia, Elliot, 1903, Field Columb. Mus. publ. z.s. 74, 3, p. 158. San Quintin, Lower California.
herronii, Rhoads, 1893, Amer. Nat. XXV11, p. 832. Reche Canyon, California.
herronii nigellus, Rhoads, 1894, Proc. Acad. Nat. Sci. Philadelphia, p. 257. West Cajon Pass, San Bernardino County, California.
12. PEROMYSCUS EREMICLS CEDROSENSIS, Allen
1898. Bull. Amer. Mus. Nat. Hist. X, p. 154.

Cerros Island, Lower California.
13. PEROMISCUS EREMICUS EVA, Thomas 1898. Ann. Mag. Nat. Hist. 7, 1, p. 44.

San José del Cabo, Lower California.
Synonym: propinquus, Allen, 189§, Bull. Amer. Mus. Nat. Hist. X, p. 154 .
14. PEROMYSCUS EREMICLS INSULICOLA, Osgood 1909. North Amer. Fauna, no. 28, p. 246.

Espiritu Santo Island, Gulf of California, Lower California.
15. PEROMY'SCL'S EREMICL'S AVIUS, Osgood 1909. North Amer. Fauna, no. 28, p. 247.

Ceralbo Island, Lower California.
16. PERONYKCUS EREMICLS POLYPOLIC'S, Osgood
1909. North Amer. Fauna, no. 28, p. 248.

Margarita Island, off west coast southern Lower California.
17. PEROMISCU゙S EREMICUK ANTH(N)VI, Merram
1887. Proc. Biol. Soc. Washington, IV, p. 2.

Camp Apache, Big Hachıta Nountains, Grant County, New Mexico.
I8. PEROAIY SCUS EREMICUS PAPACENKSIS, Goldman
1917. Proc. Biol. Soc. Washington, XXX, p. 110.

Pinacate Mountains, Sonora, Mexico.
19. PEROMYSCL'S IEREMICUS TJBLRONENSIS, Nearns 1897. Proc. U.S. Nat. Mus. XIK, p. 720.

Tiburon Island, Sonora, Mexico.
20. PEROMYSCUS ERENICUS PHAELRLS, Osgood 190.4. Proc. Biol. Soc. Washington, XV'II, p. 75.

Hacienda la Parana, San Luis Potosi, Mexico.
21. PERONYKCLS EREMICLS CARMENI, Townsend 1912. Bull. Amer. Mus. Nat. Hist. XXXI, p. 126.

Carmen Island, Lower Californıa,
22. PEROMYSCUS EREMIICUS CINERELS, Hall 1931. Proc. Biol. Soc. Washington, XL,IV, p. 87.

South-west end of San José 1sland, Lower California.
23. PEROMYSCL'S EREMICLS PULLLLS, Blossom
1933. Occ. Pap. Mus. Zool. Univ. Mich. no. 265, p. 3.

Black Mountains, 10 miles south of Tucson, Pima County, Arizona.
24. PERONYSCLS GLARDIA GUARDIA, Townsend
1912. Bull. Amer. Mus, Nat. Hist, XXXI, p. 126.

Angel de la Guardia Island, Lower California.
25. PEROMIYSCL'S GLARDIA MEJIAE, Burt 1932. Trans. S. Diego Nat. Hist. Soc. VI], p. 174. Mejia Island, Gulf of California.
26. PERONIYSCLS sTEPHANI, Townsend 1912. Bull. Amer. Nus. Nat. Ilist. XXX1, p. 126.

San Esteban Island, Gulf of Calıfornia, Lower Calıfornia.
27. PEROMIYSCC'S GOLDMANI, ()sgood
1904. Proc. Biol. Soc. Washington, SVII, p. 75.

Alamos, Sonora, Mexico.
28. PERONIY SC'L SLEVINI, Mallard
1924. Proc, Cal. Acad. Sci. XII, p. 122 t.

Santa Catalina lsland, 17 miles north-east of Punta San Marcial, Lower California.
29. PERONYSCLS COILATL'S, Burt
1932. 'Trans. S. Dicgo Nat. Ilist. Soc. VII, p. 172.

Tumer's Island, Gulf of Carpentaria, Sonora, Mexico.
30. PEROMYSCUS P\&ELDOCR1NITL゙S, Burt
1932. Trans. S. Diego Nat. Hist. Soc. VII, p. 173.

Coronados Island, Gulf of California, Lower Calıfornia.
31. PEROMY'SCUS CANICEPS, Burt 1932. Trans. S. Diego Nat. Hist. Soc. VII, p. 174.

Montscrrate Island, Gulf of California, Lower California.
32. PEROMYSCUS INTERPARIETALIS, Burt
1932. 'Trans. S. Diego Nat. Hist. Soc. VII, p. 175.

South San Lorrenzo Island, Lower California.
33. PEROMYSCUS DICKEY1, Burt 1932. Trans. S. Diego Nat. Hist. Soc. VII, p. 176. Tortuga 1sland, Lower California.
34. PEROMY'SCUS PEMBERTONI, Burt 1932. Trans. S. Diego Nat. Hist. Soc. VII, p. 176. San Pedro Nolasco Island, Sonora, Mexico.

## Subgenus Peromyscus, Gloger <br> maniculatus Group

35. PEROMYSCUS MANICULATUS MANICULATUS, Wagner 1845. Wiegmann's Arch. für Naturg. Xl (1), p. 148.

The Moravian Settlements in Labrador, Canada.
Synonym: arcticus, Coues, 1877, Monogr. North Amer. Rodentia, p. 61.
bairdii, Coues, same reference, p. 61.
canadensis umbrinus, Miller, 1897, Proc. Boston Soc. Nat.
Hist. XXVIII, p. 23. Peninsula Harbour, north shore Lake Superior, Ontario.
36. PEROMYSCUS MANICULATU'S GRACILIS, Le Conte
1855. Proc. Acad. Nat. Sci. Philadelphia, VII, p. 442.

Michigan.
Synonym: canadensis, Miller, 1893, Proc. Biol. Soc. Washington, VIII, p. 55. Peterboro, New York.
myoides, Gapper, 1830 , Zool. Journ. V, p. 204. Canada.
37. PEROMIYSCL'S MANICULATUS ABIETORLM, Bangs 1896. Proc. Biol. Soc. Washington, X, p. 49.

James River, Nova Scotia, Canada.
38. PEROMY'SCU'S MANICULATUS ARGENTATUS, Copeland \& Church 1906. Proc. Biol. Soc. Washington, XIX, p. 122.

Grand Harbour, Island of Grand Manan, New Brunswick, Canada.
39. PEROMYSCUS MANICULATUS EREMLS, Osgood 1909. North Amer. Fauna, no. 28, p. 47.

Pleasant Bay, Grindstone Island, Magdalen Islands, Quebec, Canada.
40. PEROMISCLS MANICLLATL'S NL'BITERRAE, Rhoads 1896. Proc. Acad. Nat. Sci. Philadelphia, p. 187.

Summit of Roan Mountain, Mitchell County, N. Carolina.
41. PEROMYSCL'S MANICLTATL'S BOREAIIS, Mearns
igir. Proc. Biol. Soc. Washington, XXIV, p. 102.
Fort Simpson, Mackenzie, Canada.
Synonym: arcticus, Mearns, 1890 , Bull. Amer. Mus. Nat. IIst. II, p. 285.
42. PEROMYSCLS MANICLLATL'S OREAS, Bangs
i808. Proc. Biol. Soc. Washington, XII, p. 84.
Mt. Baker Range, British Columbia, Canada, near boundary of Whatcom County, Washington.
43. EPROMISCL'S MANICLLATUE HYLAELS, Osgood 1908. Proc. Biol. Soc. Washington, XXI, p. 141 .

Hollis, Kasaan Bay, Prince of Wales Island, Alaska.
+4. PERONISCUS NANICULATUS EEENI, Rhoads
1 Sy4. Proc. Acad. Nat. Sci. Philadelphia, p. 258.
Masset, Graham Island, Queen Charlotte Islands, British Columbia.
45. PEROMISCLS MANICLLATLS ALGIDLS, Osgood 1909. North Amer. Fauna, no. 28, p. 56.

Head of Lake Bennett, site of Old Bennett City, British Columbia, Canada.
46. IEROMİCUS MANICLLATLS MACRORHINUS, Rhoads 1894. Proc. Acad. Nat. Sci. Philadelphia, P. 259.

Mouth of Skeena River, British Columbia, Canada.
47. PEROMIYCLS MANICULATLS ARTEMIISIAE, Rhoads IS94. Proc. Acad. Nat. Sci. PhiladeFphia, p. 260.

Asheroft, British Columbia, Canada.
Synonym: subarcticus, Allen, i899. Bull. Amer. Mius. Nat. Hist. XII, p. 15. Montana.
48. PEROMISCCS MANICLLATLS sATLRATUS, Bangs 1897. Amer. Nat. KXXI, p. 75.

Saturna Island, in Gulf of Georgia, halfway between Victoria and Vancouver City, British Columbia.
49. PEROMIYSCLS MANICLLATLS HOLIISTERI, Osgond
1909. North Amer. Fauna, no. 28, p. 62.

Friday Harbour, San Juan Island, San Juan County, Washington.
50. I'ERONIVCLLS MANICLLATLS ALSTERL $九$, Baird I855. Proc. Acad. Nat. Sci. Philadelphia, VII, p. 336.

Old Fort Steilacoom, Pierce County, Washington.
Synonym: akelcyi, Elliot, 1S99, Field Columb. Mus. publ. 30, z.s. I. p. 226. Johnson’s Ranch, Elwah River, Clallam County, Washington.
81. JEROMISCLS MANICLLATLS RLBIDES, ()sgood
1901. Proc. Biol. Soc. Washineton, XIV, p. 193.

Mendocino City, Mendocino County, California,
Synonym: perimekurus, Llliot, 1903, Field Columb. Mus, publ. 74. z.s. 3. p. 156 . Goldbeach, Curry County, Oregon.
52. PEROMIYSCUS NAANICLLATUS GANIEELII, Baird
1857. Namma. North Amer. p. 464.

Monterey, Montcrey County, California.
Synonyn: texamis medius, Mearns, 1896, Proc. U.S. Nat. Nus. XVIII, p. 446. Lower California.
americanus thurberi, Allen, 1893 , Bull. Amer. Mus. Nat. Hist. V. p. I85. Lower California.
53. PEROMYSCL'S MANICLLATUS RUFINUS, Merriam
1890. North Amer. Fauna, no. 3, p. 65.

San Francisco Mountain, Coconino County, Arizona.
54. PEROMYSCUS MANICULATUS OSGOODI, Mearns 1911. Proc. Biol. Soc. Washington, XXIV, p. 102.

Calf Creek, Custer County, Montana.
55. PEROMIYSCUS MANICLLATUS NEBRASCENSIS, Coues
1877. Monogr. North Amer. Rodentia, p. 79.

Deer Creek, W. Nebraska.
Synonym: luteus, Osgood, 2905 , Proc. Biol. Soc. Washington, XVIII, p. 77.
56. PEROMYSCL'S MANICLLLATUS BAIRDII, Hoy \& Kennicott
1857. Agricultural Report, U.S. Patent Office, 1856, p. 92.

Bloomington, McLean County, Illinois.
Synonym: michiganensis, True, Proc. U.S. Nat. Mus. VII, 1884, p. 597.
57. PEROMYSCUS MLANICLLATUS PALLESCENS, Allen
1896. Bull. Amer. Mus. Nat. Hist. VIII, p. 238. San Antonio, Bexar County, Texas.
58. PEROMYSCUS MANICLLATUS BLANDUS, Osgood 1904. Proc. Biol. Soc. Washington, XVII, p. 56. Escalon, Chihuahua, Mexico.
59. PEROAYSCL'S MANICLLATUS FLLLUS, Osgood 1904. Proc. Biol. Soc. Washington, XVII, p. 57. Oaxaca, State of Oaxaca, Mexico.
60. PEROMYSCUS MANICULATUS LABECULA, EIliot 1903. Field Columb. Mus. publ. 71, 2.s. vol. 3, p. 143.

Ocotlan, Jalisco, Mexico.
61. PEROMYSCUS MANICULATUS SONORIENSIS, Le Conte 1853. Proc. Acad. Nat. Sci. Philadelphia, p. 413.

Santa Cruz, Sonora, Mexico.
Synonym: oresterus, Elliot, 1903, Field Columb. Mus. publ. 74, z.S. 3, p. 159. Lower California.
insolatus, Rhoads, 1894 , Proc. Acad. Nat. Sci. Philadelphia, p. 256. California.
deserticola, Mearns, 1890, Bull. Amer. Mus. Nat. Hist. II, p. 285. California.
62. PERONY'SCL'S MANICULATUS COOLIDGEI, Thomas 1898. Ann. Mag. Nat. Hist. 7, I, p. 45. Santa Anita, Cape region of Lower California.
63. PEROMISCUS MANICLLATL'S MARGARITAE, Osgood 1909. North Amer. Fauna, no. 28, p. 95. Margarita Island, off west coast southern Lower California.
64. PEROMYSCUS MANICULATLS CLEMEXTIS, Mearns r896. Proc. U.S. Nat. Mus. XVIII, p. 446.

San Clemente Island, Santa Barbara Islands, California.
65. PEROMYSCUS MANICULATLS CATALINAE, Elliot
1903. Field Columb. Mus. publ. 74, 2.s. 3, p. 160.

Santa Catalina Island, Santa Barbara Islands, Califorma.

1898．Bull．Amer．Mus．Nat．Hist．X，p． 157.
Todos Santos Island，Lower California．
6－．PEROMYSCUS MANICLLATLS GERONIMEVSIS，Allen 1898．Bull．Amer．Mus．Nat．Hist．X，p． 156. San Geronimo Island，Lower California． Synonym：exiguus，Allen， 1898 ，Bull．Amer．Mus．Nat．Hist．X，p． 157. San Martin Island，Lower California． martinensis，Nelson $\mathbb{\&}$ Goldman，1931，Journ．Washington Acad．Sici．XXI，p．534．
68．PEROMIYSCUS MANICLLATUS CINERITILS．Allen 1898．Bull．Amer．Mus．Nat．Hist．X，p． 155 San Roque Island，Lower California．
64．PEROMIVACLS MANICLLATĽ MAGDALENAE，Osgood 1909．North Amer．Fauna，no．28，p．Iol． Nagdalena Island，Lower California．
70．PEROXYSCLS MANICLLATLS ASSIMILIA，Nelson \＆Goldman 1931．Journ．Manm．Baltimore，12，p． 305. Coronados Island，north－west coast Lower California．
71．PEROMIYCLS MANICLLATUS STREATORI，Niclson \＆Goldman 1931．Journ．Washington Acad．Sci．XXI，p． 531. San Miguel 1sland，off coast of S ．California．
72．PEROMISCUS MANICLLATLS SANTACRUZAE，Nelson \＆Goldman 1931．Journ．Washington Acad．Sci．XXI，p． 532. Santa Cruz Island，off coast of S．California．
73．PEROMYSCLS MLANCLLATL＇S ESTERLS，NeIsen \＆Goldman 1931．Journ．Washington Acad．Sci．XXI，p． 532. San Nicolas Island，coast of S．California．
7＋PEROMYSCLS MANICLLATL＇S ELLLSL＇s，Nelson \＆Goldman 193I．Journ．Washington Acad．Sci．XX1，p． 533. Santa Barbara Island，off S．California．
75．PEROMYSCLS MANICLLATLS DORSALIS，Nelson \＆Goldman 1931．Journ．Washington Acad．Sci．XXI，p． 535. Natuidad Island，off west coast Lower Calıfornia，
76．PLROMIYCLS MANICLLATLS HLEII，DeIson \＆Gobdman 1931．Trans．S．Diego Nat．Hist．Soc．VII，p． 5 I． A small unnaned island in Gonzaga Bay，cast coast Lower California．
77．PEROMYGCL＇S MANICせLATUS INTERDIC＂TLAS，Anderson 1932．Bull．Nat．Nus．Canada，no．70，p． 110.

Forbidden Platenu，near eastern edge of stratheona Park，north of Mt． Albert Edward，about 17 miles west of Comox．Vancouver lsland， British Columbia．
7ふ．PERONY\＆CLS NIANICLLATUS ANGLSTL゚内，Hall
1932．Univ．Calif．Pub．Zool．38，p．+23.
Beaver Creek， 15 miles north－west of Alberni，Vancouser Island， British Columbia．
TH PLRO）NIVACLA MANICLLATLS OZARKIARLNI，Black
1935．Journ，Namm．Baltimore，16，p． 144 ． 3 miles south of Winslow，Washington County，Arkansas，
80. PEROMYSCLS SITKENSIS SITKENSIS, Merriam
1897. Proc. Biol. Soc. Washington, X1, p. 223.

Sitka, Alaska.
81. PEROMYSCUS SITKENSSIS PREYOSTENSIS, Osgood
1901. North Amer. Fauna, no, 21, p. 29. Prevost Island, Queen Charlotte Group, British Columbia.
82. PERONIYSCUS SITKENSIS ISOLATUS, Cowan 1935. Univ. Calif. Pub. Zool. 40, p. 434.

Pine Island, Queen Charlotte Sound, north end of Vancouver Island, British Columbia.
83. PEROMYSCL'S SITKENSIS OCEANICL'S, Cowan 1935. Univ. Calif. Pub. Zool. 40, p. 432. Forrester Island, Alaska.

8+. PEROMYSCL'S POLIONOTLS POLIONOTUS, Wagner 1843. Wiegmann's Arch. für Naturg. IS (2), p. 52. Georgia.
Synonym: baliolus, Bangs, 1898 , Science, n.s. V11I, p. 2r5. Georgia. arenarius, Bangs, Proc. Boston Soc. Nat. Hist. XXV111, p. 202, 1898 . Georgia.
subgriseus, Chapman, 1893, Bull. Amer. Mus. Nat. Hist. V, p. 340. Gainesville, Alachua County, Florida.
85. PEROMYSCL'S POLIONOTLS NIVEIVENTRIS, Chapman 1889. Bull. Amer. Mus. Nat. Hist. 11, p. 117.

On east peninsula, opposite Micco, Brevard County, Florida.
86. PEROMYSCLS POLIONOTUS PHASMA, Bangs 1898 . Proc. Boston Soc. Nat. Hist. XXV111, p. 199. Point Romo, Anastasia Island, St. John County, Florida.
87. PEROMYSCUS POLIONOTUS RHOADSI, Bangs 1898. Proc. Boston Soc. Nat. Hist. XXVIII, p. 201. Anclote River, Hillsboro County, Florida.
88. PEROMYSCLS POLIONOTLS ALBIFRONS, Osgood 1909. North Amer. Fauna, no. 28, p. 108. Whitfield, Walton County, Florida.
89. PEROMISCL'S LEL'COCEPHALL'S, Howell 1920. Journ. Mamm. Baltimore, 1, p. 239. Santa Rosa Island, opposite Camp Walton, Santa Rosa County, Florida.
90. PEROMySCL'S MELANOTIS, Allen \& Chapman
1897. Bull. Amer. Mus, Nat. Hist. IX, p. 203. Las Vigas, Vera Cruz, Mexico. Synonym: cecilii, Thomas, 1903, Ann. Mag. Nat. Hist. 7, XI, p. 486. South slope Mt. Orizaba, Puebla, Mexico.
melanotis zamelas, Osgood, 1904, Proc. Biol. Soc. Washington, XVII, p. 59. Colonia Garcia, Chihuahua, Mexico.
91. PEROMYSCU'S SEJL'GIS, Burt
1932. Trans. S. Diego Nat. Hist. Soc. V1I, p. 171. Santa Cruz Island, Lower California.

## leucopus Group

92. PEROLYSLC* LDLCOPL'S LELCOPLS, Ratinesque

18ı8. Amer. Monthly Mag. 3, p, $44^{6}$.
Pine barrens of Kentucky.
43. PEROAVSCLS 1ELCOPU'S NONAEBORACENSIS, EIscher 1\$29. Synopsis Mamm. p. 318.

New lork.
Synonym: mimesotae, Nearns, 1901, Proc. Biol. Soc. Washington, XIV, p. 154. Minnesota.
emmonsi, Dekay, 1840 , in Emmons, Rept. Quad. Nass, 61. campestris, Le Conte, 1853 , Proc. Acad. Nat. Sci. Philadelphia, V1, p. 4³.
44. PEROMY'SCUS LEUCOPUS ANINIODYTES, Bangs
1905. Proc. New Engl. Zool. Club, 1V, p. it.

Monomoy Island, Barnstaple County, Massachusetts.
95. PEROMYSCLS LELCOILS FLSLTH, Bangs
1905. Proc. New Engl. Zool. Club, IV, p. 13.

West 'Tisbury, Island of Martha's Vineyard, Dukes County, Massachusetts.
96. PEROMIYSCL'S LEUCOPLS ARIDILIS, Osgood
1909. North Amer. Fauna, no. 28, p. 122.

Fort Custer, Lellowstone County, Montana.
97. PEROMYSCLS LELCOPLS OCHRACIUR, Osgood 1909. North Amer, Fanua, no. 28, p. 124.

Winslow, Navajo County, Arizona.
88. PEROMIYSCLS LELCOPES TORNILLO, Nearns 1896. Proc. U.S. Nat. Mus, XVIII, p. 445.

Rio Grande, about 6 miles above E1 Paso, Texas.
Synonym: flaccidus, Allen, 1903, Bull. Amer. Mus. Nat. Hist. N1. p. 599. Durango, Mexico.

9\%. PEROMYSCL'S LELCOPLS ARIZONAE, Allen
${ }_{1} \mathrm{So4}$. Bull. Amer. Mus. Nat. Hist. VI, p. 32 I
Fairbank, Cochisa County, Arizona.
100. PEROMYKCLA゙ LELCOPLS TENANLS, WOothouse
1853. Proc. Acad. Nat. Sci. Philadelphia, VI, p. 242.

Probably vicinity of Mason, Mason County, Texas.
Synonym: mearnsi, Allen, 1891 , Bull. Amer. Nus. Nat. Hist. III, p. 300. Brownsville, Cameron County, Texas. camus, Mearns, 1896 . Proc. U.S. Nat. Mus. SVill. P. 445. Fort Clark, Kinney County, Texas.

1ध04. Proc, Biol. Soc. Washington, XVII, p. 57.
Orizaba, Vera Cruz, Mexico.
102. PLRONIYSCLS LELCOPLS CASTANELS, O4goml

Yohaltun, Campeche, Inxico.
103. PEROMY'SCUS LEUCOPUS AFFINIS, Allen
1892. Proc. U.S. Nat. Mus. (1891), XIV, p. 195.

Barrio, Oaxaca, Mexico.
Synonym: musculoides, Merriam, 1898 , Proc. Biol. Soc. Washington, XII, p. 124.
104. PEROMIYSCLS LEUCOPUS COZUMELAE, Merriam
1901. Proc. Biol. Soc. Washington, XIV, p. 103.

Cozumel Island, off coast of Yucatan, Mexico.
105. PEROMIYSCUS GOSSYPINUS GOSSYPINUS, Le Conte 1853. Proc. Acad. Nat. Sci. Philadelphia, VI, p. $4^{11}$.

Georgia, probably the Le Conte Plantation, near Riceboro, Liberty County.
Synonym: nigriculus, Bangs, 1896 , Proc. Biol. Soc. Washington, X, p. 124. Burbridge, Plaquemines Parish, Louisiana. cognatus, Le Conte, 1855 , Proc. Acad. Nat. Sci. Philadelphia, VII, p. 442. Georgia and S. Carolina.
106. PEROMYSCUS GOSSYPINUS MEGACEPHALUS, Rhoads
1894. Proc. Acad. Nat. Sci. Philadelphia, p. 254.

Woodville, Jackson County, Alabama.
Synonym: mississippiensis, Rhoads, 1896, Proc. Acad. Nat. Sci. Philadelphia, p. 189. Samburg, Reelfoot Lake, Obion County, Tennessee.
107. PEROMI'SCUS GOSSYPINLTS PALMARIUS, Bangs
1896. Proc. Biol. Soc. Washington, X, p. 124.

Oak Lodge, on east peninsula opposite Micco, Brevard County, Florida.
108. PEROMYSCUS GOSSYPINUS ANASTASAE, Bangs
1898. Proc. Boston Soc. Nat. Hist. XXVIII, p. 195.

Point Romo, Anastasia IsIand, St. John County, Florida.
Synonym: insulamis, Bangs, 189 S, Proc. Boston Soc. Nat. Hist. XXVIII, p. 196. Cumberland Island, Georgia.

## boylii Group

109. PEROMIYSCUS BOYLII BOYLII, Baird 1855. Proc. Acad. Nat. Sci. Philadelphia, VII, p. 335.

Middle fork of American River, Eldorado County, California.
Synonym: robustus, Allen, 1893, Bull. Amer. Mus. Nat. Hist. V', p. 335. Lakeport, Lake County, California.
110. PEROMI'SCUS BOYLII ROWLEYI, Allen
1893. Bull. Amer. Mus. Nat. Hist. V, p. 76.

Noland Ranch, San Juan River, San Juan County, Utah.
Synonym: gaurus, Elliot, 1903, Field Columb. Mus. pub. 74, z.s. 3, p. 157. San Antonio, San Pedro Martir Mountains, Lower Califormia.
parasiticus, Eliot, 1903, Field Columb. Nus. pub. 87, z.s. 3, p. 244. Lone Pine, Inyo County, California. metallicola, Elliot, 1903, Field Columb. Mus. pub. 87, z.s. 3, p. 245. Providencia Mines, Chihuahua, Mexico. penicillatus, Mearns, 1896 , Advance Sheet I'roc. L'.S. Nat. Mus. XVIII, p. 2. Franklin Muuntains, near El Paso, Texas.
（Peromyscus boylii rozcleyi）pinalis，Miller， 1803 ，Bull．Amer．Mus．Nat．Hist．V，p． 331. Granste Gap，Grant County，New Mexico．
major，Rhoads，rs93，Amer．Nat．XXVII，p．831．Squirrel Inn，San Bernardino County，Calıfornia．

11．PERONIYKCL B BOYI．II ATTWATERI，Allen
1895．Bull．Amer．Mus．Nat．Hist．VII，p． 330.
Turtle Creek，Kerr County，Texas．
Synonym：bellus，Bangs，iSgo，Proc．Biol．Soc．Washington，X，p． 137. Stilwell，Adar County，Oklahoma．
laceyi，Baley，1905，North Amer．Fauna，no．25，p． 99. Turtle Creek，Kerr County，Texas．

```
    12. PERONIYS(US BOY゙LII SPICHLEGLS, Allen
1897. Bull. Amer. Mus. Nat. Hist. IN, p. 50.
                            Nineral San Sebastian, Mascota, Jalisco, Mexico.
    113. PLERO.NIYSCUS BOYLII SIMILI,LA, Osgood
1904. Proc. Biol. Soc. Washington, SVII, p. 64.
    San Blas, Nayarit, Mexico.
    II4. PEROAIVSCLS BOYLII MADRENSIS, NETTAM
ISg8. Proc. Biol. Soc. Washington, \II, p. I6.
                            Maria Madre Island, Tres Marias Islands, Jahsco, Mexico.
    II5. PIRONIYGCLS BOYLII EVIDES, (sqood
1904. Proc, Biol. Soc. Washington, SVII, p. 6.t.
    Juquila, Oaxaca, Mexico.
    11%. PEROMIYSCLS BOYLIL LEVIPES, Nerramm
1898. Proc. Biol. Soc. Washington, NII, p. 123.
    Nt. Malinche, Tlaxcala, Mexico.
    Synonym: beatae, Thomas, 1903, Ann. Mag. Nat. Ilist. 7, XI, p. 485.
                                    Mt. Orizaba, Mexico.
```

    117. PEROMYSCLS BOYLII AZTECLS, Saussure
    1860. Rev, et Mag. de Zool. 2, XII, p. Io5.
S. Mexico.
IIS. PEROMYKC(LS BOYLII (ORDILLERAE, Dickey
1861. Proc. Biol. Soc. Washington, NLLI, p. 2.
Mt. Cacaguatique, Dept. San Miguel, EI Salvadur.
1f4. PERONYSCL'S BOYLII SACARENSIS, Drkey
1862. Proc. Biol. Soc. Washington, SLI, p. 3.
San Jose del Sacare, Dept. Chalatenango, El salvador.

1863. Trans. S. Diego Nंat. Hist. Soc. VII, p. 171.
San Pedro Nolasco Island, Gulf of California, Sonora, Mexico.
121. PLROMY゙心(世 ) AXACLNSIA, Murram
1864. Proc. Biol. Soc. Washington, SII, p. 122.
Cerro San Felipe, Oaxaca, Mexico.

1865. Pros. Biol. Soc. Washington, NII, p. 124.
Patzcuaro, Michoacan, Mexico.
1866. PEROMYSCUS PECTORALIS PECTORALIS, Osgood 1904. Proc. Biol. Soc. Washington, XVII, p. 59.

Jalpan, Queretaro, Mexico.
124. PEROMIYSCUS PECTORALIS EREMHCOIDES, Osgood 1904. Proc. Biol. Soc. Washington, XVII, p. 60.

Mapimi, Durango, Mexico.
125. PEROMYSCUS PECTORALIS LACEIANL'S, Bailey 1906. Proc. Biol. Soc. Washington, XIX, p. 57.

Lacey Ranch, near Kerrville, Kerr County, Texas.

## truei Group

126. PEROMYSCUS TRUEI TRUEI, Shufeldt
127. Proc. U.S. Nat. Mus. (1885), VIII, p. 407.

Fort Wingate, McKinley County, New Mexico.
Synonym: megalotis, Merriam, 1890 , North Amer. Fauna, no. 3, p. 63. Black Tank, Little Colorado Desert, Arizona.
montipinoris, Elliot, 1904, Field Columb. Mus. pub. 90, z.s. 3, p. 264. California.
lasitts, Elliot, same reference, p. 265. California.
127. PERONYSCLS TRUEI GILBERTI, Allen 1893. Bull. Amer. Mus. Nat. Hist. V, p. 188.

Bear Valley, San Benito County, California.
Synonym: dyselius, Elliot, 1898 , Field Columb. Mus. pub. 27, z.s. I, p. 207. Portola, San Mateo County, California.
128. PEROMISCUS TRLEI MLARTIRENSIS, Allen
1893. Bull. Amer. Mus. Nat. Hist. V, p. 187.

San Pedro Martir Mountains, Lower California.
Synonym: hemionotus, Elliot, 1903, Field Columb. Mus. pub. 74, z.s. 3, p. 157.
129. PEROMIYSCUS TRUEI LAGUNAE, Osgood 1909. North Amer. Fauna, no. 28, p. 172.

La Laguna, Sierra Laguna, Lower California.
130. PEROMYSCUS TRUEI GRATUS, Merriam 1898. Proc. Biol. Soc. Washington, XII, p. 123.

Tlalpam, Federal district, Mexico.
Synonym: zelotes, Osgood, i90.4, Proc. Biol. Soc. Washington, XVII, p. 67. Querendaro, Michoacan, Mexico.
sagax, Elliot, 1903, Field Columb. Mus. pub. 71, z.s. 3, p. 142. Patzcuaro, Michoacan, Mexico. pavidus, Elliot, same reference, p. 142. Same locality.
13r. PEROMYSCL'S TRUEI GENTILIS, Osgood
1904. Proc. Biol. Soc. Washington, XVII, p. 6r.

Lagos, Jalisco, Mexico.
132. PEROMYSCL'S NASUTUS NASUTUS, Allen 1891. Bull. Amer. Mus. Nat. Hist. HI, p. 299.

Estes Park, Larimer County, Colorado.
133. PEROMYSCUS NASUTUS GRISEUS, Benson 1932. Univ. Cal. Pub. Zool. 38, p. 338.

Malpais, $3 \frac{1}{2}$ miles west of Carrizozo, Lincoln County, New Mexico.

134．PEROMISC（TS POLIU゙S，Osgood 1904．Proc．Biol．Soc．Washington，XVII，p． 61 ．

Colonia Garcia，Chihuahua，Mexico．
135．PEROMYSCL＇S DIFFICILIS DIFFICILIS，Allen 189 r. Bull．Amer．Mus．Nat．Hist．III，p． 298. Sierra de Valparaiso，Zacatecas，Mexico．

136．PERONIYCUS DIFFLCIIIS AMPLULS．Osqood 1904．Proc．Biol．Soc．Washington，XVII，p． 62.

Coixtlahuaca，Oaxaca，Mexico．
137．PJROMISCUS DIFFICILIS FELIPLENIS，Nerriam 1898．Proc．Biol．Soc．Washington，XVII，p． 122.

Cerro San Felipe，Oaxaca，Mexico．
138．PLROAIYSCLS BLLLATL＇S，（9sgood 1904．Proc．Biol．Soc．Washington，XVII，p． 63. Perote，Vera Cruz，Mexico．

## melanophys Group

139．PEROMIVCUS DEIAN゚OPHRSS MELANOPHRYS，Couts
1874．Proc．Acad．Nat．Sci．PhiladeIphia，p． 181
Santa Efigenia，Oaxaca，Mexico．
Synonym：leucurus，Thomas，1894，Ann．Nag．Nat．Hist．6，XIV， p．364．Tehuantepec，Oaxaca，Nexico．
gadozii，Thomas，1903，Ann．Mag．Nat．Hist．7，NI，p． 484 San Carlos＝Yuatepec，Oaxaca．
140．PERONY $(C L$ S MELANOPHRY＇S ZANIORAE，Osgood
1904．Proc．Biol．Soc．Washington，XVII，p． 65.
Zamora，Michoacan，Mexico．
1＋1．PEROMY＇SCLS MELANOPHRV＇S CON゙けBRINL゙S，Osgood
1904．Proc．Biol．Soc．Washington，XVII，p． 66.
Berriozabel，Zacatecas，Mexico．
1＋2．PEROMISCLS XENLRCS，Osgood 1904．Proc．Biol．Soc．Washington，NVII，p． 67.

Durango，State of Durango，Mexico．
142．PEROMH\＆CL心 MEKISTLRLS，Merriam I898．Proc．Biol．Soc．Washington，XII，p． 124.

Chalchicomula，Puebla，Mexico．

## lepturus Group

144．PFROMISCLG LEPTLRLS，Merriam 1898 ．Proc．Biol．Soc．Washington，XII，p． 118.

Mt．Zempoaltepec，Oaxaca，Mexico．
145．PERO）MIY（CLS LOPHLRLS，Osgood 1904．Proc．Biol．Soc．Washington，XVII，p． 72. Todos Santos，Guatemala．
 ryof．Proc．Biol．Soc．Washmeton，XVII，p． 72.

Near Jico，Vera Cruz，Mexico．
147. PEROMY'SCL'S GLATEMALENSIS GLATEMALENSIS, Merriam 1898. Proc. Biol. Soc. Washington, X1I, p. 18.

Todos Santos, Guatemala.
148. PEROMYSCUS GUATEMALENSIS TROPICALIS, Goodwin 1932. Amer. Mus. Nov. 560, p. 3.

Chimoxan, Guatemala.
149. PEROMIYSCL'S NUDIPES, Allen
1891. Bull. Amer. Mus. Nat. Hist. 1II, p. 213.

La Carpintera, Costa Rica.
Synonym: cacabatus, Bangs, 1902, Bull. Mus. Comp. Zool. Harvard Coll. XXXIN゙, p. 29. Chiriqui, Panama.
150. PEROMYSCUS FURVUS, Allen \& Chapman
1897. Bull. Amer. Mus. Nat. Hist. IN, p. 201.

Jalapa, Vera Cruz, Mexico.
151. PEROMTYSCL'S ALTILANEUS, Osgood 1904. Proc. Biol. Soc. Washington, XVII, p. 74.

Todos Santos, Guatemala.

## mexicanus Group

152. PEROMISCLS MEXICANLS MEXICANLS, Saussure 1860. Rev. et Mag. de Zool. 2, XII, p. 103.

Mexico, assumed to be the vicinity of Mirador, Vera Cruz.
Synonym: tehuantepecus, Merriam, 189\$, Proc. Biol. Soc. Washington, XII, p. 122. Tehuantepec, Оaxaca, Mexico.
153. PEROMISCL゙S MEXICANUS TOTONTEPECL'S, Merriam 1898. Proc. Biol. Soc. Washington, XII, p. 120.

Totontepec, Oaxaca, Mexico.
Synonym: orizabae, Merriam, 189§, Proc. Biol. Soc. Washington, III, p. 121. Orizaba, Vera Cruz.
154. PEROMISCL'S MEXICANU'S SANATILIS, Merriam 1898. Proc. Biol. Soc. Washington, XII, p. 121.

Jacaltenango, Huchuetenango, Guatemala.
Synonyn: nicaraguae, Allen, 1908, Bull. Amer. Nus. Nat. Hist. XXIV, p. 658. Natagalpa, Nicaragua.
155. PEROMYSCL'S MENICANC'S GYMNOTIS, Thomas 1894 . Ann. Mag. Nat. Hist. 6, XIV', p. 365.

Guatemala.
156. PEROMYSCLS MEXICANLS TEAPENSIS, Osgood 1904. Proc. Biol. Soc. Washington, XVII, p. 69.

Teapa, Tabasco, Mexico.
57. PERONIYCLS MENICANLS PHILOMBRILSS, Dickey 1928. Proc. Biol. Soc. Washington, XLI, p. 3.

Los Esesmiles, Dept. Chalatenango, EI Salvador.
158. PEROMXSCLS MEXICANU'S SALVADORENSIS, Dickey 1928. Proc. Biol. Soc. Washington, XLI, p. 4.

Mt. Cacaguatique, Dept. San Miguel, El Salvador.

159．PEROMISCLS ALLOPHYEUS，Osgoxd 1904．Proc．Biol．Soc．Washington，XVII，p． 7 I. Huehuetan，Chiapas，Mexico．

160．PEROMYSC＇US BANDERANUS BANDERANUS，Allen 1897．Bull．Amer．Nus．Nat．Hist．IX，p， 51.

Valle de Banderas，Nayarit，Mexico．
161．PERONISCLS BANDERANUS VICINIOR，Osgood 1904．Proc．Biol．Soc．Washington，XVII，p． 68.

La Salada，Michoacan，Mexico．
1hz．PEROMY゙SCLS BANDERANUTS ANGELENSIS，Osgond 1904．Proc．Biol．Soc．Washington，XVIJ，p． 69.

Puerto Angel，Oaxaca，Mexico．
163．PERONV゙SCL＇S SLCATANIC＇L УUCATANICLS，Alen \＆Chapman I 897．Bull．Amer．Mus．Nat．Hist．IX，p． 8.

Chichenitza，Yucatan，Mexico．
164．PEROMISCLS I＇LCATANICLS BADILS，Osgood
1904．Proc．Biol．Soc．Washington，XVIJ，p． 70.
Apazote，Campeche，Mexico．
165．PEROMFSCUS STIRTONI，Dickey
1928．Proc．Biol．Soc．Washington，XLI，p． 5.
Rio Goascoran，Dept．la Union，El Salvdaor．

> megalops (iroup

166．PERONIYCLS MEGALOPS MEGALORS，Merram
189S．Proc．Biol．Soc．Washington，XII，p．II9．
Mountains near Ozolotepec，Oaxaca，Mexico．
167．PLROMISCL $\stackrel{S}{ }$ MEGALOPS ALRITUS，Merriam 1898．Proc．Biol．Soc．Washington，XII，p． 119.

Nountains 15 miles west of Oaxaca，Mexico．
Synonym：comptus，Merriam，i898．Proc．Biol．Soc．Washugton，XIl， P．120．Near Chiplancingo，Guerraro，Mexto．

168．PEROANSCL＇S MEGALOPS MELANLRLSS，Usgood 1909．North Amer．Fauna，no．28，p． 215.

Pluma，Oaxaca，Mexico．

1904．Proc．Biol．Soc．Washington，XVII，p． 73.
Mt．Zempoaltepec，Oaxaca，Mexico．
170．PEROMY゙SCLS ZARIIYNCHIS，Nerram
1898．Proc．Biol．Soc．Washington，XII，p． 117.
Tumbala，Chiapas，Mexico．
Synonym：cristobalensis，Merriam，18ys，Proe．Biol．Soc．Washington， XII，p．1r7．San Cristobal，Chiapas，Nexico．

1\％1．PEROMI＇SCLS GRANDIS，（ioodwa
1932．Amer．Mus．Nov．560，p． 4.
Finca Concepcion，Guatemala．

## Subgenus Megadontomys, Merriam

172. PEROMYSCUS THOMASI, Merriam 1898 . Proc. Biol. Soc. Washington, XII, p. 116.

Mountains near Chilpancingo, Guerrero, Mexico.
173. PEROMYSCUS NELSONI, Merriam 1898. Proc. Biol. Soc. Washington, XII, p. 116. Jico, Vera Cruz, Mexico.
174. PEROMY'SCUS FLAVIDU'S, Bangs
1902. Bull. Mus. Comp. Zool. Harvard Coll. XXXIX, p. 27.

Boquete, south slope of Volcan de Chiriqui, Panama.
175. PEROMF'SCUS PIRRENSIS, Goldman 1912. Smiths. Misc. Coll. LX, 2, p. 5.

Head of Rio Limon, Mt. Pirri, E. Panama.
Subgenus Ochrotomys, Osgood
176. PEROMISCUS NUTTALLI NUTTALLI, Harlan
1832. Monthly Amer. Journ. Geol. \& Nat. Sci. Philadelphia, 1, p. 446.

Norfolk, Norfolk County, Virginia.
177. PEROMYSCUS NUTTALLI AUREOLUS, Audubon \& Bachman I841. Proc. Acad. Nat. Sci. Philadelphia, r, p. 98.

In the oak forests of S . Carolina.
Subgenus Podomys, Osgood
178. PEROMIYSCUS FLORJDANUS, Chapman 1889. Bull. Amer. Mus. Nat. Hist. II, p. 117.

Gainesville, Alachua County, Florida.
Synonym: macropus, Merriam, I 890, North Amer. Fauna, no. 4, p. 53. Lake Worth, PaIm Beach County, Florida.

## Genus 16. BAIOMY'S, True

1894. Baiomys, True, Proc. U.S. Nat. Mus. XVI, 1893, p. 758.
'Type Species.-Hesperomy's taylori, Thomas.
Range.-Texas, Mexico, Honduras.
Number of Forms.-Eight.
Characters.-Interorbital constriction apparently less marked than in Peromyscus; rostrum short, and nasals not projecting over incisors; palatal foramina about reaching to toothrows; zygomatic plate as in Peromyscus; coronoid process not reduced; zygoma slender. Upper incisors relatively heavy. Front cusp of M.I evidently divided; subsidiary ridges of molars not developed in any seen. Cusps alternating, in upper molars, as in Peromyscus. M. 3 strongly reduced, more or less ring-shaped with wear.

Size very small (about 76 mm . head and body or less in those seen); tail shorter than head and body (rather less than three-quarters head and body length); hindfeet normal; plantar pads six; ears rather small.

This genus was considered as a subgenus of Peromyscus by Osgood, in his revision of that genus (North Amer. Fauna, no. 28, 1909), but is given generic rank by Miller and other American authors. It seems to be considerably distinct from Peromyscus, and may perhaps be a northern representative of Hesperomys or one of the small South American genera.

Forms scen: brunneus, musculus, taylori.

## List of Named Forms

(Revised, as a subgenus of Peromyscus, by Osgood, North Amer. Fauna, no. 28, 1909.$)$

1. BAIOAI'S TAYLORI 'TAY'LORI, Thomas
2. Ann. Mag. Nat. Hist. 5, XIX, p. 66.

San Diego, Duval County, Texas.
2. BAIOAIYS TAYLORI SLBATER, Bailey
1905. North Amer. Fauna, no. 25, p. 102.

Bernard Creek, near Columbia, Brazoria County, Texas.
3. BAIOMYS TAYLORI PALLLS, Allen
1903. Bull. Amer. Mus. Nat. Hist. NIX, p. 598.

Rio Sestin, N.-W. Durango, Mexico.
Synonym: allex, Osgood, 1904, Proc. Biol. Soc. Washington, XVII, p. 76. Colima, Mexico.

+ BAIOMIS TAYIARI ANALOGLS, (Isgond

1909. North Amer. Fauna, no. 28, p. 256.

Zamora, Nichoacan, Nexico.
5. BAIOMF゙S MUSCULL'S MLSCULUS, Merram
i S92. Proc. Biol. Soc. Washington, VII, p. 170.
Near City of Colima, State of Colima, Mexico.
6. BAIOMIY MESCLLLS BRLNNELS, Allen \& Chapman
1897. Bull. Amer. Mus. Nat. Hist. IX, p. 203.

Jalapa, Vera Cruz, Mexico.
7. B.AlOMIS All SCLLUS NIGRESCENS, (1sgood
1904. Proc. Biol. Soc. Washington, XVII, p. 76.

Valley of Comitan, Chiapas, Mexico.
S. IBAlOMES MLSCLLLS GRISFSC'ENS, Goldman 1932. Proc. Biol. Soc. Washington, XLV, p. 121.

Comayabuela, just south of Tegucigalpa, Honduras.

Gemus 1\%. CALO.NISCUS, 'Ihomas
1905. C'alonyscus, 'Thomas, Abstr. Proc. Zool. Soc. London, No. 24, p. 23.

Type Spfcies.-Calomyscus baikeardi, 'Thomas.
Range.-Persia, Baluchistan, Mesopotamia (Vinogradov), South Russian Turkestan (Kopet-Dag).
Nimber of Forms.-Two. (Revised by Argyropulo, 1933, Zeitschr. für Säugetierk. \&, Heft 3, p. 133.)

Charactars.-Skull very like Peromyscus; braincase broad and rather flat; zygomatic plate straight anteriorly; nasals projecting forwards over the incisors; pterygoid fossae unusually flat. Palatal foramina shorter than in Peromyscus, not approaching M.i in any seen. Bullae rather small. Coronoid process thin, but not shortened. Jugal long for a Murine, and rather broad.

Upper cheekteeth simpler than in Peromyscus; the cusps low, the pattern almost one of alternating triangles. M. 3 extremely reduced, ring-shaped and completely simple in all seen, and as figured by Argyropulo in young, adult, and old animals. Lower cheekteeth not abnormal; usually two folds each side of M. I and M.2, these alternating; M. 3 simple. The cusps apparent.

Mammae 6. No cheekpouches (Argyropulo). Ear large. Hindfoot narrow, long, with normal digits. Tail thickly haired, heavily tufted, and longer than head and body in all specimens examined.

Forms seen: bailwardi, "baluchi," hotsoni, "mystax."

## List of Named Formis

1. CALOMIYSCU'S BAILWARDI BAILWARDI, Thomas
2. Abstr. Proc. Zool. Soc. London, no. 24, p. 23; and 1905, Proc. Zool. Soc. London, pp. 524-6.
Mala-i-mir, 70 miles north-east of Ahwaz, Persia.
Synonym: baluchi, Thomas, 1920, Journ. Bombay Nat. Hist. Soc. XXVI, p. 939. Kelat, Baluchistan.
3. CALOMYSCUS BAILWARDI HOTSONI, Thomas 1920. Journ. Bombay Nat. Hist. Soc. XXV1, p. 939.

Panjur district, Baluchistan.
Synonym: mystax, Kashkarov, 1925, Trans. Sci. Soc. Turkestan, 2, p. 43. Great Balhany Mountains, Transcaspia.

## Genus 18. ONYCHOMI'S, Baird

1857. Onychomys, Baird, Mamm. North Amer. p. 458.

Type Species.-Hypudaeus leucogaster, Wied.
Range.-North America: Alberta, Saskatchewan; North Dakota; Oregon, Idaho, UTtah, California, Lower California, Arizona, Kansas, New Mexico, Oklahoma, Texas, Mexico (Sonora, Chihuahua, Tamaulipas, Zacatecas). Range maps published by Hollister, and in Anthony; Field Book North American Mammals, 1928.

Number of Forms.-Twenty-three.
Characters.-Skull with considerable interorbital constriction, and evidently (very few seen) not developing supraorbital ridges. Mandible with well-developed coronoid process. Zygoma narrow; bullae rather small; palate extending to slightly behind M.3. Palatal foramina well open, about extending to M.1. Nasals wedge-shaped posteriorly, extending behind the nasal branch of maxillae. Zygomatic plate narrow, straight anteriorly.

Cheekteeth differing from both those of Cricetus and Peromyscus clearly;
the cusps unusually high and raised and prominent in all seen; M .3 small, reduced, main outer folds lacking subsidiary ridges; the pits separating cusps not isolated and not apparent. Even in comparative old age the cusps are prominent. The cusps are slightly alternating, less so than in Peromyscus; there is one cusp at front end of M.1, which is divided when unworn into two or three small cusps.

The folds between the cusps are deep, and the teeth are narrowed, with cusps close together. M.i lower with five cusps and posterointernal heel; M1.2 with four cusps and posterointernal hecl, and small anteroexternal fold; M. 3 bilaminate, strongly reduced, the lower molars more Cricetus-like.

Form specialized, IIamster-like. Fur soft. Feet with digits normal, but sole furred, and plantar pads reduced to four. Mammae $1-2=6$ (IIollister). Ear relatively small. Tail reduced, sometimes strongly so; apparently not much over half head and body length normally, relatively well haired. Foreclaws prominent in those seen. I have no notes as to whether this genus possesses cheekpouches or not. 'The hindfoot appears shortened, and the hallux is reduced.

It has been suggested that this genus is the American representative of Cricetulus, but 1 do not think the two genera have anything in common except parallet evolution in external characters. The cheekteeth are totally different in the two genera.

Forms seen: arcticeps, tewogaster, longipes, torridus.
The genus was revised by Hollister, 1914, Proc. U.S. Nat. Mus. XLV'Il, P. 427.

## List of Named Formis


18\$1. Reise in das imnere Nord. Amerika, vol. 2, p. 99.
Fort Clark, near present town of Sitanton, Mercer County, N. Dakota. Synonym: leucogaster pallidus, Herrick, 1885, Geol. \& Nat. Hist. Surv. Minnesota, $13^{\text {th }}$ Amn. Rep. 1884, p. 183.
2. (NYCHONIYS LJUCOGASTER MISSOURIENSIS, Audubon \& Bachman 1851. North Amer. Quad. vol. 2, P. 327. Fort Union, near present town of Buford, Williams County, N. Dakota.
3. ONYCHOMYS LEUCOGASTER ARCTICEPS, Rhoads 1898. Proc. Acad. Nat. Sci. Philadelphia, p. 194. Clapham. Union County, New Mexico.
4. onychoniss lel Cogaster brevicaldi's. Mertam 1891. North Amer. Fauna, no. 5, p. 52. Blackfoot, Bingham County, ldahos.
5. ONYCHOMYS LELCOGASTER fescogrisel's, Anthony
1913. Bull. Amer. Mus. Nat. Ilist. XXXII, p. If.

Ironside, Malheur County, Oregon.
6. ONTCHOAMS Lel'Cogaster Melanopliris, Mernam
1889. North Amer. Fauna, no. 2, p. 2.

Kanab, Kane County, Utah.
Synonym: pallescens, Merriam, 1890 , North Amer. Fauna, no. 3. p. 61. .Moki Pueblos, Navaho C'ounty, Arizona.
7. ONYCHOMYS LEUCOGASTER FULIGINOSUS, Merriam 1890. North Amer. Fauna, no. 3, p. 60.

Black Tank lava beds north-east of San Francisco Mountain, Coconino County, Arizona.
8. ONYCHOMI'S LEUCOGASTER RUIDOSAE, Stone \& Rehn 1903. Proc. Acad. Nat. Sci. Philadelphia, p. 22.

Ruidoso, Lincoln County, New Mexico.
9. ONYCHOMY'S IELCOGASTER CAPITULATUS, Hollister
1913. Proc. Biol. Soc. Washington, XXVI, p. 215.

Lower end of Prospect Valley, Hualpai Indian Reservation, Grand Canyon, Arizona.
so. ONYCHOMYS LEUCOGASTER ALBESCENS, Merriam
1904 . Proc. Biol. Soc. Washington, XVV1I, p. 124.
Samalayuca, Chihuahua, Mexico.
if. ONYCHOMIS LEUCOGASTER LONGIPES, Merriam
1889. North Amer. Fauna, no. 2, p. 1.

Concho County, Tcxas.
12. ONYCHOMYS LEUCOGASTER BREVIAURITUS, Hollister
1913. Proc. Biol. Soc. Washington, XXV1, p. $2 \times 6$.

Fort Reno, Canadian County, Oklahoma.
13. ONYCHOMYS TORRIDUS TORRIDUS, Coues
1874. Proc. Acad. Nat. Sci, Philadelphia, p. 183.

Camp Grant, Graham County, Arizona.
Synonym: torridus arenicola, Mearns, 1896 , Advance Sheet Proc. U.S. Nat. Mus. XVII1, p. 3. Texas.
14. ONYCHOMIS TORRIDUS PERPALLIDUS, Mearns
1896. Advance Sheet Proc. U.S. Nat. Mus. XVIII, p. \&.

Left bank of Colorado River at monument no. 204 Mexican boundary line, Y'uma County, Arizona.
15. ONYCHOMY'S TORRIDUS PULCHER, Elliot 1903. Field Columb. Mus. pub. 87, zool. ser. 3, p. 243.

Morongo Pass, San Bernardino Mountains, California.
16. ONYCHOMIYS TORRIDUS LONGICAUDUS, Merriam 1889. North Amer. Fauna, no. 2, p. 2.

St. George, Washington County, Utah.
17. ONYCHOMY'S TORRIDUS CLARUS, Hollister 1913. Proc. Biol. Soc. Washington, XXVI, p. 215.

Keeler, east shore of Owen's Lake, Inyo County, California.
18. ONYCHONIS TORRIDUS TULARENSIS, Merriam 1904. Proc. Biol. Soc. Washington, XVII, p. 123.

Bakersfield, Kern County, California.
19. ONICIIOMIS TORRIDU'S RAMONA, Rhoads 1893. Amer. Nat. NXVII, p. 833.

San Bernardino Vallcy, California.
20. ONYCIOMIS TORRIDC'S MACROTIS, Flliot
1903. Field Columb. Mus, pub. 74, zool. ser. 3, p. 155.

Head of San Antonio River, Lower California.
21. ONYCIIONIY TORRIDLS YAKHENSIS, Merram
1904. Proc. Biol. Soc. Washington, XVII, p. 124.

Camoa, Rio Mayo, S. Sonora, Mexico.
22. ONYCHOMIY TORRIDL'S CANL's, Mcrriam 1904. Proc. Biol. Soc. Washington, XV11, p. I24.

San Juan Capistrano, Zacatecas, Mexico,
23. ONYCHOMY' TORRIDUS SURRUFUS, Hollister 1914. Proc. U.S. Nat. Mus. XLVII, p. 472. Miquihuana, Tamaulipas, Mexico.

## Genus 19. AliOnON, Meyen

1833. Akudon, Meyen, Nova. Acta Acad. Leop. xvi, pt. 11, p. 599.
1834. Chalcomys, Thomas, Ann. Mas. Nat. Hist. 8, XVIII, p. 338. (Akodon aeroste, Thomas.)
1835. Chreomys, Thomas, Ann. Mag. Nat. Hist. 8, SX'lll, p. 340. (. Akodon pulcherrimus, Thomas.) Valid as a subgenus.
1836. Thalpomys, Thomas, Anm. Mag. Nat. Hist. 8, XVIII, p. 339. (Mus lasiotis,

Lund.) Valid as a subgenus.
1917. Deltanys, Thomas, Ann. Mag. Nat. Hist. S, XXX, p. 98. (Dehamys kempi, Thomas.) Valid as a subgenus.
1918. Hypsimys, Thomas, Ann. Mag, Nat. Hist. 9, 1, p. 190. (Hypsimys budini, Thomas.) Valid as a subgenus.
1916. Thaptomys, Thomas, Ann. Mag, Nat. Hist. 8, XVIII, p. 339. (Hesperomys subterraneus, Hensel.) Valid as a subgenus.
1916. Bolomys, Thomas, Ann. Mag. Nat. Hist. 8, XVVII, p. 339. (-1kodon amochus, Thomas.) Valid as a subgenus.
1837. Abrothrix, Waterhouse, Proc. Zool. Soc. London, p. 21. (.Ius longipilis, Waterhouse.) Valid as a subgenus.

T'ype Species.-Akodon boliviensis, Meyen.
Range.-South America: Venezuela, Colombia, Peru, Ecuador, Brazil, Bolivia, Argentine, Chile, Uruguay, Parayuay, Patagonia.
Number of Forms.- Approximately eighty-five.
Characters.-In the typical subgenus, and in the whole genus excepting Thalpomys and sometimes Clureomys, the interparietal tends to be strongly reduced. Interorbital region comparatively broad, with or without supraorbital ridges, which when present are weak. Zygomatic plate narrow, but cut back above, and not slanting gradually backwards from lower to upper border (compate Microxus). Rustrum generally rather short. Incisive foramina as a rule extending to pusterior molars, or slightly hehind them. Coronoid process moderate or low; bullae small or medium, or in some forms, e.g., Chroomys and to a lesser extent in Bolomys, tending to be enlarged.

Lpper molars: cusps more or less opposite; M. 3 much reduced, often ringshaped in adult. The usual number of folds present in 11.1 and M.2; these folds are not persistent, but are shallow, and with wear may be obliterated; subsidiary ridges normally at least traceable in the young or young-adult specimen; sometimes lost in adult; but 1 have seen no specimens of the species lenyuarmm and olscurus with these ridges and suspect that these species may have to be
transferred to Zygodontomys; obscurus has pro-odont upper incisors. '1'he whole dentition is simpler, rather more hypsodont, and with the molars narrower and with cusps rather closer together than in Oryzomy's and allied genera; compared with IIesperomys, the folds tend to be less curved, extending less far into the tecth, and with no signs of tendency for the folds to cut the cusp areas into partly closed triangles. In the lower molars, M. 3 may be relatively large; the pattern is usually complex (about normal), but many of the original folds are lost in adult.
'1'he subgenus Chalcomy's of Thomas, based on colour pattern and small differences in the skull (braincase said to be larger, interorbital region broader) appears quite unretainable. I have listed these forms as the urichi group. 'Tail more than half head and body length to slightly shorter than this measurement ; poorly haired in the urichi group, usually moderately or well haired in the other species. Digits not abnormal. Fur soft or medium. In the type species, the ear appears to be as reduced as in subgenus Thaptomy's; in most other forms it is moderate. The foreclaws becoming enlarged in jucundus, tucumanensis, obscurus and others, as pointed out by Thomas when he erected the "genera" Bolomy's and Chroomy's based largely on this character; three species at least of typical Akodon therefore are intermediate between Akodon and these subgenera in this character.

In 1916 Thomas (Ann. Mag. Nat. Hist. S, XVIII, p. 336) divided this genus into six genera ( $Z_{y g o d o n t o m y s ~ b e i n g ~ c u r r e n t l y ~ a c c e p t e d ~ a s ~ a ~ g e n u s), ~ a n d ~ k e y e d ~}^{\text {g }}$ them as follows:

Supraorbital edges more or less squared.
Claws normal. Bullae not enlarged.
Form unmodified; tail length medium; eves not reduced.
Supraorbital edges square or beaded, without overhanging ledges.
Supraorbital edge beaded. M.ı without notch on anterior face.
Zygodontomys
Supraorbital edge not or scarcely beaded. M.i with notch on anterior face.

Акодол Supraorbital edges with overhanging ledges. Thalpomys
Form Pitymys-like. Tail short. Eyes reduced. Thaptomys
Claws elongated. Interorbital region broad, with squared edges. Bullae enlarged.
Supraorbital edges rounded.
Snout not elongated. Foreclaws long. Bullae large. A specialized colour pattern. Chreonys
Snout elongated. Foreclaws not lengthened. Bullae normal. No colour pattern.

Abrothrix
lle also gave characters to all genera regarding the presence or absence of the notch on the anterior face of M.1, which have subsequently been found to be inconstant.

It will be seen that all these "genera" are based on the shape of the supraorbital edges. While this is quite constant, it is not a sufficiently important
charater on which to base generic names; and certainly elsewhere, as for instance within Orvsomys, and within Rattus, just as many different kinds of skull characters will be observed on working through the groups, or more. None of the above groups have really enlarged foreclaws, the claws of Chroomys and Bolomys being puny compared with those of really fossorial genera like Chelemyscus and Notiomys. The bullae of Chroeomys compare with those of Akodon much as do those of Cricetulus with its subgenus Tscherskia; in some forms of Bolomys, the bullae seem to be clearly rather small, as small or smaller than those of many Akodon. It will be seen from the above key that Bolomys and Chrocomys agree in essential characters, and differ only in colour and shape of interorbital region. And in Akodon s.s. are three forms, noted above, with claws almost as large as those of Chroomys and Bolomys.

Within other genera of Cricetinae, revised it must be admitted, there are groups regarded as subgenera only by their revisers and currently accepted as such, which are just as distinct as any of the above (and much more so than some). One need only mention Peromyscus, with its subgenera Megadontomys and Haplomylomys; Orysomys, with its subgenera Melanomys, Microryzomys, and (when the genus is revised) Oecomys; Reithrodontomys, with its subgenus Aporodon; Neotoma, with its subgenus Teonoma; and (ricetulus, with its subgenera Allocricetulus and Tscherskia. If these subgenera are retained as such, most certainly none of the groups above can stand as full genera (excepting Zygodontomys, which has always been regarded as a genus distinct; but even here there are intermediate forms). It may be noted that it is no easy matter to frame definitions for the majority of these large South American genera. They are all obviously closely allied, and offshoots of one essential stock; the characters of the cheekteeth tend to vary individually, and with age; their skulls and external characters grade for the most part from group to group. Many species, proving this statement, have been referred in the past to entirely different genera from those they are now classified in; an interesting case is "Oryzomys" microtimus, of Thomas ( 5 Soq), Ann. Mag. Nat. Hist. 6, \IT, p. 358, and "Akodon" punctulatus, same reference, p. 361, both of which are now referred to Zygodontomys. It seems certainly most convenient and consistent, in circumstances such as these, to recognize as few genera as is possible. Groups like the above which have been divided off in large batches from the parent genus give the impression of being little more than valid species. I am not prepared to say that the tecth of Akodon itself are in every case distinguishable from Ilesperomys, Zygodontomys, or even sometimes Phyllotis; all of these have reached a roughly similar stage in development, and they are not easily distinguished from each other. Thomas at one time suggested, in fact, that all the American Cricetinae except Neotoma should be referred to the genus Cricetus; later he thought better of the fact and erected no less than thirty-one new genera in the group. After a few weeks of endeavouring to differentiate between these numerous groups of Nentropical Cricetine Mice one is tempted to believe that his original proposal is perhaps the correct one!

In addition to the above-mentioned groups, 1 include in Akodon two "genera" of Thomas subsequently named Deltamys and Hypsimys.

I have for the present retained all these forms as suhgenera. I think that when Akodon is properly revised more than one of these names will disappear into synonymy.

Thalpomys contains a little-known Mouse from Lagoa Santa; the supraorbital ridges are quite strong; the interparietal is large. Apart from this it does not seem to have any special characters, but it is represented by only one broken skull in London.

Deltamys contains a distinct species from Eastern Argentina, with much narrowed skull, and without supraorbital ridges. The mesopterygoid is rather broad, but not more so than in some Akodon. The anteroexternal subsidiary ridge and fold of M. 2 are weak. The skull is certainly not more narrowed and aberrant than is the Stenocranius subgenus of Microtus, and I do not think this is more than a well-differentiated Akodon.

Hypsimys contains two forms from North-west Argentina. The cheekteeth are said to be more hypsodont than in Akodon, with differences also in the roots, " M .1 has one anterior root, one inner, one posteroexternal, the usual median external one practically obsolete." Young specimens show clear subsidiary ridges, and are quite complex dentally, but the adult is simpler-toothed. I am not persuaded that there is any generic difference between this group and some more hypsodont Akodon, like neocenus. Within the genus Notiomys, for instance, exist two types of dentition which seem to me to differ more from each other than do Akodon and Hypsimys. The first lower molar tends to be complex. The form is normal.
'Thaptomys with two forms from Southern Brazil has a rather short rostrum; the zygomatic plate is nearly straight anteriorly. The cheekteeth are rather more simple than is usual in Akodon. The external form is slightly modified for fossorial life; the tail is moderately shortened; poorly haired. The ear is short (about an eighth head and body length), but Akodon bolitiensis appears to be similar in this character. The claws are prominent, but not extreme.

This is quite a well differentiated group. The fossorial specialization is negligible compared, for instance, with such types as Blarinomys, however.

Abrothrix from Chile and Argentine differs from the above in the interorbital region, which is more rounded, with more abrupt constriction. The interparietal is, as in the normal forms of the genus, much reduced. The rostrum is rather long. The zygomatic plate is almost straight. The nasals project forwards over the incisors. Bullae not enlarged. Cheekteeth of com-plex-Akodon type; M. 3 often with an isolated island. External form not peculiar.

Bolomys, from Southern Peru, Bolivia, and Northern Argentina, is a welldifferentiated group. The rostrum is short. The bullae are typically more enlarged than in Akodon, but not so in lactens and orbus. In these forms, the incisors are pro-odont. 'They are even more so in the form negrito, which is thought not to be a valid species by Gyldenstolpe, but which seems to be so on this character. Otherwise the skull characters are much as in Akodon. The claws are enlarged, but not extremely so.

Chromys, from the same area as Bolomys, differs in the shape of the
interorbital region, which is more as in Abrothrix, and the constancy of the enlargement of the bullae. The interparietal may be largish or strongly reduced, and evidently varies. Foreclaws about as Bolomys. Tail well haired. A specialized colour pattern present in pulcherrimus, one of the most attractive of all South American Cricetinae, also (but differing from pulcherrimus) in bacchants. The form jelskii is most sober of those seen, in coloration.

Nammae 2-2-8, according to Gyldentolpe, in Akodon, Bulomys, C'lraeomys, Thaptomys.

Forms seen: alterns, altorum, arciculoides, arenicola, aerosus, amuenus, albizenter, benefactus, bacchunte, beatus, berlepschii, boliziensis, baliolus, brachyotis, budini, canescens, cursor, cayllomae, cruceri, coenosus, collimus, deceptor, dolores, dayi, fumetw, francei, glaucimus, gossci, hirtus, hunteri, henseli, illutea, inambarii, imiscatus, jelskii, jucundus, kempi, lonsipilis, lasiotis, lactens, lenguarum, mollis, modestior, moerens, montensis, mubila, negrito, migrita, nucus, neocenus, orbus, obscurns, olizacens, orophilus, puer, pacificus, pyrhotis, pulchervimus, sodalis, subterraneus, simulator, spegazaimii, serronsis, suffusus, surdus, sylzams, tobu, tolimac, tartareus, tucumanensis, torques, urichi, zenčuelensis, z'arus, xanthorhinhs.

I think that the species "Zygodontomys" lasiurus belongs in the present genus; but that lenguarum and obscurus are very likely members of Zegodontom's.

The "boliziensis group" listed here is the Akodon s.s. of Thomas, but would probably subdivide into several groups if the genus were revised.

List of Nanied Forms<br>Subgenus Akodon, Meyen<br>boliziensis Group

1. AKODON ALTERLS, Thomas
2. Ann. Mag. Nat. Hist. 9, III, p. 496.

Otro Cerro, Catamarca, N.-WV. Argentina.
2. AKODON ARENICOLA ARENICOLA. Waterhouse
1837. Proc. Zool. Soc. London, p. 18.

Maldonado, Uruguay.
3. AKODON ARENICOLA BEATUS, Thomas
1919. Ann. Mag. Nat. Hist. 9, III, p. 204.

Beatriz, Lake Nahuei Huapi, Neuquen, N.-IV. Patagonia.
4. AKODON AREXICOLA HUNTERI, Thomas
1917. Ann. Mage. Nat. Hist. 8, NX, p. 97.

Isla Ella, Parana Delta, Buenos Aires Province, E. Argentina.
5. AKりDUN ARVICLLOIDES ARVICLLOIDES, Wagner
1842. Archiv: für Naturgesch. viii, r, p. 36 r.

Bahia, E. Brazil.
Synonym: orobimus, Wagner, Archiv: fuir Naturgesch. viii, 1, p. 361 , 1842. Ypanema, Sao Paulo, E. Brazil.
6. AKODON ARVICLLOIDES CURGOR, Winge
1888. E. Museo Lundii, 1, 3, p. 25.

Lagoa Santa, Ro das Velhas, Mhnas Geraes, F. Brazil.
7. AKODON ARVICULOHDES MONTENSIS, Thomas
1913. Ann. Mag. Nat. Hist. 8, XI, p. 405.

Sapucay, Paraguay.
8. AKODON BENEFACTUS, Thomas 1919. Ann. Mag. Nat. Hist. 9, III, p. 214. Bonifacio, S.-W. Buenos Aires Province, E. Argentina.
9. AKODON BOLIVIFNSIS, Neyen 1833. Nova Acta Acad. Leop. xvi, no. 2, p. 600.

Pichu Pichun, Mt. Misti, Arequipa Dept., Peru.
10. AKODON COENOOSUS, Thomas 1918. Ann. Mag, Nat. Hist. 9, I, p. 189. Leon, Jujuy, N.-W. Argentina.
11. AKODON CHACOENSIS, Shamel 1931. Journ. Washington Acad. Sci. XXI, p. 427.

Las Palmas, Chaco Territory, N. Argentina.
12. AKODON DAYI, Osgood 1916. Field. Mus. Nat. Hist. Zool. ser. X, p. 208.

Todos Santos, Rio Chapare, Bolivia,
13. AKODON DOLORES, Thomas 1916. Ann. Mag. Nat. Hist. 8, XVIII, p. 334.

Yacanto, Sierra de Villa Dolores, Cordova Province, Central Argentina.
14. AKODON GOSSEI, Thomas 1920. Ann. Mag. Nat. Hist. 9, VI, p. 418.

Puerte del Inca, Andes of Mendoza Province, Argentina.
15. AKODON INISCATUS INISCATU'S, Thomas 1919. Ann. Mag. Nat. Hist. 9, IH, p. 205.

Valle del Lago Blanco, Koslowsky region, Chubut, N.-W. Patagonia.
16. AKODON INISCATL'S COLLINUS, Thomas 1919. Ann. Mag. Nat, Hist. 9, III, p. 206.

Maiten, Chubut, N.-W. Patagonia.
17. AKODON JUCUNDUS, Thomas 1913. Ann. Mag. Nat. Hist. 8, XI, p. 140.

Cerro de Lagunita, Naimara, Jujuy, N゙.-WV. Argentina.
is. AKODON LENGUARUM, Thomas 1898. Ann. Mag. Nat. Hist. 7, II, p. 271.

Waikthlatingmayalwa, N. Chaco, Paraguay:
(Probably a member of the genus Zygodontomys.)
19. AKODON LUTESCENS, Allen
1901. Bull. Amer. Mus. Nat. Hist. XIV, p. 46.

Tirapata, N. Peru.
20. AKODON MOLLIS MOLLIS, Thomas 1894 . Ann. Mag. Nat. IIst. 6, XIV, p. 363.

Tumbez, Piura district, N.-W: Peru.
21. AKODON MOLLIS ALTORUM, 'Thomas
1913. Ann. Mag. Nat. Iist. 8, XI, p, 404.

Canar Province, Central Ecuador.

22．AKODON NOLLIS FEXEC゚－，Thomas 1902．Ann．Nag．Nat．Hist．7，IX，p， 137.

Choro，Rio Secure，Central Bolivia．
23．AKOODON NOHLJS ORIEN＇TAIIS，Osgood 1913．Field Mus．Nat．Hist．Publ．Zool．ser．X，p． 99. Poco Tambo，Chachaposeas district，Veru．
24．AKODON MOLLIS OROI＇HIILS，Osgood 1913．Field Nus．Nat，Hist．Puhl．Zool．ser．S，p． 98. Leimabamba，Lpper Rio Utcubamba，N．Peru．
25．AKODON NUCUS，Thomas \＆St．Leger
1926．Ann．Nag．Nat．Hist．9，XV1ll，p． 636.
Chos Nalal，Neuquen，Patagonia．

1837．Proc．Zool．Soc．London，p． 16.
Maldonado，LTruguay，
（Possibly a member of the genus Zygodontomys．）
27．AK゙ODON OLJVACELS，Waterhouse
1837．Proc．Zool．Soc．London，p． 16.
Valparaiso，W：．Chile．
Synonym：renggeri，Waterhouse， 1839, Zool．Voy．Beagle Manm．p． 51. Valparaiso，Chile．
lepturus，Philippi，1900，An．Mus，Nac．Chıle，p．17．Peine， Santago Province，Chile．
ruficaudus，Philippi，same reference，p．40．Chile．
trichotis，l＇hilippi，same reference，p．18．Santiage Province， Chile．
zinealis，Philippi，same reference，p．24．Valdivia．
germaini，Philippi，same reference，p．32．Santiago Province， Chile．
nasica，Philippi，same reference，p．3S．
senilis，Philippi，same reference，p．27．Santiago Province， Chile．

28．AK（）DO）PACIFlCLS，Thomas
1902．Ann．Mag．Nat．Hist．7，IX，p． 135.
La Paz，W．Bohvia．
24．AKODON゙ PCER，Thomas
1902．Ann．Mag．Nat．Hist．7．J．．p． 136.
Choquecamate，Rıo Securé，Bolivia．
30．AK゚けDON PL｀SLLL $\therefore$ ，Phalıpp
1858．Arch．für Naturqesch．XXIV，1，p． 79.
Conast region near Valparaiso，Chile．
31．AKODON SERRENSIS SERRENSIS，Thomas
1002．Ann．Nag．Nat．Hist．7，IX，p．6I．
Roca Nora，Serra do Nar，E．Parana，Brazıl．
32．AKODON MFRRFSSIS LFLCOGLLAA，Robero
1905．Arch．Nus．Nac．do Rio de Janerro，XIIII，p．IS8．
Retiro de Ramos，Serra do Itatiaya，Rio Janerro Province，Brazil．
33. AKODON SPEGAZZINII, Thomas
1897. Ann. Mag. Nat. Hist. 6, МX, p. 216.

Lower Rio Cachi, Salta Province, N.-W. Argentina.
34. AKODON SYLVANUS SYLVANUS, Thomas
1921. Ann. Mag. Nat. Hist. 9, VII, p. 184.

Sunchal, Sierra de Santa Barbara, S.-E. Jujuy, Argentina.
35. AKODON SYLVANUS PERVALENS, Thomas
1925. Ann. Mag. Nat. Hist. 9, XV, p. 579.

Carapari, Yacuiba, Cochabamba district, S. Bolivia.
36. AKODON SURDL'S, Thomas
1917. Smiths. Misc. Coll. LXVIII, no. 4, p. 2.

Huadquina, Central Peru.
37. AKODON TARTAREUS, Thomas
1919. Ann. Mag. Nat. Hist. 9, IV, p. 155.

Tartagel, Salta Province, N.-W. Argentina.
38. AKODON TOBA, Thomas
1921. Ann. Mag. Nat. Hist. 9, VII, p. 178.

Jesematathla, N. Chaco, Paraguay.
39. AKODON TUCUMANENSIS, Allen
1901. Bull. Amer. Mus. Nat. Hist. XIV, p. 4 ro.

Tucuman, N.-W. Argentina.
40. AKODON TORQLES, Thomas
1917. Smiths. Misc. Coll. LXVIII, no. 4, p. 3.

Machu Picchu, Cuzco district, Central Peru.
41. AKODON VARIUS VARIC'S, Thomas
1902. Ann. Mag. Nat. Hist. 7, IN, p. 134.

Cochabamba, Central Bolivia.
42. AKODON VARIUS GLALCINUS, Thomas
1919. Ann. Mag. Nat. Hist. 9, III, p. 116.

Chumbicha, Catamarca Province, Argentina.
43. AKODON VARIUS NEOCENUS, Thomas
1919. Ann. Mag. Nat. Hist. 9, III, p. 213.

Rio Limay, Upper Rio Negro, Neuquen, W. Patagonia.
44. AKODON VARIUS SINIULATOR, Thomas 1916. Ann. Mag. Nat. Hist. 8, XVIII, p. 335.

Villa Nouges, San Pablo, Tucuman Province, N.-IV. Argentina.
45. AKODON NANTHORHINUS, Waterhouse
1837. Proc. Zool. Soc. London, p. 17.

Hardy Peninsula, S. Tierra del Fuego.
Synonym: canescens, Waterhouse, 1837, Proc. Zool. Soc. London, p. 17. Port Desire, Santa Cruz.
infans, Philippi, 1900, Ann. Mus. Nac. Chile, p. 4 r.
urichi Group
46. AKODON AEROSU'S AEROSUS, Thomas
1913. Ann. Mag. Nat. Hist. 8, XI, p. 406.

Mirador, Upper Rio Pastaza, S.-E. Ecuador.

47．AKODON AEROSLS BALKOLS，Osgood 1915．Field．Mus．Nat．Hist．Publ．Zool．ser．X，p． 192. Rio Inambari，Inca Mines，S．－E．Peru．
48．AKODON（HAPNANI，Allen
1913．Bull．Amer．Mus．Nat．Hist．XXXII，p． 600.
Chipaque，Bogota region，Colombia．
46．AKODON MIERIDENSIS，Alten
1904．Bull．Amer．Mus．Nat．Hist．N゙ス，p． 329.
Merida，Venezuela．
50．AKODON TOLIMLAE，Allen
1913．Bull．Amer．Mus．Nat．Hist．XXXIl，p． 480.
Rio Toche，Quindio Andes，Tolima district，Colombia．
51．AKODON URICHI，Allen \＆Chapman
1897．Bull．Amer．Mus．Nat．Hist．IS．p． 19.
Caparo，＇Trinidad．
52．AKのDON VENEZLELENSIS，Allen
1899．Bull．Amer．Mus．Nat．Hist．X1I，p． 203.
Quebrada Secca，Cumana district，… Venezuela．
Subgenus Deltamys，Thomas
53．AKIIDON KEDIPI，Thomas 1917．Ann．Mag．Nat．Hist．8，XX，p． 98.

Isla Ella，Parana Delta，Buenos Aires Province，Argentina．
subgenus $H y p s i m y s$, ＇Thomas
54．AKODON BLDINI，Thomas 1918．Ann．Mag．Nat．Hist．9，I，p． 190.

Leon，Jujuy，N．－W．Argentina．
55．AKODON DECEPTOR，Thomas
1921．Ann．Mag．Nat．Hist．9，VIII，p． 613.
Higuerilla，Valle Grande Dept．Jujuy，Argentina．
subgenus Thalpomis，Thomas
56．AKODON LASIOTIS，Lund
1841．K．Danske Vidensk．Selsk．Afhandl．VIII，p． 280.
Lagoa Santa，Rio das Velhas，S－IV．Minas Geraes，E．Brazil．
Subgenus Thaptomys．Thomas
57．AKODON NIGRITA，Lichtenstein
I830．Darstell．Neuer Säuget．vii，pl，xxxy，fig．I．
Rio de Janeiro Province，Brazil．
Synonym：fuliginosus，Wagner，Arch．für Naturg．N1，i，1845，p．i48． Ypanema．
$\therefore$ AKていDON SLBTEIKRANEじS，Hensel
1873．Abhandl．K．Preuss．Akad．Wiss．Berlin，i S72，p．4t．
Rio Grande do Sul Province，Brazil．
Synonym：henseli，Leche，I886，Zool．Jahrb．I，P． 697.

Subgenus Bolomys, Thomas
59. AKODON ALBIVENTER, Thomas
1897. Ann. Mag. Nat. Hist. 6, XX, p. 217.

Lower Cachi, Salta, N.-W. Argentina.
60. AKODON AMOENUS, Thomas
1900. Ann. Mag. Nat. Hist. 7, VI, p. 468.

Calalla, Rio Colca, S. Peru.
61. AKODON BERLEPSCHII, Thomas
1898. Ann. Mag. Nat. Hist. 7, I, p. 281.

Esperanza, Mt. Sahama region, Bolivia.
62. AKODON LACTENS, Thomas
1918. Ann. Mag. Nat. Hist. 9, I, p. 188.

Leon, Jujuy, N.-W. Argentina.
63. AKODON LELCOLIMNAELS, Cabrera
1926. Rev. Chilena de Hist. Nat. XXX, p. 320.

Laguna Blanca, Catamarca, N.-W. Argentina.
64. AKODON NEGRITO, Thomas
1926. Ann. Mag. Nat. Hist. 9, XVII, p. 312.

Las Paras, Aconquija, Tucuman Province, N.-WV. Argentina.
("Apparently only a dark-coloured or semimelanoid variety" of $A$. albiventer, fide Gyldenstolpe.) For note on validity of this species see p. 409.
65. AKODON ORBUS, Thomas
1919. Ann. Mag. Nat. Hist. 9, III, p. 497.

Otro Cerro, Catamarca, N - IV. Argentina.
Subgenus Chroomys, Thomas
66. AKODON BACCHANTE BACCHANTE, Thomas
1902. Ann. Mag. Nat. Hist. 7, IX, p. 138.

Choro, Rio Securé, Bolivia.
67. AKODON BACCHANTE SODALIS, Thomas
${ }^{1913}$. Ann. Mag. Nat. Hist, 8, XI, p. ${ }^{2} 41$.
Cerro de Lagunita, east of Maimara, Jujuy, Argentina.
68. AKODON INORNATUS, Thomas
1917. Smiths. Misc. Coll. LXVIII, 4, p. 2.

Ollantaytambo, Cuzco district, Peru.
69. AKODON JELSKII JELSKII, Thomas
1894. Ann. Mag. Nat. Hist. 6, XIV, p. 360.

Junin, Lima district, Peru.
70. AKODON JELSKII PYRRHOTIS, Thomas
1894. Ann. Mag. Nat. Hist. 6, NIV, p. 361.

Maraynioc, Rio Aynamayo, Peru.
(Not a valid race, fide Gyldenstolpe.)
71. AKODON PULCHIERRIML'S PLLCHERRINIUS, Thomas
1897. Ann. Mag. Nat. Hist. 6, XX, p. 549.

Puno, S.-E. Peru.
72. AKODON PULCHERRINIL' (ASLJGMAE, Thomas
1901. Ann. Mag. Nat. Hist. 7. VJl, p. $1 \$_{5}$

Caylloma, S. Peru.
(Evidently considered as not a valid race by Gyldenstolpe.)
73. AKOODON PLLCHERRIMUS CRLCERI, Thomas
1901. Ann. Mag. Nat. Hist. 7, VIJ, p. 186.

Crucero, Peru.
 1901. Ann. Nag. Nat. Hist. 7, VII, P. IS5.

Limbane, U'pper Aadre de Dios, Rio Inambari, Peru.
(Not considered a valid race by Gvidenstolpe.)
75. AKOOON SCAIOPS, Gay
1847. Hist. Sat. de Chile, Namm. 1, p. 108.

Central Chile.
Subgenus Abrothrix, Waterhouse
76. AKODON BRACHIOT1S, Waterhouse
1837. Proc. Zool. Soc. London, p. 17.

Chonos Archipelago, Midship Bay, S.-WV. Chite.
77. AKODON FRANCEI, Thomas
1908. Ann. Mag. Nat. Hist. 8, 11, 5. 407. Santa Maria, Tierra del Fuego.
-8. AKODON HIRTA HIRTA, Thomas
1895. Ann. Nag. Nat. Hist. 6, NV'l, p. 370.

Fort San Rafael, Mendoza, Wi. Argentina.
79. AKODUN HIRTA NOERENS, Thomas
1919. Ann. Mag. Nat. Hist. 9, 111, p. 203.

Beatriz, Lake Nahuel Huapi, Neuquen, N.-W. Patagonia.
so. AKODON HIRTA NLBILA, Thomas
1929. Ann. Nag. Nat. Hist. 10, IV, P. 40.

Estancia Alta Vista, Lago Argentıno, S. Patagonia.
8r. AKODON HIRTA SLFFLSA, Thomas
1903. Ann. Mag. Nat. Hist. 7, XIl, p. 241.

Valle del Lago Blanco, Chubut, N.-W. Patagonia.
Synonym: modestior, Thomas, 1919. Ann. Nag. Nat. 11st. 9, I11, 202. Maiten, Chubut.
X2. AKODON JLLLTEA, Thomas
1925. Ann. Nag. Nat. Hist. 9, XV, p. 5 S 2.

Aconquija, Tucunam, N.-W. Argentina.
83. AK゙()\|ON LONGIPILIS. Waterhouse
1837. Proc. Zool. Soc. London, P. It.

Coquimho, Central Chile.
Synonym: dumetorum, l'hilippi, 1400, An. Mus. Nac. Chile, p. 14. Valdivia Province.
hrachytarsus, Pholippi, same reference, p. 37. Santıago Province.
fuscoater, l'hilppi, same reference, P. 45. nemoralis, Philıpı, same reference, p. 49. Valdivia. melampus, Philipps, same reference, P. 49. Valparaiso Province.

## incertae sedis

84. AKODON RLPESTRIS, Gervais
85. In Vaillant, Voy. Bonite, Zool. 1, p. 51.

Andes, Chile.
85. AKODON ORICTER, Lund

184r. K. Danske. Vidensk. Selsk. AfhandI. VIII, p. 28r. Minas Geraes, Brazil.

Genus 20. ZY゙GODONTOMIS, Allen
1897. Zygodontomys, Allen, Bull. Amer. Mus. Nat. Hist. IX, p. 38 .

Type Spectes.-Oryizomys cherriei, Allen.
Range.-Costa Rica, Panama; Trinidad, Venezuela, Surinam, Colombia, Ecuador, Peru, and parts of Brazil.
Number of Forms.-About seventeen.
Characters.-Interparietal as a rule well developed, rarely reduced. Supraorbital ridges usually present, rather well marked. Zygomatic plate cut back above. Jugal very short, zygoma slender. Incisive foramina broad, extending to toothrows. Bullae not enlarged. Palate as in Oryzomy's. Upper cheekteeth relatively simpler than in Akodon; subsidiary ridges apparently suppressed in all cases except the form lasiurus, which is probably an Akodon. The outer folds larger than the inner ones; the folds straight; second main fold on external side of M.I and M. 2 widened. The subsidiary ridge on the anteroexternal side of M. 2 is not suppressed, but this ridge is usually present in all cuspidate genera which have the other ridges absent. In old age, the teeth are nearly flatcrowned, three nearly straight laminae being present, something after the manner of Phyllotis, but much less prismatic and strong in general effect than in that genus. The folds are much straighter than those of Hesperomys. Lower molars with folds as in Akodon, but often more opposite.

Mammae $2-2=8$. Form Ratlike. Tail poorly haired, shorter than head and body. Hindfoot with rather reduced outer digits.

Thomas was of opinion that this genus was scarcely distinguishable from Akodon; the differences between the two genera are not great, and it might be better to regard the present as a subgenus of Akodon. It is considerably more differentiated from Akodon than any of Thomas's subsidiary genera. It is currently given generic rank by American authors.

Forms seen: brevicauda, brumneus, cherriei, lasiurus, microtinus, punctulatus, sanctaemartae, stellae, thomasi, tobagi, fuscimus.

## List of Named Forms

1. ZYGODONTOMIYS BREVICALDA BREVICALDA, Allen \& Chapman
2. Bull. Amer. Mus. Nat. Hist. V, p. 215.

Princestown, 'Trinidad.
Synonym: frusirator, Allen \& Chapman, i897, Bull. Amer. Mus. Nat. Hist. 1., p. 20. Caparo, Trinidad.
$1+$-Living Rodents-II

## ZYGODONTONIY

2．ZYGODONTOAIS BREVICALDA BRUNNEUS，Thomas ${ }_{1898}$ ．Ann．Mag．Nat．Ilist．7，II，p． 269.

El Saibal，Cundimamarca district，Colombia．
3．ZYGODONTOMIS BREVICAUDA TOBAGI，Thomas 1900．Ann．Mag．Nat．Ilist．7，V，p．274．

Richmond，Island of Tobago，WV．Indies．
4．ZYGODONTONI＇S CHERRIEI CHERRIEI，Allen
1895．Bull．Amer．Mus．Nat．Hist．VII，p． 329.
Boruca，Costa Rica．
5．ZYGODON゙TONIYS CHERRIEI VINTRIOS［is，Goldman
1912．Smiths．Misc．Coll．LVI，p． 8.
Tabernilla，Canal Zone，Panama．
6．ZYGODONTONIS FRATERCUIdS，Allen
1913．Bull．Amer．Mus．Nat．Hist．XXXII，p． 599.
Chicoral，Rio Coullo，Tolima district，Colombia．
7．ZYGODONTONIYS FLSC1NL゙S，Thomas
${ }_{1 S 97 .}$ Ann．Mag．Nat．Hist．6，SIX，p． 496.
Source，Marajó Island，N．－E．Brazil． （Perhaps a member of Akodon．）
8．ZYGODONTONIS GRISELS，Allen
1913．Bull．Amer．Nus．Nat．Hist．XXXII，p． 599.
El Triumfo，Magdalena Valley，IV．Colombia．
q．ZYGODONTOAIY LASILRUS，Lund
1841．K．Danske Vidensk．Selsk．Afhandl．VIII，pp．50， 280.
Lagoa Santa，Rio das Velhas，Minas Geraes，Brazil．
（Probably a member of the genus $A$ kodon．）
10．ZYGODUNTOMY＇MICROTINL $s$ ，Thomas
1894．Ann．Mag．Nat．Hist．6，XIV，p． $35^{8}$. Surinam．
11．ZYGODON゙TOMY OBTCSIROSTRIS，Allen
1900．Bull．Amer．Mus．Nat．Hist．XIII，p． 225. Inca Nines，Rio Inambari，S．－E．Peru．

12．ZYGODONTOMIS PCNCTE＇LATES，Thomas
1894．Ann．Mag．Nat．Hist．6，XIV，p． 361. Pallatanga，Central Ecuador．
13．ZYGODONTOMIYS SANCTAENARTAE，Allen
1899．Bull．Amer．Mus．Nat．Hist．NIl，p． 207.
Bonda，Santa Marta district，Colombia．
14．ZYGODONTOMYS SEORSLS．Banes
1901．Amer．Nat．XXXV，p． 642.
San Miguel Island，Panama．
15．ZYGODONTOMIS STELIAF，Thomas
I 899. Anm．Mag．Nat．Hist．7，IV，p． 380.
Naipures，Upper Rio Orinoco，S．－IV．Venezuela．
16．ZYGODONTONIY：TAPIRAPOANLS，Allen
1916．Bull．Amer．Nus，Nat．Hist．XXXV，p． 528.
Tapirapoan，Rio Sepotuba，Matto Grosso，Brazıl．
17. ZYGODONTOMYS THOMASI, Allen
1901. Bull. Amer. Mus. Nat. Hist. XIV, p. 39.

Campo Alegre, Cumana district, N. Venezuela.

Genus 21. MICROXUS, Thomas
1909. Microxus, Thomas, Ann. Mag. Nat. Hist. 8, IV, p. 237.

Type Species.-Oxymycterus mimus, Thomas.
Range.-Colombia, Peru, Ecuador, Rio Grande do Sul, and South Patagonia.
Number of Forms.-Five or six.
Characters.-A small series of skulls examined show that this may be retained for the present as a genus, though it may be that with more material the Abrothrix section of Akodon would prove to overlap this genus. Very little interorbital constriction present, though this is more marked than in Lenoxus; interparietal much reduced or absent; zygomatic plate extremely narrow; scarcely tilted upwards at all typically, and slanting gradually backwards from lower to upper border. Palate, incisive foramina, and bullae as in normal Akodon. U'pper cheekteeth of Akodon type; subsidiary ridges visible in the young specimens. Tail subequal in length to head and body; fur soft; form unmodified, rather small, without special peculiarities. Mammae $x-2=6$ in iheringi.

The scattered distribution of this genus suggests that it may not be a natural genus, but a series of parallel offshoots from Akodon, becoming transitionary towards Oxymycterus. The species torques, which has been referred to it, is an Akodon.

Forms seen: bogotensis, iheringi, lanosus, mimus.

## List of Nanied Forms

1. MICRONUS (?) AFFINIS, Allen
2. Bull. Amer. Mus. Nat. Hist. XXXI, p. 89.

San Antonio, Cauca district, W. Colombia.
(Anthony, 1924, suggests that this species belongs to Akodon.)
2. MICROXUS BOGOTENSIS, Thomas
1895. Ann. Nlag. Nat. Hist. 6, XVI, p. 369.

Bogota region, Central Colombia.
3. Milcroxus ifieringl, Thomas
1896. Ann. Mag. Nat. Hist. 6, XVIII, p. 308.

Taquara do Mundo Novo, Rio dos Limos, Rio Grande do Sul Province, S. Brazil.
4. MICROXUS LANOSL'S, Thomas
1897. Ann. Mag. Nat. Hist. 6, XX, p. 218.

Straits of Magellan, Monteith Bay, S. Patagonia.
5. MICROXL'S LATEBRICOLA. Anthony
1924. Amer. Mus. Nov. no. 139, p. 3.

Hacienda San Francisco, Rio Cusutagua, Ambato, Central Ecuador.
b. NEICROXUT\& MINIUS, Thomas
1901. Ann. Mag. Nat. Hist. 7, VII, p. 183.

Limbane, Puno Dept., S.-E. Peru.

Genus 22. 1ENOXLS. 'Thomas
1909. Lenoxus, Thomas, Ann. Mag. Nat. Hist. 8, IV, p. 236.

Type Species.-Oxymycterus apicalis, Allen.
Range.-South-east Peru.
Number of Forms.-One.
Characters.-Skull with very broad interorbital region, and braincase not much wider than rostrum. Nasals long, extending posteriorly behind the premaxillo-maxillary suture. Interparietal well developed. Zygomatic plate in proportion to skull extremely low and narrow, shaped about as Microxus. Incisive foramina broad, extending about to toothrow. Palate broad, extending about to M .3 . Bullae small. Toothrow placed far forwards in skull. Dentition eridently of Akedon type (two skulls seen only).

Form heary, rather large, Ratlike; fur soft; ear large; claws not enlarged; tail not well haired, about as long as head and hody. The genus is in fact a non-fossorial representative of Oxymycterus.

Forms seen: apicalis.
List of Named Formis

1. LJN゙ONL's APICALIS, Allen
2. Bull. Amer. Mus. Nat. Hist. Nill, p. 224. Inca Mines, Rio Inambari, S.-E. Peru.

## Genus 23. OXYXIYCTERUS, Waterhouse

1837. Omymycterus, Waterhouse, Proc. Zool. Soc. London, p. 21.

T'ype Species.-Mus nasutus, Waterhouse.
Range.-Central South America: Eastern Brazil, from Pernambuco south to Lruguay, Northern Argentina; Paraguay; Bolivia, and Peru.
Nember of Forms.-Eighteen are named.
Characters.-Skull long and narrow in appearance, with little interorbital constriction; braincase large; rostrum long; nasals produced forwards over incisors, the nasal opening high. 'The nasals extend posteriorly behind premaxillo-maxillary suture, as in Lenoxus. No supraorbital ridges. Zygomatic plate low, about as in Lenoxus; rarely very slightly angular; infraorbital foramen well open. Pterygoid fossae long; toothrow far forward in skull. Palate extending about to the last molars; incisive foramina very broad and extending to toothrows. Bullae not enlarged; mandible with relatively low coronoid process.

U'pper checktecth narrow, originally with relatively high cusps, and clear
traces of subsidiary ridges in the main outer folds. N .3 reduced. General dental pattern of Akodon type. Lower molars originally very complex; in adult in M. 1 and M. 2 there are often traces of subsidiary ridges retained in main inner and outer folds; posterointernal heel of M .1 and M .2 well developed; M. 1 with six, M. 2 with four cusps, as usual; M. 3 medium in size, its pattern like that of M.2.

Externally rather large ; more or less modified for fossorial life, though much less highly than in Notiomys or Blarinomys; tail moderately or poorly haired, not reduced in length though rather shorter than head and body; foreclaws always enlarged and prominent; D. 5 manus strongly reduced; outer digits of hindfoot much shorter than central three; fur usually not thick; ear medium; snout said to be long and mobile.

Forms scen: angnlaris, akodontius, doris, delator, hispidus, inca, iris, judex, jacentior, masutus, paramensis, platensis, questor, roberti, rufus.

## List of Named Forms

1. OXYMYCTERUS AKODONTIUS, Thomas
2. Ann. Mag. Nat. Hist. 9, VIII, p. 615.

Higuerilla, Valle Grande Dept. Jujuy Province, Argentina.
2. OXYMYCTERUS ANGULARIS, Thomas
1909. Ann. Mag. Nat. Hist. 8, IV, p. 237.

São Lorenzo, Pernambuco Province, Brazil.
3. ONYMYCTERUS DELATOR, Thomas
1903. Ann. Mag. Nat. Hist. 7, XI, p. 489.

Sapucay, Paraguay.
4. OXYMYCTERUS DORIS, Thomas
1916. Ann. Mag. Nat. Hist. S, XVIII, p. 478.

Charuplaya, Upper Rio Mamoré, S. Bolivia.
5. OXYMYCTERUS HISPIDUS, Pictet
1843. Mem. Soc. Phys, et d'Hist. Nat. de Genève, X, p. 212.

Bahia, E. Brazil.
6. ONYMYCTERUS INCA, Thomas
1900. Ann. Mag. Nat. Hist. 7, VI, p. 298.

Perené, Junin Province, Central Peru.
7. OXYMYCTERUS IRIS, Thomas
1900. Ann. Mag. Nat. Hist. 7, Vil, p. 183.

São Ernesto, Mapiri, Central Bolivia.
8. ONYMYCTERL'S JUDEX, Thomas
1909. Ann. Mag. Nat. Hist. 8, IV, p. 238.

Joinville, Santa Catharina, S. Brazil.
9. OXYMYCTERUS JULIACAE, Allen
1900. Bull. Amer. Mus. Nat. Hist. XIII, p. 223.

Inca Mines, Rio Inambari, S.-E. Peru.
ro. OXYMYCTERU'S MIISIONALIS, Sanborn
1931. Proc. Biol. Soc. Washington, NLIV, p. i.

Caraguatay, Rio Paranay, Misiones Province, N.-E. Argentina.

1837. Proc. Zool. Soc. London, p. 16.

Maldonado, Uruguay
12. いXVMYCTERE'S PLATENSils, Thomas
1954. Ann. Mag. Nat. Hist. 8, XIV, p. 244.

Ensenada, La Plata, E. Argentina.
13. OAYMYCTERL'S PARAMEXSIS PARAMENSIS, Thomas
1902. Ann. Mag. Nat. Hist. 7, IX, p. 139.

Choquecamate, Rio Securé, Central Bolivia.
1+. (OXYMYCTERLS PARANENSIS JACENTIOR, Thomas 1925. Ann. Mag. Nat. Hist. 9, XV, p. 580.

Carapari, Yacuiba, Cochabamba district, S. Bolivia.
15. OXIXICTTIRUS QUAESTOR, Thomas 1903. Ann. Mag. Nat. Hist. 7, XI, p. 226.

Roca Nova, Serra do Mar, E. Parana, S. Brazil.
16. (1NY\IYCTERUS ROBERTI, 'Thomas

Ifor. Ann. Nag. Nat. Hist. 7, VIII, p. 530.
Paranahyba, Rio Jordào, S.-W. Minas Geraes Province, E. Brazil.
17. ()NYMYCTERUS ROSTELLATUS, Wagner
1842. Arch. für Naturgesch, 1, VIII, p. 36 i.

Bahia, E. Brazil.
1S. OXYXIYCTERC R RUFUS, Desmarest
1819. Nour. Dict. d'Hist. Nat. 2d. ed. Art. Rat. esp. 23, 29, p. 62.

Paraguay.
Synonym: dasytrichos, Wied, i826, Beitr. 2. Naturg. v. Brasilien, p. 425. Bahia, E. Brazil.

## Genus 2t. BLARINONIYS, Thomas

isq6. Blarinomis, Thomas, Ann. Mag. Nat. Hist. 6, XVIII, p. 310.
Type Species.-Oxymycterus breacicess, Winge.
Ràge.-Lagoa Santa, Eastern Brazil.
Number of Forms,--One.
Characters.-llighly modified for subfossorial life; fur crisp, short; eyes extremely reduced; ear hidden in fur; tail short, less than half head and body length, not well haired; hindfoot broad, all digits with prominent though not excessively developed claws; manus with four functional digits, D. 5 strongly reduced, claws long but not extremely so. Skull with almost no interorbital constriction, extremely broad between orbits. Interparietal absent; palate extending about to Nl .3 ; mesopterygoid region square; bullae moderate. Zygomatic plate extremely narrow for a Alurine Rodent, and infraorbital foramen very large indeed, comparatively.

Cheekteeth of the few seen too worn for exact pattern to be noted; evidently relatively simple; $\$ 1.3$ much reduced, ring-shaped.

Forms seen: breciceps.

## List of Named Fopms

r. IBLARINONIY' BREVICEPS, Winge
1888. E. Museo Lundii, 1, no. 3, p. 34.

Lagoa Santa, Rio des Velhas, S.-W. Minas Geraes Province, E. Brazil.

## Genus 25. NOTIOMIS, Thomas

1890. Notiomys, Thomas, in Milne-Edwards: Mission Sci. du Cap. Horn, 2882-3,
vi, Mamm. p. 23.
1891. Chelemys, Thomas, Ann. Mag. Nat. Hist. 7, XII, p. 242. (Hesperomys megalonyx, Waterhouse.)
1892. Geoxus, Thomas, Ann. Mag. Nat. Hist. 9, III, p. 209. (Geoxus fossor, Thomas.)
'Type Species.-Hesperomy's (Notiomys) edwardsi, Thomas.
Range.-Argentine (Mendoza), Chile, and Patagonia.
Nlmber of Forms.-Fourteen.
Characters.-Highly modified for fossorial life. In the type species, the fur is very soft, the eye and ear are about as in Blarinomys; tail about half head and body length, well haired; hindfoot, claws powerful; foreclaws very long, though less thickened than in other species; pollex very small, but less reduced than is normal, and bearing claw. In the other species (examined) the ear is less reduced; the foreclaws are immense, about as in the Microtine genus Prometheomys; D. 5 is strongly reduced, but clawed; pollex with claw.

In the type species, skull with minute interparietal, very broad frontals, and shortened rostrum; coronoid process relatively low; in the valdivianus group, interorbital constriction is not much marked, the braincase is broad and rounded, the interparietal moderate; the zygomatic plate is about as in Abrothrix; the incisive foramina extend between the toothrows. Both these specific groups have cheekteeth derivable probably from an Akodon type, with M. 3 strongly reduced, particularly in the upper jaw (excessively so in the type species). In the megalonyx group, the skull is much more normal, with interorbital constriction marked, the zygomatic plate about straight anteriorly, the interparietal moderate; in these species, the dentition is quite different, the upper cheekteeth of Akodon type, but dentition relatively heavy, and evidently pattern preserved longer. The lower teeth are with deep folds, high cusps; and $\mathrm{M} . \frac{3}{5}$ not extremely reduced. Finally N. angustus, based on a skull the external characters of which are not known, is cranially almost exactly as in the valdivianus group, but the molars are much heavier, intermediate in form between valdiviams and megalonsx groups, with M. 3 much less reduced in the lower jaw than in the former. Subsidiary ridges in the main folds are present in angustus and the megalonys group, and may sometimes be seen in the species with weaker dentition.

These groups were referred by 'Thomas to three genera, Notiomys, Geowus, and Chelemys. Osgood (1925, Field Xus. Nat. Hist. Pub. Zool. ser. XII. p. 117) revised the group, and treated all the species as one genus, Notiomys. It first sight the extreme types appear very distinct, but it seems possible to grade
through transitionary types from one extreme to the other. In the genus, the bullae are rather small, the zygoma is narrow.

The main types may have their characters noted as follows:

|  | Forectaws | EAR | ( PPER TEETH | HRD LOWER moLar | SKLLL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -.. edzardsï (type of genus) | $\begin{aligned} & \text { Le:ss thick- } \\ & \text { ened } \end{aligned}$ | Hidden in fur | Simplified early in life? M. 3 minute | Nluch reduced | Rostrum short, frontals very broad, coronoid lower |
| N. caldriamus group (Genus Geoxus of Thomas) | Ixtremely enlarged | $\begin{aligned} & \text { Less } \\ & \text { reduced } \end{aligned}$ | Simplified early <br> in life; M. 3 <br> strongly re- <br> duced | Much reduced | L, ike a small Oxymytertus in upper view; coronoid lower |
| N. angustus (referred to Chelemys by Thomas) | $\stackrel{?}{\text { (not known) }}$ | ? | Hearmer in pattern than the above, lighter than megalomy group | Not much reduced | As in traldiziamus group |
| N. megalomy $x$ group (Genus Chelemys of Thomas) | Extremely enlarged | Less reduced | Heavy: pattern preserved till old age; M. 3 little reduced | Not reduced | Not abnormal; coronoid less low |

Nembers of the latter group are usually larger than the other species.
Forms seen: araucamus, angustus, edzardsï, fossor, fimosus, macronyx, megalonyx, zaldiziamus, zestitus.

## List of Named Forms <br> edwardsii Group

I. NOTIOMY'S EDWARDSII, Thomas
1890. Milne-Edwards, Mission Sci. du Cap. Horn. 1882, 1883, vi, Mamm. p. 24. South of Santa Cruz, S. Patagonia.
raldizianus (iroup
= NoTIOMIY ANGUSTLS, Thomas
1927. Ann. Mag. Nat. Hist. 9, X1X, p. 654.

Bariloche, Lake Nahuel Huapi, Nuquen Territory, N..JW. Patagonia.
(On account of cranial characters this species is provisionally referred to the present group.)

3 NoTloNJY'S Fosicor, Thomas
1919. Ann. Mak. Nat. Hist. 9, 111, p. 209.

Maiten, Chubut Territory, N.-IV. Patagonia.

+ Notioniys Mil HAELSENI, Matsche

1898. Hamburger Nlagelhaen. Reise. Säucth. p. 5.

Punta Arenas, Straits of Nagellan, S. Chile.
Synonym: morotis, Allen, 1903, Bull. Amer, Nus, Nat. Ilist. NIN, p. I8o. Santa Cruz, s.-IV. Patagonia.

[^10]6. NOTIOMYS VALDIVIANUS ARALCANUS, Osgood
1925. Field. Mus. Nat. Hist. Publ. Zool. ser. XII, p. 117.

Tolhuaca, Malleco Province, Central Chile.
7. NOTIOMYS VALDIVIANUS CHILOENSIS, Osgood
1925. Field. Mus. Nat. Hist. Publ. Zool. ser. XII, p. 117. Quellon, Chiloe Island, W. Chile.
megalonyx Group
8. NOTIOMYS CONNECTENS, Osgood
1925. Field. Mus. Nat. Hist. Publ. Zool. ser. XII, no. 9, p. 120.

Villa Portales, Cautin Province, Chile.
9. NOTIOMYS DELFINI, Cabrera
1905. Rev. Chilena d. Hist. Nat. IX, p. 15.

Punta Arenas, Straits of Magellan, S. Chile.
ro. NOTIOMYS MACRONYX, Thomas
1894. Ann. Mag. Nat. Hist. 6, X'IV, p. $36 z$.

Fort San Rafael, Mendoza Province, W. Argentina.
11. NOTIOMYS MEGALONYX, Waterhouse
1844. Proc. Zool. Soc. London, p. 154.

Lake Quintero, Valparaiso Province, W. Chile.
Synonym: niger, Philippi, 1872, Zeitschr. gesammt. Naturw. Berlin, Neue Folge, 6, p. 445.
(?) andinus, Philippi, 1858 , Arch. für Naturg. xxiv, 1, p. 77.
12. NOTIOMYS VESTITUS VESTITES, Thomas
1903. Ann. Mag. Nat. Hist. 7, XII, p. 242.

Valle del Lago Blanco, S. Chubut Territory, Patagonia.
13. NOTIOMYS VESTITUS ALLENI. Osgood
1925. Field. Mus. Nat. Hist. Publ. Zool. ser. XII, 9, p. 124.

Upper Rio Chico, Santa Cruz Territory, S.-W. Patagonia.
14. NOTIOMYS VESTITUS FUMOSUS, Thomas
1927. Ann. Mag. Nat. Hist. 9, XIX, p. 654.

Sierra de Pilpil, Neuquen Territory, N.-W. Patagonia.

Genus 26. SCAPTEROMIS, Waterhouse
1837. Scapteromys, Waterhouse, Proc. Zool. Soc. London, p. 20.

Type Species.-Mus tumidus, Waterhouse.
Range.-South America: Uruguay, Northern Argentina, and Matto Grosso.
Number of Forms.-Five.
Characters.-Skull with comparatively little interorbital constriction, and no or scarcely developing ridges. Interparietal moderate.
Zygomatic plate low, slightly concave, very sharply cut back above. Incisive foramina reaching toothrows. Palate extending back behind molars, but without lateral pits. There are apparently two very well-marked specific groups, one
containing the type，and the other containing the much larger S．gnambiquarae， in which the parictals are weakly ridged（though not the frontals），the necipital region is higher than in the type，and slants forwards，and the zygoma is heavier， with a relatively long jugal．

Upper cheekteeth：M．1 with two inner，two outer curved folds，the inner folds shorter and weaker than the opposite ones；the second inner fold of M．I with a small but clearly traceable subsidiary ridge，as found in（oryzomys and allies；this retained more or less through life．M． 2 like M．r，but the portion in front of the inner fold compressed，and the front inner fold absent． 11.3 reduced，with usually traces of two folds only．The folds nearly meet across the tooth，and are not heavy；with wear the main outer folds isolate as broad enamel islands，in a manner reminisecnt of the teeth of Spalax．The inner folds appear to persist through life．The cusps are quite well marked，but with wear the molars tend soon to become more or less flat．

The lower tecth are like the upper series，except that it is the inner folds which isolate，and the outer which persist．M．with traces of three inner folds （the front one small），and two original outer folds，the front one of which may wear out；M． 2 with two inner and one outer folds（or sometimes one inner one only）；M． 3 with a fold each side，and originally with a small posterointernal fold，which is soon lost．
＇The whole pattern suggests a specialized and simplified form of dentition derivable from a complex pattern perhaps like that of Nectomys，or perhaps of Akodon．Compared with Scotinomys，another genus which has similar isola－ tion of outer folds in upper molars in adult，the folds here extend across the tooth，and are not placed centrally nor do they run longitudinally down the centre of the tooth．

Mammae $2-2=8$ ．Form thickset，heavy；tail well haired betow，hair usually forming a swimming－fringe，but scales visible in the upper portion； feet long；the three centre digits of the hindroot elongated，the outer digits relatively short，though all the digits bear large claws．Foreclaws prominent and long．Ear relatively small．This mixture of slightly fossorial and slightly aquatic characters parallels the Palaearctic Microtine genus Arvicola．

Nthough the genus is tentatively placed in the neighbourhood of the Akodon section，it is very distinct，and its relationships are not clear．

Dembers of the gnambiquarae group are over 200 mm ．head and body，or thereabouts；the type group is roughly 170 mm ．of less．

Forms scen：aquatious，gnambiquarae，tumidus．

## Last of Named Forvis

tumidus Group

[^11]3. SCAPTEROMIS TUMHDLS, Waterhouse
1837. Proc. Zool. Soc. London, p. 15.

Maldonado, Uruguay.

## gnambiquarae Group

4. SCAPTEROMY'S CHACOENSIS, Gyldenstolpe
5. Arkiv. för Zool. Bd. 24 B , no. 1, p. 1.

Rio de Oro, Chaco Austral, N. Argentina.
5. SCAPTERONYS GNAMBIQUARAE, Ribeiro
1914. Comm. Linhas. Telegr. de Matto Grosso, Rio de Janeiro, Annex no. 5, p. 37. Ultimo Acampamento, Chapada, Matto Grosso Province, S. Brazil.

## Genus 27. SCOTINOMY'S, Thomas

1913. Scotinomys, Thomas, Ann. Mag. Nat. Hist. 8, X1, p. 408.

Type Species.-Hesperomys teguina, Alston.
Range.-Central America: Mexico, Guatemala, Honduras, Costa Rica, Panama.

Number of Forms.-Six.
Characters.-Skull (six seen only) with sery faint supraorbital ridges; zygomatic plate straight anteriorly; interparietal well developed; palate reaching about to level of hinder part of toothrows.

Cheekteeth hypsodont, entirely different in pattern from Akodon, or for that matter from any other genus seen. Upper molars abnormally narrowed, each outer fold curving backwards and in adult isolating completely as a long centrally placed longitudinal island, something after the manner of Cricetus, but very different in appearance from that genus; the folds not persistent, and weak, the cusps not prominent. M.i divided anteriorly. The inner folds weak, not isolating. Lower cheekteeth: M. 3 nearly as large as M.2; the inner folds curving strongly forwards and more or less isolated as islands. Two both in M. 1 and M.2; one main outer fold in these teeth; M. 3 with one anterior inner and one posterior outer fold. Three inner roots in M.1, two in M.2, and two in M. 3 (Thomas). (In Akodon and Zygodontomys, there are two in M.1, one in each of the other teeth (Thomas).)

The isolated folds in the upper molars usually number two in M.i, two in M.2, one in M.3. The youngest specimen examined suggests that the subsidiary ridges are not entirely suppressed in the main outer folds. It would interest me greatly to examine more and younger specimens of this genus, to see how far this rather extraordinary pattern is a constant character through life. At the moment the relationships of the genus are not at all clear.
'Tail shorter than head and body' (about 70 per cent in those seen). Size small, head and body length under 100 mm ., in those seen. Ear relatively small. Digits normal, foot narrow. 'Tail not well haired.

Forms seen: teguina, xerampelinus.

## List of Named Formis

1 LCOTINOMIS TEGLINA TEGUINA, Alston
1876. Proc. Zool. Soc. London, p. 755.

Coban, Guatemala.
2. COOTINOMIS TEGLINA APRICLS, Bangs
1902. Bull. Mus. Comp. Zool. Harvard Coll XXXIX, p. 40.

Boquete, Chiriqui, l'anama.
3. hCoTINOMIS TEGLINA RLFONIGIER, Sanbom
1935. Field Mus. Nat. Hist. P'ubl. Zool. ser. NX, no. if, p. St.

Nountains west of San Pedres, N.-W. Honduras.
4. SCOTINONIS TEGLINA SLBNLBILCH, Goldman
1935. Proc. Biol. Soc. Washington, XLVIl1, p. Iti.

Ocuilapa, 10 miles north-west of Ocozucantla, about 25 miles west of 'Tuxtla, Gutierrez, Chiapas, Nexich.
5. AOOTINOMIS IRAZL, Allen

1not. Bull. Amer. Mus. Nat. Hist. XX, p. 46 .
Volcan de Irazu, Custa Rica.
(6. S'OTINOAIYS XERAMPILLNLS. Bangs
1902. Bull. Mus. Comp. Zool. Harvard Coll. XXXIX, p. 41.

Volcan de Chriqui, Chiriqui, Ianama.

## The Trle Hamsters <br> Cricatus section

Ten generic or subgeneric names have been given to Palaearctic Hamsters in the last few years. 'The group has been revised by Argyropulo (1933, Zeitschr. für Säugetierk. Bd. 8, Heft 3, p. 133). This author recognizes three genera only (not counting Calomyscus). The present classification is based chiefly on his arrangement, but four genera are retained.

I am inclined to agree with Miller (Cat. Mamm. West. Europe, ig12), that Mesocricefus is a well characterized and very distinct genus. The structure of the infraorbital foramen alone is in my view fully sufficient to support this theory, though there is a little-known form of Cricefulus (which I have not seen) which has a similar infraorbital foramen, as figured by Argyropulo. This suggests that this species, $C$. koslozi, may have to have a generic name when it is better known, and more specimens are taken.

1 must note that Argyropulo uses two characters, bullae and cheekteeth pattern, to differentiate between Cricetulus and Phodopus, but that both break down in the series represented in London. I am unable to distinguish between the bullae of Phodopus and Cricetulus lema and alticolu; and the cheekteeth of $P$. songorus, notahly a specimen recently received from Kussia on the identification of which there can he no duubt, are essentially as in Cricetulus.
(jenus 28. CRICETLLUS, Milne-kdwards
1.8157. ('ricetcle's, Milnc-Edwards, Ann. Sci. Nat. Vil, p. 375.
11133. Allocricettles, Argyropulo, Zeitschr. für Säugetterk. Bd. S, Heft 3, p. I33. (Cricetus eqersmami, Brandt.) Valid as a suhgenus.
1914. Tscherskia, Ognev, Moskva. Dnev. Zool. otd. obsc. liub. jest. 2, p. 102. (Tscherskia albipes, Ognev = Cricetulus triton nestor, Thomas.) Valid as a subgenus.
1928. Cansumys, G. M. Allen, Journ. Mamm. 9, p. 244. (Cansumys canus, G. M. Allen.) Not seen. ( $=$ Tscherskia, fide Argyropulo.)
1929. Asıocricetus, Kishida, Lansania, Tokyo, 1, p. 148. (Asiocricetus bampensis, Kishida.) Not seen. (=Tscherskia ?)
1902. Urocricetus, Satunin, Ann. Mus. St. Petersb. V1I, p. 574. (Urocricetus kamensis, Satunin.) (Urocricetus is a synonym of Cricetulus s.s.)
Type Species.-Cricetulus griseus, Milne-Edwards.
Range.-South Europe, and Palaearctic Asia. Grecce. Asia Minor. Southern European Russia (Kiev, Harkov, 'Tula, Riazan, Stalingrad, Crimea, Rostov-on-Don, Caucasus and 'Transcaucasia (C. migratorius); Volsk, Volgo-Ural steppe (C. eversmanni) (Vinogradov)), Southern Siberia (Kazakstan, Turkmenia, etc.), also Minussinsk, Barnaul, Prealtai steppes, Baikal, Transbaikalia, Amur, Ussuri (Vinogradov); also Pamir; Semirechyia; China, from Tibet, Chinese Turkestan, Shansi, Shensi, Kansu, Mongolia, Manchuria, Korea, Shantung, Monan, Chihli. North Kashmir. Persia. Syria.

Number of Forms.-About forty-four.
Characters.-Skull with moderate interorbital constriction, the braincase not narrowed, the general cranial effect Murine, not highly specialized, the supraorbital ridges, in the typical subgenus, not or scarcely developed. Interparietal broad, not reduced (Cricetulus s.s.). Infraorbital foramen like Cricetus; zygomatic plate straight anteriorly. (As already noted, one rare form, kozlozi, referred to this genus, has an infraorbital foramen which appears to be like that of Mesocricetus.) Palate extending slightly behind level of last molars. Incisive foramina broad, well open, often approaching toothrows. Bullae relatively small, or moderate, not flattened except apparently in lama and alticola, in which they are like those of Phodopus. Incisors moderate. Mandible of Cricetus type, but coronoid not so extremely developed. Cheekteeth about as in Cricetus (below), the proportions normal, i.e. M. 3 not reduced, nor tending in the lower series to become the dominant tooth. The pits separating the cusps well developed, sometimes very wide. The pattern appears to be retained longer than in Cricetus.

Mammae 8 (Argyropulo). Cheekpouches present. Fur thick and soft ; size small in the typical subgenus; tail short or medium, relatively well haired, but evidently as a rule not so shortened as in other Palaearctic genera. Digits not reduced; feet shortened (often the ear is as long as the hindfoot); toes relatively short. Soles may be partly hairy, but never comparing with the abnormal condition of Phodopus. A black middorsal stripe present in the barabensis group.

Allocricetllus, proposed as a subgenus for ezersmanni, is like Cricefulus, but interparietal much reduced in adult, and coronoid more powerful and Cricctus-like. 'The male genital organs are said to differ from Cricetulus s.s. The animal is larger than the species referred to Cricetulus, and with a very strongly reduced tail (a fifth to a sixth head and body length). Head and body more than 110 mm .


Fig. 20. Cricetulus ahgratorius, Pallas.
B.M. Nゥ. 20.2.9.37, 3 ; $3 \frac{1}{2}$.


Fig. 2i. Cricetulus migratorius, Pallas.
B.M. No. 20.2.9.37, 3; 32.
'I'scherskia is considered as a subgenus of Cricetulus by Argyropulo, based on the triton group. These appear to be very different animals from the above. Quite strong frontal ridges are developed, and the parictals are weakly ridged. The interparietal is not reduced. The pterygoid fossae are deep (shallower in other subgenera). Bullae are enlarged and well inflated. Nandible about as Cricetus.

The size is large (for the genus), $\mathbf{5 0} \mathbf{2 0} \mathbf{1 6 0} \mathrm{mm}$. or perhaps more. The tail is long (up to 56 per cent of head and body length).


Fig. 22. Cricetulus migratorius, Pallas. Cheekteeth: B.M. No. 20.2.9.37, of; $\times 20$.

Apart from these subgenera, I recognize four groups in Cricetulus s.s. in B.M. material.

The lama group, in which the bullae are small, flattened, and shaped about as in Phodopus. Head and body up to about 103 mm . Kashmir, and Tibet. Contains the species lama and alticola. Argyropulo ranks alticola as a subspecies of lama, but Mr. Chaworth-Musters has drawn my attention to the fact that they are apparently separate species. C. lama has a long tail, about 44 per cent of head and body length, whereas in cilticola it is only 33 per cent of this measurement. The former appears little known.
In the remainder, so far as seen, the bullae are larger and not abnormal. The barabensis group. With a black middorsal stripe. Head and body about $\$_{2-109}$. Tail short, roughly 30 per cent of head and body. C. barabensis
and its races range in Shantung，Shensi，Mongolia，Chihli，Manchuria， UTssuri，Amur，Transbaikalia，and westwards to Barnaul district．
The longicaudatus group．No middorsal stripe．A relatively long tail（in the British Museum series，chiefly andersoni，averages about 49 per cent of head and body length．）Includes，I suppose，the species kamensis of Satunin（not seen），and forms referred as races to longicaulatus by Argyropulo．Siberia（Mimussinsk district），and in Tibet，Nongolia， Kansu，Shansi，Shensi，and Chihli．Size roughly as in barabensis group．
The migratorius group．Like the last，but with a shorter tail．C．migratorius and its races range from Greece，Southern Russia，and Asia Minor， Persia，Syria，a large part of Russian＇Turkestan，Pamir，and castwards to Chinese Turkestan．Size up to 135 mm ．head and body，but usually less．Tail on average about 30 per cent of head and body．
The range of the subgenus Allocricetulus is＂Volgo－Ural steppe north－ wards to towns Volsk，Buguruslan and Orenberg；Kazakstan eastwards to Lake Saissan＂（Vinogradov），and Mongolia．

The range of the subgenus Tscherkia is Southern Ussuri，and Eastern China（Korea，Shantung，IJonan，Chihli，Shensi，Kansu）．

Forms seen：alticola，andersoni，aremarius，atticus，barabensis，beljazti， cinereus，ezersmanni，fulaus，fumatus，griseizentris，griseus，incanus，lama，microdem， migratorius，nestor，obscurus，phaeus，tibetamus，triton，vernula．

## List of Named Forms

Subgenus Cricetulus，Milne－Edwards

## barabensis Group

1．CRICETLILUY BARABENSIS BARABENSIS，Pallas
1770．Pallas Reise．vol．ii，p．704．
Banks of River Ob，Siberia．
Synonym：furunculus，Pallas，ェ778，Nov．Sp．Quad．Glir．Ord．p．273．
2．CRICE＇TLLUS BARABENSIS GRISEL゙S，Milne－Edwards
1867．Ann．Sci．Nat．VII，p．376．
suen－hoa－fu，near Kalgan，Mongolia．
Synonym：（？）manchuricus，Nor1，1930，Annot．Zool．Jap．12，P． 419. Harbun，Manchuria．
3．CRICETLIL＇\＆BARABENSIS OBSC＇LRLS，Nhlne－Fdwards
1867．Rech．Namm．p． 136.
sartchy，Hwang－ho，Inner Mongolia．
4．CRICETLLCS BARABENSIS FCXIATLS，Thomas
1909．Ann．Mar，Nat．Hist．8，IV，p． 503.
Chu Chia Tai，near Chang Chun，Kirin province，Nanchura，

## longicaudatus Group

5．CRICETLLU̇ LOオGICALDATU
1867．Rech．\amm．P． 136.
Sartchy，Jongoha．
6. CRICETULUS LONGICAUDATUS GRISEIVENTRI's, Satunin
1903. Ann. Mus. St. Petersb. VII, p. 566.

River Bis-shen-gol, south side of Altain-nuru, Gobi-Altai.
7. CRICETULUS LONGICAUDATUS DICHROOTIS, Satunin
1903. Ann. Mlus. St. Petersb. VII, p. 567.

River Gorban-angyr-gol, Nanshan, Central Asia.
8. CRICETULUS LONGICAUDATUS ANDERSONI, Thomas 1908. Proc. Zool. Soc. London, p. 642.

100 miles north-west of Tai-Y'uen-Fu, Shansi, N. China.
9. CRICETULUS LONGICAUDATUS NIGRESCENS, G. M. Allen 1925. Amer. Mus. Nov. no. 179, p. 2.

Province of Chihli, soo miles north-east of Peking, China.
10. CRICETULUS LONGICAUDATUS KOZHANTSCIKOVI, Vinogradov 1927. Small Mammals from the Minussinsk district and Urjankhai, pp. 33-50, p. 36. Tukeek-kem River, Ussink Frontier district, Sayan Mountains.
11. CRICETULUS KAMIENSIS, Satunin 1903. Ann. Mus. St. Petersb. V11, p. 574.

River Mok-tschjun, district of Mlekong, N.-E. Tibet.

## lama Group

12. CRICETULL'S LAMLA, Bonhote
13. Abstr. Proc. Zool. Soc. London, no. 22, p. 14; Proc. Zool. Soc. London, p. 305. Lhasa, Tibet.
14. CRICETULL'S ALTICOLA ALTICOLA, Thomas
15. Ann. Mag. Nat. Hist. S, NIN, p. +55.

Shushul, Ladak.
14. CRICETULUS ALTiCOLA Tibetanus, Thomas \& Hinton 1922. Ann. Mag. Nat. Hist. 9, 1X, p. 180.

Tingri, Tibet.

## migratorius Group

15. CRICETLLL'S MIGRATORIU'S MIGRATORIUS, Pallas 1773. Reise, ii, p. 703.

Lauf des Ural-Flusses.
Synonym: accedula, Pallas, 1778, Nov. Sp. Quad. Glires, p. 257. Russia.
16. CRICETLLL'S MIIGRATORIU'S ARENARIUS, Pallas
1773. Reise, ii, p. 704.

1 rten, Siberia.
17. CRICETLLL'S MIGRATORIUS PHAEL's, Paflas
1778. Nov. Sp. Quad. Glir. Ord. p. 26r.

Transcaspian region, U.S.S.R.
Synonym: migratorius phaeus sciridenkoi, Pidoplitschka, 192S, Trav. Mus. Kiev, 5, p. 428.
murinus, Severtzow, 1876, Ann. Nat. Hist. p. 54. 'Turkestan.
18. CRICETLLU'S MIIGRATORIU'S CINERASCENS, Wagner
1848. Wiegmann's Arch. für Naturgesch. 1, p. I84.

Syria.
19. CRICETLTLL'S MIGRATORIU'S IsABELLINUS, de Filippı

I 865 . Viaggio in Persia, p. 344.
Persia.
20. CRICETLLES MIGRATORILE FULVUS, Blanford
1875. Journ. Asiat. Soc. Bengal, KLIV, p. 108.

Plans of E. Turkestan, Pamir, and Wakhan.
21. CRICETULES MIGRATORIES COERULESCENSS, Severtzow
1879. Est. Antrop. 1. Etnogr. i, lief 1, p. 63.

Zapiski, Turkestan.
Synonym: pamirensis, Ognev, 1923, Bull. Soc. Nat. Moscow, 31 , p. So. Russian Pamir.
migratorius cocrulcscens ognezi, Argyropulo, 1933, Zeitschr. für Säugetierk. Bd. 8, Heft 3, p. 148.
22. CR1CETULUS MIGRATOR1US ATTICL'S, Nehring
rooz. Sitz. Ber. Ges. Nat. Fr. Berlin, p. 3.
Pentelikon, Attica, Grecce.
23. CRICETLIUS MIGRATORIUS NEGLECTUS, Ognev
1916. Bull. Soc. Nat. Amis, Nat. Crimée, 5, p. Si.

Two specimens examined, one from River Burulcha, tributary of River Salgir, and one from near village Atamanaia, Melitopol subdistrict of Tavricheskaia Govt., S. Russia.
Synonym: falzfeim, Matschie, 19IS, Sitz. Ber. Ges. Nat. Fr. Berlin, p. 1. Ascania Nova, Taurien, Südrussland.
24. CRILETLLU's MIIGRATORIL BELLICOALS, Scharleman 1916. Bulf. Vredit, Selisk, Choz. 3, no. r. P. f.

Gouv. Isiev, S. Russia.
25. CRICETLIL'S MIGRATORILA VERNLLA, Thomas 1917. Ann. Mag. Nat. Hist. 8, KIX, p. 453.

Khotz, near Trebizond, Asia Minor.
26. C'RICETLLUS MIGRATORIUS CAIEITS, Kashkaros 1923. Proc. Turkestan Sci. Soc. I, p. 215.

Kara-tau MIountains, valley of River Ters, 'Turkestan.
27. CRICETLLC'S MIGGATORILS PLLCHER, Ognev
1924. Rodentia of N. Caucasus, Rostov-on-Don, p. 22.

Near Lars, Nilitary Georgian Road, 27 kilometres from town of Vladikawkas, Caucasus.
24. CRILETCLL N NIGRATORILS CINEREL - , Kashkarov 1926. Trans. Sci. Soc. Turkestan, I, p. 215.

Tashkent, Turkestan.
 1928. Trav. Mus. Kiev, 5, p. 421.

Rostor-on-Don, S. Russia.
Not allocatcol to Group
30. CRICETLLLS FLSCATLS, Brandt
1835. Mém. Acad. St. l'ctersb. 1, P. 435. Locality not known.
31. CRICETULUS (?) KOZLOVI, Satunin
1902. Ann. Mus. Zool. St. Petersb. 7, p. 570.

Oasis Sa-tschou, Kukunor, Tibet.
(For note on the cranial characters of this species see above.)
Subgenus Allocricetulus, Argyropulo
32. CRICETLLUS EVERSMANNI EVERSMANNI, Brandt
1859. Mel. Biol. Acad. St. Petersb. p. 2 ro.
E. Russia.
33. CRICETULU'S EVERSMANNI BELJAWI, Argyropulo
1933. Zeitschr. für Säugetierk. 8, p. 137.

Saissan, Russian Asia.
34. CRICE'TULUS EVERSMANNI MICRODON, Ognev
1927. Bull. Soc. Nat. Moscou, 33, p. 14.

District of the Bougourouslan, Gouv. Samara, S.-E. Russia.
35. CRICETULUS CURTATUS, G. M. Allen 1925. Amer. Mus. Nov. no. 179, p. 3.

Iren Dabasu, Mongolia.
Subgenus Tscherskia, Ognev
36. CRICETULE'S TRITON TRITON, de Winton 1899. Proc. Zool. Soc. London, p. 575.
N. Shantung, China.
37. CRICETULUS TRITON BAMPENSIS, Kishida 1929. Lansania, Tokyo, r, p. 150.

Korea.
38. CRICETULL'S TRITON YAMASHINAI, Kishida
1929. Lansania, Tokyo, r, p. ${ }_{15} 6$.

Korea.
39. CRICETULUS TRITON INCANUS, Thomas 1908. Abstr. Proc. Zool. Soc. London, p. 45 ; Proc. Zool. Soc. London, p. 973.

Near Ko-lan-chow, Shansi, China.
ғ0. CRICETLLUS TRITON NESTOR, Thomas 1907. Proc. Zool. Soc. London, p. 466.

Kim-hoa, 65 miles north-east of Seoul, Korea.
Synonym: albipes, Ognev, 1914, Moskva. Dnev, Zool. otd. obsc. liub, jest. 2, p. 105. S. Ussuri, Siberia.
4i. CRICE'TULUS TRITON FUSCIPES, G. M. Allen 1925. Amer. Mus. Nov. no. 179, p. 5. Peking, Chihli, China.
42. CRICETULUS TRITON COLLINUS, G. M. Ailen 1925. Amer. Mus. Nov, no. r79, p. 5 ;

Base of Tai-pei-shan, 'Tsingling Mountains, Shensi, China.
+3. CRICETULUS TRITON CANUS, G. MI. Allen 1928. Journ. Mamm. Baltimore, 9, p. 244.

Choni, S. Kansu, China.
44. CRICETLLUS TRITON MEIHSIENENSIS, Ho
1935. Contr. Biol. Lab. Sci, Soc. China, 10, p. 288.

Meh-hsien, Shensi, China.
1910. Phodopus, Miller, Smiths. Misc. Coll. LII, p. 498.
1917. Cricetiscus, Thomas, Ann. Mag. Nat. Hist. \&, XIX, p. 456. Cricetulus campbelli, Thomas.
'Type Species.-Cricetulus bedfordiue, Thomas.
Range,-Siberia and China. "The Barahinsk, Kulundinsk and Prealtai Steppes, Southern Altai, Eastern Kazakstan, westwards to River Ischim, and Lake Balkash, the Minusinsk and Transbaikal districts" (Vinogrados), and Mongolia (songorus group); Mongolia, Shensi, Manchuria(?), and 'l'ibet (roborocskii group).

Number of Formis.-Sin.
Characters.-"Feet unusually short and hroad, densely hairy throughout, the tubercles of both palm and sole confluent into a single blister-like mass. Skeleton of feet shortened but proportionate lengths of bones not specially modified" (Jiller). Skull without much constriction in interorbital region; supraorhital ridges not marked; braincase not narrowed; interparietal less reduced than in Cricetus, and rostrum less heavy, Bullae more or less flattened, their inner anterior portion slightly tube-shaped, and projecting forwards to the hamulars. Pterygoid fossae shallow. Palatal foramina broad, not extending to the toothrow as a rule. Zsgomatic plate narrow; infraorbital foramen more as in Cricitus than Mesocrictus. Upper cheektecth; pattern much as in Cricitus; dentition stronger in the songorus group, much weaker in those seen of the roborozskii (belfordine) group, in which, at any rate with wear, M. 3 becomes more reduced than in any other Palacarctic Hamster examined, the pits separating the cusps are not well marked, and the cusps are more opposite to each other than in the songorus group. Mandible like Cricetus in songorns group, weaker in roborozskii group. There appears a certain difference in dentition in these two groups, on account of which Thomas erected a genus Cricetiscus for songorus and allies. This is not retained by Argyropulo, and learing in mind slight dental differences which may occur elsewhere, also that the leet of both seem essentially similar, it appears not necessary to alo so.

Aammae S (Argyropulo). Cheekpouches present. Size small (99 or less head and body length in specimens examined); form very thickset; tail strongly reduced; feet as ciescrihed above. Foreclaws may be prominent. The tail is less than a fifth of head and body length in those seen.

Two well-marked groups may be recognized:
sungorus gromp: dentition heavier, M.3 less reduced, a black middorsal stripe, and relatively larger. (Most Siberian forms turn white in winter.)
roborotskii group: dentition lighter, M. 3 more reduced, no middorsal stripe, and relatively smaller.

Lorms seen: bedforditu, campleth, songorus.

## List of Named Forms <br> roborovskii Group

1. PHODOPUS ROBOROVSKII ROBOROVSKII, Satunin
2. Ann. Mus. St. Petersh. VII, p. 571.

Upper part of Riser Scharogol-dschin, Nanshan, Sinkiang.
2. PHODOPLS ROBOROVSKII BEDFORDIAE, Thomas
1908. Abstr. Proc. Zool. Soc. London, p. 45 ; Proc. Zool. Soc. London, p. 974. Yu-lin-fu, Shensi, N. China.
3. PHODOPUS PRAEDILECTUS, Mori
1931. Annot. Zool. Jap. 12, 1930, p. 418.

Cheng-chia-tun, Central Manchuria.
(Not seen; position provisional.)
songorus Group
4. PHODOPUS SONGORUS SONGORUS, Pallas
1773. Reise, ii, p. 703.

Gratschefskoi, 100 kilometres west of Semipalatinsk, Siberia.
5. PHODOPUS SONGORL'S CAMPBELLI, Thomas
1905. Ann. Mag. Nat. Hist. VI, p. 322.

Shaborte, N.-E. Mongolia.
6. PHODOPUS SONGORU'S CREPIDATUS, Hollister
1912. Smiths. Misc. Coll. LX, no. 14, p. 3.

Chuisaya Steppe, 8 miles south of Kosh-Agatch, Altai, Siberia.

## Genus 30. CRICETUS, Leske

1779. Chicetus, Leske, Anfangsgr. Naturg. 1, p. 168.
1780. Hamster, Lacepide, Tabl. des Div. et Ordres \& Genres, Mamm. p. io. (Hamster nigricans, Lacepéde - Mus cricetus, Linnaeus.)
1781. Heliomys, Gray, Ann. Mag. Nat. Hist. 4, XII, p. 417. (Heliomys jeudii, Gray = Mus cricetus, Linnaeus.)

Type Species-Mus cricetus, Linnaeus.
Range.-Europe; Germany, Belgium, North France, Hungary, Roumania, Yugoslavia (specimens in B.M.), etc.(?); European part of U.S.S.R. northwards approximately to latitude $60^{\circ}$, southwards to Crimea, foothills of main ridge of Caucasus; and eastwards over Kazakstan to Semirechyia district, and Western Siberia to Krasnoiarsk and Minussinsk (Vinogradov). Asia Minor (Miller). Iraq?

Number of Forms.-Ten.
Characters.-Skull highly specialized; rostrum broadened, supraorbital ridges very prominent, and extending backwards over the parietals to the lambdoid crest, sometimes converging and tending to fuse on the parietals; braincase much narrowed; interparietal very smail. Frontals abnormally constricted, and zygomata widely spreading. Occipital region of skull upstanding and prominent, sloping forwards. Jugal very short. Zygomatic
plate hroad, scarecly cut back above. Infraorbital foramen wider above than below, its outer side bearing well-marked plate, and ridged. Palate continuing backwards slightly behind toothrows. Bullae relatively large, well inflated. Palatal foramina large, but usually not reaching M.I. Incisors broad. Aandible with high recurved coronoid process, and narrow angular process which is produced somewhat backwards and separated from the condyle by a deep


Fig. 23. Cricetus cricetcs ericetus, Linnaeus. B.AI. 入u. 8.11.2.38, oै; 2.
curved space. N1.z little smaller than M.r, and 31.3 very kittle reduced. N1.1 with three laminae, each bearing a pair of cusps, each lamina separated by a deep well open outer and inner fold, the folds approximately equal-sized; a narrow median ridge runs down the centre of the tooth, and separates these folds from each other; between each pair of cusps is a deep pit, isolating early with wear, originally caused by backward prolongation of the outer fold. The cusps are approximately equal in size. M. 2 is like M. 1, but with only four cusps, although four folds are traceable (as in M.i ); the anterointernal fold is reduced. M.s like $\mathrm{M}_{\mathrm{L}} 2$, hut the posterior pair of eusps rather redued. 'Toothrows slightly divergent anteriorly. N1.1 four- or five-rooted (Miller). In age the pattern
becomes obliterated. Lower teeth much like the upper series, but M. i very narrow, particularly anteriorly, and the tecth with a well-marked posterointernal heel; the cusps are more slanting and alternating than in the upper series, the inner ones placed anteriorly.


Fig. 24. Cricetus cricetus cricetus, Linnaeus. B.M. No. 8.11.2.38, ${ }^{\text {ta }} ; \times 2$.


Fig. 25. Cricetus cricetus, Linnaeus.
Checkteeth: $a$, unworn; $b$, slightly worn; $\times 5$.
Checkpouches present. Mammac 8. According to Tullberg, the stomach is complex. Size largest of group; normally over 200 mm . head and body length; up to 278 or perhaps more; fur very thick; a specialized colour pattern present (usually light brown above, mostly black below, sides white); tail
rudimentary. Hindfeet broad, the soles evidently haired posteriorly, but pads normal; digits not reduced. Forefoot broad; claws usually thick and prominent.

Forms seen: canescens, cricetus, latycranius, "jeudii," "frumentarius," stazropolicus.

List of Named Forms

1. (RICETUS CRICETU'S CRICETUS, Linnaeus
2. Syst. Nat. 1, ed. 10, p. 60.

Germany.
Synonym: frumentarius, Pallas, 18 i1, Zoogr. Rosso-Asiat. 1, p. 161. Russia.
zulgaris, Geoffroy, 1803, Cat. Namm. Mus. Nat. Hist. p. 196. N. Europe.
nigricuns, Lacepéde, 1799, Tabl. Div. ordres \& genres, Mamm. p. io. Germany.
niger, Jitzinger, is67, Sitz. Ber. k. Akad. Wiss. Wien. Nath. Nat. Cl. LVI, r, p. $9 \$^{\circ}$
germanicus, Kerr, 1792, Anim. Kingd. p. 2+3.
fulrus, Bechstein, 1801, Gemeinn. Naturgesch. Deutschlands, $1,2, p$. 1010 .
zarius, Fitzinger, 1867, Sitz. Ber. k. Akad. Wiss. Wien. Math. Nat. Cl. LV], r, p. 98.
albus, Fitzinger, 1867, same reference.
jeudii, Gray, Ann. Mag. Nat. Hıst. \&, XII, p. $417,1873$.
2. CRICETUS CRICETUS CANEFCENS, Nehme
i899. Sitz. Ber. Ges. Nat. Fr. Berlin, p. i.
Near Fexhe-Slins, Belgium (banks of the Maas).
3. CRICETUS CRICETU'S NEHRINGI, Matschie
1901. Sitz. Ber. Ges. Nat. Fr. Berlin, p. 232.

Slobosia, Roumania.

+ CRICETUS CRICETUS RUFESCENS, Nehring
I899. Sitz. Ber. Ges. Nat. Fr. Berlin, p. 2.
Tjubuk, Ural regıon.

5. CRICETLS CRICETUS STAVROPOLICUS, Hatunin
6. Tiflis Mitt. Kaukas. Mus. 3, p. 26.

Village l'redteca, Steppe on Kalaus River, Govt. Stavropol, Russia.
6. CRICETLS CRICETL'S LATYCRANIL's, Ognes
1923. Brol. Isvestia, I, p. ifo.

Village Cheremushka, in the former Nikolaersk subdistrict of Saratov Gouv. Russia.
7. CRICETUS CRICETU'S TOMIENSIS, Ognev
1924. Rodents of North Caucasus, p. 19.

Rostor-on-Don, S. Russia.
8. (CRICETCS CRICETLS FLSCIDORSHS, Argyrupuin
1932. Trav. Inst. Zool. Acad. Sci. Leningrad, I, p. 235.

Semiretschyia, U.S.S.R.
9. CRICETCS (RICFTES POLICHRO)NIA, Krulhowsan
1916. Bull. Soc. Oural Nat. 35, p. 5.

No locality given.
10. CRICETUS CRICETUS BABYLONIL゙S, Nehring 1903. Sitz. Rer. Ges. Nat. Fr. Berlin, p. 360. S.E. Bagdad.
11. CRICETUS CRICETUS TAURICUS, Ognev
1924. Rodents of North Caucasus, Rostov-on-Don, p. 19. Neighbourhood of Simferopol, Crimea.

## Genus 31. MESOCRICETUS, Nehring

1898. Mesocricetus, Nehring, Zool. Anz. p. 494.

Type Species.-Cricetus nigricans, Brandt.
Range.-Roumania, Bulgaria; Caucasus; Syria; N.-W. Persia (specimens in B.Ml.); Asia Minor(?) (probably extreme eastern portion, Ararat).
Number of Forms.-Six.
Characters.-Like Cricetus, but infraorbital foramen with no external plate, the foramen nearly evenly rounded on outer side, the zygomatic plate narrowed. Supraorbital ridges in those seen less prominent than in Cricetus, though in one case (the type of auratus) they tend to fuse on the forepart of the braincase. Palatal foramina relatively shorter, not approaching the toothrows. Interparietal small. Bullae relatively large. Palate extending behind toothrows. Pterygoid fossae deepened. Incisors very broad. Mandible as in Cricetus; coronoid process if anything relatively larger. Upper cheekteeth as in Cricetus, but the pits separating each pair of cusps wider, more important features of normal dentition, and apparently isolated more or less from birth. Lower cheekteeth as in Cricetus, though with wear in the few specimens in the British Museum there is a fairly constant tendency for the third molar to become the dominant tooth, and for M.i to become the smallest tooth. This is, I believe, not an absolutely constant character.

Nammae more or less continuous, 14-22 (Argyropulo). It is interesting to note that all other Hamsters have 8 mammae, according to this author, there being no intermediate form known between these and the "multimammate" condition found in the present genus. Large cheekpouches present. The male genital organs differ from those of Cricetus, according to Argyropulo, though more resembling Cricetus apparently than Cricetulus. Ear relatively large; form thickset; limbs short, and feet very small. Digits unreduced; plantar pads 6. Tail extremely shortened (more so than in other Palaearctic genera). Colour pattern usually not so well marked as in Cricetus. Head and body about 120 mm . in fully adult, or up to 185 or more (according to Vinogradov up to 2So).

Hamsters of this kind are interesting captivity subjects, and for their size show certain intelligence (perhaps more restlessness than actual thought). Unfortunately it is almost impossible for them to be taught not to bite. They are keen climbers in a cage and can evidently fall from almost any height within reason without coming to harm. I once saw one fall flat on his back from a


Fig. 27. Mesocricete's aewtoni, Nchring.
B.M. No. 12.912.17, ; $2 \frac{1}{2}$.
bridge which must have been quite five times his own height; I was convinced that he was killed, but he got up almost at once, apparently suffered not the slightest harm, and lived on for a year, being ultimately killed in a fight with his wife! They will never bother to climb down when they have reached the top of a cage, but just dive or throw themselves on to whatever happens to be below. They are quarrelsome to a degree, and it is a very difficult thing to keep two or more together for any length of time without a fatal fight occurring.


Fig. 28. Mesocricetus newtoni, Nehring. Cheekteeth: B.M. No. 6.5.17.1, ©ै; $\times 13$.

They have amazing powers of recovery; I once saw one with her throat gashed open, but this healed up in a matter of a few days. Two and a half years scems to be the extreme length of life for these Hamsters; after this time they curl up and die of old age, or so has been my experience.

The cheekpouches are used a great deal, and will apparently take pieces of food half as big as the animal's head; at such times the swelling caused by the food may reach down to the animal's waist. 'They are prodigious breeders, as is well known; the period of gestation is only eleven days, and the young appear to take solid food in a fortnight, and to be fully adult at eleven weeks if not before. 'They are naked at birth, but hairy covering is developed about the sixth day; the mother earries them about in her mouth like a cat with kittens, which is a very amusing sight. The cheekpouches are usually emptied by the paw being pressed against the cheek, and brought forward. (These notes are based on auratus.)

Forms seen: auratus, brandti, kocnigi, neectoni, nigricans.
'The forms represented in London seem to me to be referable to two species, namely, ( ( ) auratus, light brown above, and with no black marking below, or this scarcely developed; and (2) a darker species, with black markings apparent below, for which the oldest name would be raddei; raddei would thus include all forms except auratus. However, as I have no types except auratus, I follow the classification of Argyropulo, who retains three speeies. He states that newtoni is douhtfully distinguishable from auratus; but specimens in the B.M. are not in the least like auratus, but very similar to raddei. Aharoni states the form brandit is a race of raddei; Argyropulo refers it to auratus.

## List of Named Formis


1840. Ann. Mag. Nat. Hist. IV, p. +45.

Aleppo, Syria.
2. MIEs()CRICETUS AURATUS BRANOTI, Vebring
1898. Zonl. Anz, NX1, p. 33 I.

Gour. Tiflis, Transcaucasia. A race of raddei according to Aharoni. Specimens in B.M. resemble races of raddei, and not auratus.
Synenym: koenigi, Nehrine, 1900, Zoul. Anz, XXIII, p. 301. Caucasus: Kasikoporan on Tandurek-tschai, Gouv. Eriwan.
i. N1Esocricettes RADDEI RADDEI, Nohring
1894. Zool. Anz. SV'lll, p. I48.

Daghestan, Caucasus.
4. MIFSOCRICETLS RADDEI NIGRICLLLS, Nchrme
1898. Zool. Anz. XXI, p. +95

Mountains of middle part of N . Caucasus.
Synonym: nigricans, Brandt. 1832 , Ménétriès Cat. Rais. p. 22, Asia Minor; not of Lacepide.
5. MI: ioc RICETLS RADDEI AVARIC'L'S, (Grev \& Heptner
1927. Ann. Mas. Nat. Hist. 9, XIX, p. f42.

Near Village Aoul, Khumsakh, Avarsky district, Daghestan, Caucasus.
6. MESOCRICETLS NEMTONI, Nehring

I 80 S. Zool. Anz. XXI, p. 320.
Schumla, E. Bulgaria.

Genus 32. MYS'TROMIS, Wagner
1841. Mystromys, Wagner, Arch. für Naturg. p. 132.

Type Spectes.-Mystromys alhipes, Wagner-Otomys atbicaudatus, Smith.
Range,--Southern Africa; Albany district, Natal, Transvaal; (?)'Tanganyika.
Nuaber of Formis.-Three.
Characters.- Skull of the same general form as the South American Autiscomys, hut rather more constricted in the interorbital region, this constriction carried further backwards, so that the braincase appears shortened. Supraorbital ridges faintly apparent in old animals. Zygomata
widely spreading. Zygomatic plate almost straight anteriorly. Palate extending slightly behind level of last molars. Incisive foramina reaching toothrows. When cut the upper checkteeth have a pattern of more or less opposite cusps and slanting folds; six cusps in M.I, but the front pair fusing in the adult; no subsidiary ridges in the main folds; the folds are two each side M.1, two outer, one inner M.2, as usual; the cusps retained, and the pattern not becoming truly prismatic, until old age, when the pattern tends to resemble that of Phyllotis, being nearly a series of transverse plates. The folds in the moderately young animal are well open, and suggest Cricetus, but the whole pattern is widely different, being simpler, lacking isolated pits between the cusps, etc. M. 3 is strongly reduced. In the lower series, M. 3 is small; the cusps are originally prominent; M.i has originally two outer, three inner folds, but some of these are lost in the adult; M. 2 with two folds each side originally; M. 3 with one each side. Coronoid process of mandible well developed. 'The bullae are moderately large.

External form thickset, with very soft fur, relatively large ear; sole partly haired; foot narrow, rather short; tail in all seen either under half head and body length or just exceeding this measurement in a few, well haired; no cheekpouches (St. Leger). In the form longicaulatus, the tail as described is not shortened.

Rfmarks.-I am entirely at a loss to suggest the relationships of this genus, which seems not only isolated from the Palaearctic and Neotropical genera, but to have no marked generic characters, making it exceptionally difficult to place in the key. It might be remotely related to the Cricetus series; or it might be equally a member of the Phyllotis series. It is one of those unfortunate genera which starts life in one section of my key, and grows up into another!

Forms seen: albicaudatus, fumosus.
List of Named Forms
r. MY'STROMYS ALBICALDATLS ALBICALDATLS, Smith
1834. South Afr. Quart. Journ. ii, p. 148.

Albany district, S. Africa.
Synonym: albipes, Wagner, 1841, Arch. für Naturg. p. 132. S. Africa. lamuginosus, Lichtenstein, 1842 , Verz. Samml. Kaffernlande, p. 10.
2. MYSTROMY'S ALBICAUDATUS FLMOSL'S, Thomas \& Schwann
1905. Proc. Zool. Soc. London, 1, p. 137.

Wakkerstroom, Transvaal.
3. MYSTROMYS LONGICALDATLS, Noack
1887. Zool. Jahrb. ii, p. 246.

Gonda, N.W. Tanganyika.

## Genus 33. IlEsPEROM1Y, Waterhouse

${ }_{1}$ S39. Hesperomys, Waterhouse, Zool. Voy. Beagle, Mamm. p. 75.
1837. Calomys, Waterhouse, Proc. Zool. Soc. London, p. 21. (M/us bimaculafus. Not of Geoffroy \& D'Orbigny); see 'Thomas, Amn. Mag. Nat. Hist. 8, X'V'11, p. 1+1, 1916.
1926. Paralomys, Thomas, Ann. Mag. Nat. Itist. 9, XVII, p. 315. (Phyllotis gerbillus, Thomas.) Valid as a subgenus.

Type Species.-Mus bimaculatus, Waterhouse.
Range.- South America: Peru, Bolivia, Paraguay, Uruguay, S.-E. Brazil (Minas Geraes), and Central and Northern Argentina (Buenos Aires, Jujuy, Cordova, etc.).

Number of Formis. -Twenty-five.
Characters.-Skull with zygomatic plate strongly cut back above; supraorbital ridges not or scarcely marked; palate continuing hehind last molars, and usually with lateral pits; interparietal well developed; zygoma slender, jugal short; coronoid process well developed; incisive foramina penetrating between front molars.

Upper checkteeth usually cuspidate, very rarely taking on a laminate or slightly prismatic appearance; no subsidiary ridges traceable in the main outer folds, normally Xl.1 with usually six cusps, though the anterior pair may tend to fuse. As compared with a simple-toothed Peromyscus, the pattern while generally similar differs in the fact that the cusps tend less to be alternating; but the folds are strongly curved backwards, and rather deep, as in Peromyscus and unlike Akodon. M. 3 moderately, or sometimes considerably, reduced. Lower cheekteeth: M. 3 more or less S-shaped; M. 1 with six cusps and posterointernal heel, the folds separating these deep, the cusps more alternating than in the upper series; M. 2 with four cusps and posterointernal beel. In the upper molars, there are two folds each side of M.I, and two outer, one inner in M.z.

The large species focundus and zemustus while agreeing with the majority of the genus in external characters seem in cranial and dental characters to lead stranght into Graomys.

Mammae variable: $2-2=8$ or $3-2=10$ or a continuous series totalling it ( $5-2=14$ given for some species) ; evidently not constant, and differing sometimes in specimens of the same species. Form Mouselike; feet narrow, usually with D. 5 of hindfoot noticeably reduced; car prominent, but not as enlarged as is usual in Graomy's or normal Phyllotis; tail moderately haired, usually a little shorter than head and body, never much longer. Fur usually not specially thick, but lepidus is a very soft-furred form. The tail is less than half head and body in this species; the same may be noted for ducilla; but neither are well-known species.

Paralomys proposed as a full genus for the Peruvian species gerbillus differs markedly from Hesperomys in its Gerbil-like coloration; D. 5 in the hindfoot is not reduced; the soles are naked, the plantar pads normal. Tail well haired, subequal in length to head and body; ear prominent. Mammary formula $2-2 \cdots$ (Gyldenstolpe). Dentition perhaps a little more specialized than Hesperomys is normally, but cusps clear; main outer fold of M. 2 more widened than is usual, and often split into two portions, the one curving forward, the other backward; M. 3 small; M. 2 with anterocxternal fold nearly or completcly suppressed. Cranial characters as Hesperomys. I do not think the differences enumerated here are of more than subgeneric value, and the species,
though very distinct, seems to belong in dental characters with Hesperomys rather than with Eligmodontia or Phyllotis.

The mammary formulas given by Gyldenstolpe are: 5-2=14 in laucha musculinus and laucha cortensis; $2-2=8$ in tener; $3-2=10$ in venustus; $5-2=14$ in fecundus, and $2-2=8$ in both races of frida. It is apparently unknown, however, in many species. H. focundus and H. expulsus are the largest species (over 120 in type specimen); others are usually under 115, often under 100.

Forms seen: argurus, boliviae, bimaculatus, callosus, callidus, carillus, cordovensis, cortensis, ducilla, cxpulsus, fecundus, frida, gerbillus, gracilipes, lepidus, marcarum, miurus, muriculus, murillus, musculinus, sorclla, tener, vemustus.

## List of Named Forms

Subgenus Hesperomys, Waterhouse
2. HisSPEROMYS BIMACULATUS binaculatus, Waterhouse
1837. Proc. Zool. Soc. London, p. 18.

Maldonado, Uruguay.
2. hesperoniys biniaculatus bonariensis, Osgood
1933. Field. Mus, Nat. Ilist. Publ. Zool. ser. XX, p. it.

Torrecita, Province of Buenos Aires, Argentina.
3. hesperomys callosus callosus, Rengger
1830. Säugethiere von Paraguay, p. 231.

Rio Paraguay, north of Villa Real, Paraguay.
4. Hesperonys callosus boliviae, Thomas
1901. Ann. Mag. Nat. Hist. 7, VIII, p. 253.

Rio Solocame, Central Bolivia.
5. HESPEROMYS CARILLUS CARILLUS, Thomas 1902. Ann. Mag. Nat. Hist. 7, IX, p. 133.

Choro, Rio Secure, Central Bolivia.
6. hesperonys carillus argurus, Thomas 1919. Ann. Mag. Nat. Hist. 9, IV, p. 130. Abrapampa, Jujuy Province, N.-W. Argentina.
7. Hesperonys carillus marcarda, Thomas 1917. Smiths. Misc. Coll. LXVHII, no. 4, p. I. Lauramarca, Cuzco district, Peru.
8. hesperomys ducilla, Thomas 1901. Ann. Mag. Nat. Hist. 7, VII, p. 182. San Antonio, Lake Titicaca, S.-E. Peru.
9. hesperomys explissus, Lund
1841. K. Danske. Vidensk. Selsk, Afhandl. V111, p. 280.

Lagoa Santa, Rio das Valhas, S.-WV. Minas Geraes, E. Brazil.
ro. HESPERONYS FECUNDU'S, Thomas 1926. Ann. Mag. Nat. Hist. 9, XVII, p. 321.

Tablada, Tarija district, S. Boliviu.
11. hesperomis frida frids, Thomas
1917. Smiths. Mlisc. Coll. LXV111, no. 4, p. i.

Chospyoc, Cuzco district, Peru.
12. HESPFROMIS FRIDA MILRL's, Thomas
1926. Ann. Mag. Nat. IIst. o, XV[I, p. 3 It.

Iana Nayo, Rio Tarnia, Junin district, Peru.
13. HESPERONIY GRACILIPES, Waterhouse
1837. Proc. Zool. Soc. London, p. 19.

Bahia Blanca, Gouth Buenos Aires Province, S.-E. Argentina.
14. IlIESIERONYS LALCIIA LALCHA, Desmarest
1819. Nouv. Dict. Hist. Nat. XXIX, p. 65.

Buenos Aires, İ. Argentina.
5. HEAPEROMIY LACCHA CORTENSIS, Thomas 1920. Ann. Mag, Nat. Hist. 9, V, p. 190.

Jujuy City, N.-W. Argentina.
16. HESPEROMIS LAUCHA ME:CLLLNLS. Thomas
1913. Ann. Mag. Nat. Hist. 8, XI, p. 13 S.

Maimara, Central Jujuy, N.-W. Argentina.
17. HESPEROMIS LEPIDES, Thomas
1884. Proc. Zool. Soc. London, p. 454.

Junin. Lima district, Central Peru.
18. HESPERONIS NURICELES, Thomas
1921. Ann. Mag. Nat. Hist. 9. VIII. p. 623.

San Antonio, Rro Parapiti, S.-E. Bolivia.
(1) HESPER(OMIY MERILLU's MERILILES. Thomas 1916. Ann. Mag. Nat. Hist. S, XVII, p. i83.

La Plata C'ity, Buenos Aires Province, E. Argentina,
20. HESPEROMIY MCRILLEA (ORDOVENSIS, Thomas 1916. Ann. Mag. Nat. Hist. S, XVII, p. 184.

Yacanto, Sierra de Villa Dulotes, Cordova Province, Central Argentina.
zr. HESPEROMIY SORELLA, Thomas
1900. Ann. Mag. Nat. Hist. 7, VI, p. 297.

South of Huamachuca, N.-W. Peru.
22. HELPEROMIS TENER, Wmer
1887. E. Museo Lundii, 1, no. 3, p. 15.

Lagoa sianta, Rio das Verhas, S.-W. Minas Cicraes, E. BraziI.
23. HESPERONHS VENESTLS VHNESTLS, Thomas
1894. Ann. Mag. Nat. Hist. 6, XIV, p. 359.

Consquin, Cordova Province, Central Argentina.
24. HFSPEROMIS VENLSTES (AlJJDLS. '1homan
1016. Ann. Mag. Nat. IIst. 8, XVII, p. 182.

Goya, Corrientes, E. Argentina.
Subgenus Paralomys, 'Thomas
25. HESPEROAIY' GIRRBILLCS, Thomas
1900. Ann, Mag. Nat. Hist. 7, V, p. 15 I.

Piura, N.-W. Peru.

## Genus 34. ELIGMODON'TLA, Cuvier

1837. Eligmodontia, Cuvier, Ann. Sci. Nat. Zool. 2, VII, p. 168.

Type Sirecies.-Eligmodontia typus, Cuvier.
Range.-Bolivia, Argentina, Patagonia.
Number of Forms.-Six.
Cifaracters.-Skull with no supraorbital ridges; braincase rather broad; zygoma slender. Bullae relatively large. Zygomatic plate and palate as IIesperomys. Pterygoid fossae shallow. Coronoid process of mandible strongly reduced. Dentition with more prismatic effect in the majority of specimens than in Hesperomys; M. 3 often very reduced, and simpler; folds of teeth tending to be more open. In age, the pattern may be Phyllotislike.

Mammae $2-2=8$. Tail subequal in length to head and body, or longer than this measurement; relatively well haired; hindfoot narrow, with D. 5 long; "Palms and soles hairy; in the former, the outer part is occupied by two large hairy cushions, the anterior of which bears two outer digital pads, and the posterior the outer carpal pad as quite inconspicuous smooth places on otherwise hairy surface . . . of the two cushions, the posterior is the largest and most conspicuous. Soles also with hairy cushions, the posterior solepad obsolete" (Thomas). Ear prominent.

This is not a well differentiated genus, the exact position of which I am not certain. The size is small, usually under 100 head and body.

Forms scen: elegans, hirtipes, jucundus, moreni, marica, "pamparum," typus.

## List of Naned Formis

s. ELIGMODONTIA ELEGANS, Waterhouse
1837. Proc. Zool. Soc. London, p. 19.

Bahia Blanca, S. Buenos Aires Province, S.-E. Argentina.
Synonym: morgani, Allen, 1901, BuII. Amer. Mus. Nat. Hist. XIV, p. 409. Patagonia; Basaltic Cañons south-east of Lake Buenos Aires.
morgani pamparum, Thomas, 19:3, Ann. Mag. Nat. Hist. 8, XII, p. 572. Bahia Blanca, Argentina.
2. ELIGMIODONTIA HIRTIPES HIRTIPES, Thomas 1902. Ann. Mag. Nat. Hist. 7, IX, p. 225.

Challapata, Lake Poopo, Bolivia.
3. ELIGMODONTIA HIRTIPES JUCUNDA, Thomas
1919. Ann. Mag. Nat. Hist. 9, IV, p. 131.

Abrapampa, Jujuy, N.-W. Argentina.
4. ELIGMODONTIA MARICA, Thomas
1918. Ann. Mag. Nat. Hist. 9, 11, p. 483.

Chumbicha, Catamarca Province, N.-W. Argentina.
5. ELIGMODONTIA MORENI, Thomas
1896. Ann. Mag. Nat. Ilist. 6, XVIII, p. 307.

Chilecito, Rioja Province, 1 V . Argentina.
15-Living Rodents-11
6. ELIGMODON'TIA TYPUS, Cuvier 1837. Ann. Sci. Nat. Zool. 2, VII, p. I68. Corrientes, E. Argentina.

Genus 35. GRAOMISS, Thomas
1916. Graonss, Thomas, Ann. Mag. Nat. Hist. 8, XVII, p. 141.

Type Species.-Mus (Phyllotis) griseoflarus, Waterhouse.
Range.-South America: Bolivia, Paraguay, Argentina, Patagonia.
Number of Forms.-Ten.
Characters.-Skull differing from Phyllotis in that the supraorbital ridges are generally developed, and the interorbital region is comparatively broad, and evenly divergent backwards from behind the anterior zygomatic root; frontals relatively broad. Zygomatic plate concave anteriorly, and sharply cut back above. Palate and incisive foramina about as Phyllotis. Bullae relatively large. Coronoid process rather short. Dentition in the majority like that of Phyllotis (below). M1.2 usually with clear traces of anteroexternal fold, as in subgenus Auliscomys. The cusps are not well marked, and the teeth agree with Phyllotis in being much more flatcrowned than is normal in Hesperomys. In all these genera, however, there is certain individual variation, which makes their classification excessively difficult.

Mammae $2-2=8$. Tail fully haired, often slightly pencilled terminally, and usually much longer than head and body. Sole naked; digits normal; ear as a rule very prominent. Size moderately large; normally well over 100 head and body.

Remarks.-Should perhaps be considered as a subgenus of Phyllotis only, but the cranial characters seem quite constant, and differentiate clearly between the two genera.

Forms seen: chacoensis, cachimus, centralis, domorum, edithae, griseoflazus, lockzeodi, medius, taterona.

```
                    List of Namely Forms
    1. GRAOMIY'S EDITHAE, Thomas
1919. Ann. Mag. Nat. Hist. 9, III, p. +95.
            Otro Cerro, Catamarca Province, N.-W. Argentma.
    2. GRAOMIY'S GRISEOFLAVQ'S GRISEOFLAVL'S, Waterhouse
1837. Proc. Zool. Soc. London, p. 28.
            Mouth of Rio Negro,N. Patagonia.
    8. GRAOMIY'S GRISEOFLAVL'S CACHINUS, Allen
1401. Bull. Amer. Mus, Nat. Hist. X゙IV, p. +og.
                            Upper Rio C'achi, Salta Province, N.-W'. Argentma.
    4. (GRAONIYS (IRISEOFLAVUS (IENTRALIS, Thoma
100z, Ann. May.Nat. Hist. 7. IN, p. 24o.
    Cruz del Eje, Cordova Province, Central Argentina.
```

5. GRAOMYS GRISEOFLAVUS CHACOENSIS, Allen
6. Bull. Amer. Mus. Nat. Hist. XIV, p. 408.

Waikthlatingwayalwa, N. Chaco, Paraguay.
6. GRAOMYS GRISEOFLAVUS DOMORUM, Thomas
1902. Ann. Mag. Nat. IIist. 7, IX, p. 132.

Tapacari, N. Bolivia.
7. GRAOMYS HYPOGAEUS, Cabrera
1934. Notas. Prelim. Mus. La Plata, 3, p. 124. Catamarca, Argentina.
8. GRAOMYS LOCKWOODI, Thomas 1918. Nnn. Mag. Nat. Hist. 9, I, p. 187.

Manuel Elordi, Vermejo, Salta Province, N.-W. Argentina.
9. GRAOMYS MEDIUS, Thomas
1919. Ann. Mag. Nat. Hist. 9, 11I, p. 494.

Chumbicha, Catamarca, N.-W. Argentina.
10. GRAOMYS TATERONA, Thomas
1926. Ann. Mag. Nat. Hist. 9, XVII, p. 320.

Tablada, Tarija district, S. Bolivia.

## Genus 36. PHYLLOTIS, Waterhouse

1837. Phyllotis, Waterhouse, Proc. Zool. Soc. London, p. 28.
1838. Auliscomys, Osgood, Field. Mus. Nat. Hist. Zool. ser. X, no. 13, p. 190. (Reithrodon pictus, Thomas.) Valid as a subgenus. 1916. Galenomys, Thomas, Ann. Mag. Nat. Hist. 8, XVII, p. 143. (Phyllotis garleppii, Thomas.) Valid as a subgenus.
Type Spectes.-Mus darwiniz, Waterhouse.
Range.-South America: Ecuador, Peru, Bolivia, Chile, Argentina, south to Southern Patagonia.
Number of Forms.-Thirty-six.
Characters.-Nasals long, broad, often broadened anteriorly to a certain degree; interparietal well developed; strong interorbital constriction is present, and supraorbital ridges scarcely developed; interorbital region not evenly divergent backwards. Normally the zygomata are not widely spreading. The type of nogalaris is a partial exception to this character, however, and forms a connecting link with Auliscomy; also the supraorbital ridges are more apparent in this species. Zygomatic plate cut sharply back above; palate and incisive foramina as in Hesperomys; zygoma slender; bullae not enlarged. The cheekteeth are more or less flat when cut, so far as seen, and tend to take on a more prismatic appearance than in Hesperomys, with the cusps not apparent; in the adult of the majority of the species, the upper molars wear down more or less to a pattern of transverse plates, with two folds each side of M.1. and one each side of M.2 and M.3 (M.2 lacking the usual anteroexternal fold, and N. 3 with the folds tending to isolate as islands). The outer fold of M. 2 may be enlarged. The folds alternate much less than in Sigmodon and Holochilus, and are altogether weaker, and there is little tendency for closed triangles to be
formed, and the folds are as a rule more open. The molars are less Microtine and strongly prismatic, and less hypsodont than in Chinchillula and Andinomys, the dentition being altogether weaker. But one species, P. wanthopygus, appears to be advancing in the direction of these two genera; it is more prismatic than the majority. M .3 is of medium size in the genus. $P$. amicus is the least hypsodont, most Hesperomys-like species in dentition, but the difference between it and Hesperomys appears quite well marked. Lower teeth: M. i with two inner, and two outer persistent folds, and usually a small posterointernal fold; \I. 2 with one persistent inner fold, and one outer one; also occasionally an anteroexternal fold (much reduced), and sometimes a minute posterointernal one. Cusps much less marked than in Hesperomys, and a strong tendency for the teeth to become flatcrowned. NI 3 lower simple, with one well-marked outer fold, and a very shallow anterointernal one which may wear out. Upper incisors plain.

Nlammae $2-2=8$. Tail usually longer than head and body, sometimes extremely so; feet normal, with fifth digit hindfoot not reduced; fur soft; ear large, sometimes extremely so. (These notes based on the typical subgenus.)

Auliscomys (Bolivia, Peru, Argentina, and to South Patagonia) was proposed as a subgenus of Plyyllotis by Osgood. 'The skull has more widely spreading zygomata than in normal Phyllotis, and the interorbital region is usually more constricted. Incisors slightly pro-odont, and may be very faintly grooved, or plain. Palate as in Phyllotis. Cheekteeth essentially as in normal Phyllotis as a rule, occasionally rather more prismatic; the anteroexternal fold of X1.2 usually less reduced; $\$ 1.3$ tending sometimes to be rather less reduced. Tail proportionately shorter than is usual in Plyllotis; of medium length, or in sublimis and leucurus strongly reduced, little over 50 per cent of head and body.
'This group was transferred by 'Thomas to Euneomys as a subgenus. But the molars of all Auliscomy's seen are of Phyllotis type, and quite different from the rather highly specialized Holochilus-like type found in Euneomys, in which the folds are oblique, deep, and narrow; the grooving of the incisors is variable and when present very weak in Auliscomys; and the palate posteriorly is as in Phyllotis, not Euneomy's; while as noted $\bar{P}$. nogalaris is intermediate in cranial characters hetween Auliscomy's and Phyllotis, though certainly Auliscomy's resembles Euncomys in cranial characters. There seems not the slightest need to give Auliscomys generic rank, as has been done.

Galexomys is based on one very little known form, of which there is only one broken skull in London; it seems a very distinct type, and perhaps might be given generic rank. 'The soles are partly haired (usually naked in Phyllotis and Auliscomys); the tail is very shortened, being only about 30 per cent of head and body length; the zygoma is narrow, but rises rather abruptly anteriorly to a considerable height. The incisors are rather pro-odont, but plain; the cheekteeth are as in Phyllotis.

In the typical subgenus Phyllotis, P. amicus and allies would probably form a species group, characterized by very small size, very long tail and large ears, and relatively brachyodont teeth; on dental characters probably xanthopyous
would also have to be regarded as type of a species group. According to Gyldenstolpe, osilae, oreigenus, and elegantulus are allied to amicus.
$P$. amicus and allies are usually under 100 mm . head and body length; the other species usually exceed this measurement. (To about 150 mm .)

Forms seen: andium, abrocodon, alsus, amicus, arenarius, boliziensis, darwinii, elegantulus, flaridior, garleppii, haggardi, leucurus, limatus, lutescens, maritimus, montanus, micropus, melamius, magister, nogalaris, posticalis, pictus, ricardulus, sublimis, stenops, tucumanus, vaccurum, wolffsohni, xanthopyigus.

List of Named Forms
Subgenus Phyllotis, Waterhouse

1. PHYLLOTIS ABROCODON, Thomas
2. Ann. Mag. Nat. Hist. 9, XVII, p. 316.

Oroya, Lake Junin, Central Peru.
2. PHYLLOTIS AMICUS AMICUS, Thomas 1900. Ann. Mag. Nat. Hist. 7, V, p. 355.

Tolon, Cajamarca district, N.-W. Peru.
3. PHYLLOTIS AMICL'S MLARITIML'S, Thomas 1900. Ann. Mag. Nat. Hist. 7, VI, p. 296.

Eten, N.-W. Peru.
4. PHYLLOTIS AMICUS MONTANLS, Thomas 1900. Ann. Mag. Nat. Hist. 7, VI, p. 297.

Rio Ustihe, Uramarca, N.-W. Peru.
5. PHYLLOTIS ANDIUM ANDIUA, Thomas 1912. Ann. Mag. Nat. Hist. 8, X, p. 409.

Cañar Province, Central Ecuador.
6. PHYLLOTIS ANDIUM STENOPS, Osgood
1914. Field. Mus. Nat. Hist. Zool. ser. X, no. 12, p. 165.

Rio Utcubamba, Chachapoyas, N. Peru.
(According to Thomas a synonym of $a$. andium.)
7. PHYLLOTIS ANDIUAI TANIBORUM, Osgood 1914. Field. Mus. Nat. Hist. Zool. ser. X, no. 12, p. 165.

Tambo Carrizal, east of Balsas, N. Peru.
8. PHYLLOTIS ARENARIUS, Thomas
1902. Ann. Mag. Nat. Hist. 7, IX, p. 224.

Uyuni, Potosi, Central Bolivia.
9. PHYLLOTIS DARWINII DARWINII, Waterhouse 1837. Proc. Zool. Soc. London, p. 28.

Coquimbo, Central Chile.
Synonym: dotichonyx, Philippi, 1900, An. Mus. Nac. d. Chile, 1, p. 58. Coquimbo P'rovince, Chile.
melanotis, Philippi, same reference, p. 39. Atacama Province, Chile.
campestris, Philippi, same reference, p. 38. Choapa, Chile. dichrous, Philippi, same reference, p. 14. Peine, Santiago Province, Chile.
(Phyllotrs dartinii darzinii) mollis, Philippi, same reference, p. 23. Santiago Province, Chile.
illapelinus, Philippi, same reference, p. 28. Illapel, Chile. segethi, Philippi, same reference, p. 30. Peine, Santiago Province, Chile.
to. PIIYLIOTIS DARWINII LINATUS, Thomas
1912. Ann. Mag. Nat. Hist. 8, X, p. 407.

Chosica, Lima district, W. Peru.
11. PHYLLftis DARWINil POSticalis, Thomas 1912. Ann. Mag. Nat. Hist. 8, X, p. +06.

Galera, south-west of Oroya, Junin district, P'eru.
12. PHYLLOTIS DARWINII VACCARL M. Thomas
1912. Ann. Mag. Nat. Hist. 8, X, p. 408.

Los Vacas, Mendoza, Argentina.
13. F'HYLLOTIS DEFINITL'S, Osgood
1915. Field. Mus. Nat. Hist. Zool. ser. X, no. 13, p. 189.

Macate, north-east of Chimbote, W. Peru.
14. PHYLLOTIS ELEGANTLILS, Thomas
1913. Ann. Mag. Nat. Hist. 8, NI, p. 139.

Pallatanga, Central Ecuador.
15. PHYLLOTIS FRLTICICOLL's, Anthony 1922. Amer. Mus. Nov. no. 32, p. I.

Guachanama, S. Ecuador.
16. PHYLLOTIS FLTSCLS, Anthony
1924. Amer. Mus, Nov, no. ily, p. 1.

Contrayerbas, Azuay Province, S. Ecuador.
17. PHYLLOTIS HAGGARDI, Thomas 1 Sg§. Ann. Mag. Nat. Hist. 7, I1, p. 270.

Mt. Pichincha, W. Ecuador.
18. PHILLOTIS LUTESCENS, Thomas 1902. Ann. Mag. Nat. Hist. 7, IX, p. 131

Choro, Rio Secure, Central Bolivia.
(y). PHYYLotis MAGiSTER. Thomas
1912. Im, Nag. Nat. Hist. S, N, p. 4o6.

Arequpa, S. Peru.
20. IPHYLLOTIS MIELANILS, Thomas
1913. Ann. Mag. Nat. Hist. S, X1, p. 407.

Porvenir, Bolivar Province, Central Ecuador.
21. PHYLLOTIS NOGALAR1S, Thmas
1921. Snn. Mag. Nat. Ilist. 9, VIII, p. 611.

Higuerilla, Valle Grande Dept. Jujuy, N.-W. Argentma.
22. PHYLLOTLS OREIGENLS, Cabrera
1926. Rev. Chilena de 11st. Nat. XXX, p. 319.

Laguna Blanca, Catamarca Province, N.-W. Argentına.
23. PHYLLotlis osilata, Allem

1go1. Bull. Amer. Mlus. Nat. Hist. XIV, p. 44. Osila, $\leftrightarrow$ Peru.
24. PHYLLOTIS RICARDULUS, Thomas
1919. Ann. Mag. Nat. Hist. 9, III, p. 493.

Otro Cerro, Catamarca Province, N.-W. Argentina.
25. PHYLLOTIS TUCUMIANUS, Thomas
1912. Ann. Mag. Nat. Hist. 8, X, p. 408.

Cunbre de Mala-mala, Sierra de Tucuman, Tucuman Province, N.-W. Argentina.
26. PHYLLOTIS WOLFFSOHNI, Thomas
1902. Ann. Mag. Nat. Hist. 7, IX, p. 131.

Tapacari, N. Bolivia.
27. PHYLLOTIS XANTHOPYGUS, Waterhouse
1837. Proc. Zool. Soc. London, p. 28.

Santa Crız, S. Patagonia.

## Subgenus Auliscomys, Osgood

28. PHYLLOTIS BOLIVIENSIS BOLIVIENSIS, Waterhouse
29. Ann. Mag. Nat. Hist. i, XVII, p. 483.

Potosi, Central Bolivia.
Synonym: zaterhousii, Trouessart, 188r, Bull. Soc. Études Sci. d'Angers (i880) fasc. iii, p. ${ }^{1} 38$.
29. PHYLLOTIS BOLIVIENSIS FLAVIDIOR, Thomas 1902. Ann. Mag. Nat. Hist. 7, X, p. 248.

Bateas, Caylloma, S. Peru.
30. PHYLLOTIS DECOLORATUS, Osgood 1915. Field. Mus. Nat. Hist. Zool. ser. X, no. 13, p. 191.

Tirapata, Puno district, S.-E. Peru.
31. PHYLLOTIS LEUCURUS, Thomas 1919. Ann. Mag. Nat. Hist. 9, IV, p. 129.

La Lagunita, Maimara, Jujuy, N.-W. Argentina.
32. PHYLLOTIS PICTUS, Thomas 1884. Proc. Zool. Soc. London, p. 457.

Junin, Lima district, Central Peru.
33. PHYLLOTIS MICROPUS MIICROPUS, Waterhouse 1837. Proc. Zool. Soc. London, p. 17.

Santa Cruz, S. Patagonia.
34. PHYLLOTIS MiCROPUS ALSUS, Thomas 1919. Ann. Mag. Nat. Hist. 9, III, p. 202.

Maiten, Chubut Territory, N.-W. Patagonia.
35. PHYLLOTIS SL"BLIMIS, Thomas 1900. Ann. Mag. Nat. Hist. 7, VI, p. 467.

Rinconado Malo Pass, Caylloma, S. Peru.

## Subgenus Galenomys, Thomas

36. PHYLLOTIS GARLIEPPII, Thomas
37. Ann. Mag. Nat. Hist. 7, I, p. 279.

Esperanza, near Mt. Sahama, Central Bolivia.

## Genus 37. CllINClHLLULA, Thomas

1Sq8. Chinchlleula, Thomas, Ann. Mag. Nat. Hist. 7, I, p. 28.
Type Species.-Chinchillula suhamae, Thomas.
Range.-Bolivia, extending into Peru.
Number of Forms. - One.
Characters.-Skull in general not unlike that of Andinomys; supraorbital ridges weak or absent; frontals relatively broad; interparietal large. Zygomatic plate scarcely cut back above, slanting backwards slightly from its lower border, but nearly straight. Palate about extending to posterior portion of toothrows. Molars very hypsodont; the folds two each side M.1, one each side M. 2 and M.3, the enamel loops nearly straight; M. 3 of moderate size. The pattern wears down, but is traceable even in extreme age, and in some ways approaches that of Irenomys, though much less angular than in this genus. Lower teeth like those of the upper series, but M. 2 with a vestigial anteroexternal fold, and the inner folds deeper than the outer ones. Teeth flatcrowned when cut.

Fur very soft, and with specialized and striking colour-pattern. Tail considerably shorter than head and body, fully haired. Feet broad, with normal pads; digits normal. Ear very large.

Forms seen: sahamae.

## List of Named Forms

1. ('HINCHILLULA SAHAMAE, 'Thomas
2. Ann. Mag. Nat. Hist. 7, I, p. 280.

Esperanza, near Mt. Sahama, Central Bolivia.

## Genus 38. IRENOMIY', 'Thomas

1919. Irenomys, Thomas, Ann. Mag. Nat. Hist. 9, III, p. 201.

Type Species.-Reithrodon longicaudatus, Philippi.
Range,-Southern Chile.
Number of Formis.--One.
Characters.-Skull (one adult seen only) with marked interorbital constriction, broad braincase; incisise foramina long, penetrating between toothrows; zygomatic plate straight anteriorly. Lpperincisors grooved. Upper checkteeth extremely hypsodont, laminate, three laminae on M.1, two on M.2, two on M. 3; each lamina separated by an inner and an outer re-entrant fold, these folds deep and opposite to each other, nearly meeting in middle line of tooth; two inner and two outer folds in M.1, one each side in other teeth; M. 3 with a small outer fold in posterior lamina. A young skull, cutting, shows an almost identical pattern. 'The pattern is like that of the Gerbil Meriones, except that M .3 is not reduced, and is about the most simplified type of dentition
in the subfamily. Lower molars similar, but slightly more complex; M. 2 with traces of an anteroesternal cusp; M. 3 with this cusp, and also with the outer fold very wide, the inner one obsolete. In the adult skin seen, the tail is much longer than the head and body; moderately haired, the end faintly tufted. Fur very thick. 1 lindfoot long, narrow, the digit pads rather thickened. Ear large.

Forms seen: longicaudatus, "mochae."

## List of Named Forms

r. irenomys longicaldatus, Philippi
1900. An. Mus. Nac. de Chile, 1, p. 64.

Coast region of W. Patagonia, Chile.
Synonym: (?)mochae, Philippi, 1900, An. Mus. Nac. de Chile, I, p. 42. Based on an immature example. Mocha Island, Chile. Probably best regarded as unidentifiable.

## Genus 39. NEOTOMY'S, Thomas

1894. Neotomys, Thomas, Ann. Mag. Nat. Hist. 6, XIV, p. 346.
'Type Species.-Neotomys ebriosus, Thomas.
Range.-Known from Peru, and North-west Argentina.
Number of Forms.-Two.
Characters.-Skull with extreme interorbital constriction, and supraorbital ridges not strong; interparietal well developed; nasals abruptly and abnormally expanded anteriorly; zygomatic plate strongly cut back above; incisive foramina long, prominent, the septum dividing them very broad; palate with deep pits situated each side in posterior portion, between which runs a thin raised ridge, the bony palate more or less ending on level of second molars. Bullae medium. Nandible with lower border heavy, well ridged, the coronoid process much reduced. Incisors very broad, the upper ones with a clear and narrow groove situated almost at outer corner of tooth. Upper cheekteeth: M.1 and M.2 similar in elements to Sigmodon, but the folds, though narrow, are straighter, so that the first molar is more or less formed by an anterior loop, two alternating closed triangles, and a partially divided posterior loop. X1.2 like M.i but with no anterointernal fold. N. 3 complex, larger than M.2, with two inner, three outer folds. In old age the pattern evidently becomes more Sigmodon-like. M. 3 always complex. Lower molars: M. 1 with two outer, three inner folds; M. 2 with one outer, two inner folds; M. 3 not enlarged, more or less S-shaped; the folds and lobes of the lower teeth straight, more prismatic in appearance than Sigmodon, and M. 2 evidently remaining more complex.

Mammae $2-2=8$. Fur very thick; tail shorter than head and body, well haired; digits not abnormal; form thickset, but size relatively small, or moderate. I have seen no specimens in which the teeth are cutting.

Forms seen: ebriosus, zulturnus.

# List of Named loorms 

1. NEOTONIY EBRIOSLS, Thomas
2. Ann. Mag. Nat. Hist. 6, XIV, p. 348 .

Vitoc Valley, Central P'eru.
2. NEUTOMI'S VLL'TERNUS, Thomas
1921. Jnn. Mag. Nat. Hist. 9. VIII, p. 612.

Sierra de Zenta, Jujuy Province, N.-IV. Argentina.
Genus qo. REITHRODON, Waterhouse
IS37. Reithrodon, Waterhouse, Proc. Zool. Soc. London, p. 29.
'Type Species.-Reithrodon typicus, Waterhouse.
Range.-Uruguay, Argentina, Chile, Patagonia.
Number of Forms.-Ten.
Characters.-Skull with supraorbital ridges weak or absent; abnormal interorbital constriction present, this carried far backwards, so that braincase is shortened; rostrum heavy; interparietal well developed. Zygomatic plate abnormal, with a very powerful forwardly projecting process present, under which it is concave, and over which it is very sharply cut back above, the general effect more exaggerated than in Sigmodon and other genera. Bullae medium. Zygoma narrow. Incisive foramina abnormally long, extending from back of incisors to about the middle of M..1. Palate considerably extended behind toothrows, and deeply excavated each side, with well-marked lateral pits in posterior portion. Posterior nares contracted; pterygoid fossae deep. The upper cheekteeth are near Holochilus, except that N1.3 is not specially enlarged; the folds are less oblique than in Euneomys, which was formerly included in the genus, but which seems to have a less angular dentition as well as differing in the $S$-shaped $\mathrm{NI}_{2} 2$ and in cranial characters; M. 2 is more complex in this genus, with two outer folds, and one inner one; M. 3 has two persistent outer folds, and one inner one; the second outer one curves backwards and sometimes may cut right across the posteroexternal part of the tooth. Teeth rather strongly hypsodont, and pattern evidently preserved until extreme age. 'The angles as a rule are less sharply projecting than in Holochilus. Lower molars: folds as IIolochilus; the anterior border of M.1, however, with usually a pointing projection in front, which may have a marked fold each side of it, in which case there are three outer and four inner folds, but this structure evidently suppressed with wear. It is interesting to note that a young specimen of this genus with the teeth just cutting has a pattern of the first molar (the sole tooth visible) almost exactly as in Andinomys. Upper incisors grooved.

Mammae $2-z-8$. Fur thick and soft. Ear relatively large. Ilindfoot long, the sole partly haired, 1). 5 and the hallux considerably shorter than the three centre digits; tail completely haired, about half head and body length, or slightly more than this.
loorms seen: caurinus, cuntentinm, cuniculoides, "ae, flammarum, hatcheri, marintes, pampanus, typicus.

## List of Named Forms

1. REITHRODON AURITUS AURITUS, Desmarest
2. Nouv. Dict. d'Hist. Nat. ze. ed. art. Rat. esp. 25.

Pampas south of Buenos Aires City, E. Argentina.
Synonym: cuniculoides pampanus, Thomas, 1916, Ann. Mag. Nat. Hist. 8, XVIII, p. 304. S. Buenos Aires Province, Argentina.
2. REITHRODON AURITUS MARINUS, Thomas
1920. Ann. Mag. Nat. Hist. 9, V, p. 474.

Mar del Plata, south-eastern sea coast of Buenos Aires l'rovince, Argentina.
3. REITHRODON CAURINUS, Thomas
1920. Ann. Nag. Nat. Hist. 9, V, p. 473.

Otro Cerro, Catamarca Province, N.-W. Argentina.
4. REITHRODON CUNICULOIDES CUNICULOIDES, Waterhouse
1837. Proc. Zool. Soc. London, p. 30.

Santa Cruz, E. Patagonia.
Synonym: (?)pachycephalus, Philippi, 1900, An. Mus. Nac. de Chile, 1, p. 42. Straits of Magellan.
5. REITHRODON CUNICULOIDES EVAE, Thomas 1927. Ann. Mag. Nat. Hist. 9, XIX, p. 652.

Zapala, Neuquen Territory, W. Argentina.
6. REITHRODON CUNICULOIDES FLAMMARUM, Thomas 1912. Ann. Mag. Nat. Hist. 8, X, p. 411.

Spring Hill, N. Tierra del Fuego.
7. REITHRODON CUNICULOIDES HATCHERI, Allen 1903. Bull. Amer. Mus. Nat. Hist. XIX, p. 191.

Upper Rio Chico de Santa Cruz, W. Patagonia.
(According to Thomas probably identical with c. cuniculoides.)
8. REITHRODON CLNICULOIDES OBSCURUS, Allen 1903. Bull. Amer. Mus. Nat. Hist. XIX, p. 190.

Punta Arenas, Straits of Magellan, S. Chile.
9. REITHRODON TYPICU'S TYPICUS, Waterhouse
1837. Proc. Zool. Soc. London, p. 30.

Maldonado, Uruguay.
10. REITHRODON TYPICUS CURRENTIUM, Thomas 1920. Ann. Mag. Nat. Hist. 9, V, p. 475.

Goya, Corrientes Province, E. Argentina.

## Genus 41. EUNEOMYS, Coues

1874. Euneomys, Coues, Proc. Acad. Sci. Philadelphia, XXVI, p. 185.

Type Species.-Reithrodon chinchilloides, Waterhouse.
Range.-Central Argentine (Mendoza), and Patagonia, south to Cape IIorn.
Number of Forms.-Four.
Characters.-Frontals extremely constricted; rostrum heavy: braincase relatively short; zygomata widely spreading. Zygomatic
plate almost straight anteriorly, very slightly cut back, much simpler than in Reithrodon. Palate broader posteriorly than anteriorly; incisive foramina extending between front molars. A pair of well-marked depressions are situated each side in the posterior part of the palate. Bullae not large. Incisors broad, one-grooved. Upper cheekteeth of Sigmoton type; dentition heavy; the folds very narrow, but deep, as Sigmodon, not open as Phyllotis, part of which (subgenus Auliscomys) was referred to the present genus by Thomas, but appears to have little to do with it, differing clearly in the dental pattern as well as the less specialized posterior palate. Folds of molars very deep; two each side of M. I, alternating so that the front outer one nearly joins the second inner one; M. 2 with a fold each side, S -shaped (simpler than Reithrodon); M1.3 a small replica of 11.2 . Lower cheekteeth of same type as the upper molars, the enamel thick; M. 3 S-shaped; M. 2 nearly so, but with a small posterointernal fold; M. 1 with two outer, three inner deep alternating folds, and a small anterior fold traceable.

Nammae $2-2=8$. Ear not reduced. Fur extremely thick and soft in the type species; tail relatively short, fully haired; claws not enlarged. M.r is evidently three-rooted.

This is not a common genus, and I have seen no specimens in which the teeth are cutting.

Forms seen: chinchilloides, dabbeni, mordax, ultimus.

## List of Named Formis

1. ELNFONIY (HINCHILLOIDES, Waterhouse
2. Zool. Voy. Beagle, pt. 2, Mamm. p. 72.
N. 'Tierra del Fuego.

Synonym: petersoni, Allen, 1903, Bull. Amer. Mus. Nat. Hist. XIX, p. 192. Upper Rio Chico, Santa Cruz, S.-W. Patagonia.
2. ELNEONIS DABBENI, Thomas
1919. Ann. Mag. Nat. I list. 9, IV, p. 127.

Lago Viedma, Santa Cruz Territory, S. Patagonia.
3. EUNEOMY'S MORDAX, Thomas
1912. Ann. Mag. Nat. Hist. 8, X, p. 7 to.

Fort San Rafael, Mendoza Province, W. Argentine.
4. EUNEOMIY LLTIMLES, Thomas
1916. Ann. Nag. Nat. Hist. 8, XVII, p. 185.

Ilermite Island, St. Martin's Cove, Cape Horn.

## Genus 42. CHELEMYSCUS, Thomas

1925. Chelemyscus, Thomas, Ann. Mag. Nat. Hist. 9, XV, p. 585.

Type Species.-Rcithrodon fossor, Thomas.
Ravge.-North-west Argentina.
Number of Forms.-One.

Characters.-Skull, including the specialized posterior palate, essentially as in Euneomys. Upper incisors grooved. Zygomatic plate slightly cut back above. Cheekteeth as in Euneomys. Lower incisor root showing on mandible below condyle. Externally more specialized for fossorial life than in Euneomys; ear very reduced; foreclaws extremely lengthened, about as in Notiomys (the claw of D. 5 shorter than that of the three central digits); fur soft; tail short, fully haired.

Forms seen: fossor.

## List of Named Forms

1. CHELEMY'SCUS FOSSOR, Thomas
2. Ann. Mag. Nat. Hist. 7, IV, p. 280. Salta, N.-W. Argentina.

## Genus 43. HOLOCH11LUS, Brandt

1835. Holochlus, Brandt, Mém. Acad. Imp. Sci. St. Petersb. 6, I, p. 428.

Type Specees.-Mus leucogaster, Brandt.
Range.-South America; Yenezuela, British Guiana, Brazil (Eastern), Peru, Paraguay, Uruguay, Argentina, Chile, Patagonia.
Number of Forms.-Fourteen.
Characters.-Skull with supraorbital ridges usually developed, and extending (not heavily) over the parietals; interparietal well developed; frontals considerably constricted. Zygomatic plate sharply cut back above, a small forwardly projecting process on upper border can be present. Incisors plain, relatively broad. Jugal in some specimens seen abnormally reduced, the zygomatic arch almost complete without it. Bullae moderate. Incisive foramina well open, but usually not extending quite to toothrows. Palate reaching behind $\mathrm{M}_{3}$, with lateral pits present. Coronoid process of mandible high, well developed.

Upper molars flatcrowned, prismatic, without cusps, but the folds not widely open. M. I with anterior loop, two alternating more or less closed triangles, and posterior loop, which is also usually composed of two more or less closed triangles; two folds each side of this tooth. M. 2 like M. 1 except that the anterointernal fold is suppressed; M. 3 is enlarged, the anterior loop followed by a deep outer and inner fold, and then a long rounded portion, the elements of which become obliterated, but in which one outer fold is usually traceable. When cut, there are no traces of cusps, and the molars are practically flatcrowned; the pattern is more complex; M. 3 has at least three outer re-entrant folds. The front loop of the adult in M. 3 may be isolated. The pattern appears to be preserved for a long time. Lower teeth: the permanent folds are, in 11.1 two outcr, three inner; in M1.2, one outer, two inner; M. 3 is S-shaped, but not enlarged. The anterior lobe of M. 1 usually with an isolated island present.

Form ratlike ; rather large; tail subequal in length to head and body as a rule,
and usually poorly haired, though in some forms, as $I I$. zulpinus, the under side has a swimming-fringe. Hindfoot noticeably larger than forefoot, the three centre digits considerably longer than the outer two; hindclaws prominent, and toes may be partly webbed.

Remarks.-If cranial and dental characters are to be relied on, this genus must be very closely allied to Sigmodon.
Forms seen: balnearum, chacarius, darwini, guianae, nanus, sciureus, zulpinus, berbicensis (Holochilus sciureus berbicensis, Morrison-Scott, 1937, from British Guiana).

## List of Named Forms

, HOLOCHILL'S AMAZONICUS, Osgood
1915. Field. Mus. Nat. Hist. Publ. Zool. ser. X, no. 13, p. 188.

Itacoatiara, Rio Amazonas, Central Brazil.
(According to Gyldenstolpe, "most certainly identical with II. sciureus.")
2. HOLOCHILLS BALNEARL'M, Thomas
1906. Ann. Mag. Nat. Hist. 7, XVIII, p. 447.

Banado de San Felipe, Tucuman Province, N.-W. Argentine.
3. HOLOCHILUS CHACARIC'S, Themas
1906. Ann. Mag. Nat. Hist. 7, NVIII, p. $44^{6}$.

Concepcion, Chaco, Paraguay:

+ HOLOCHILL'S DARUINF, Thomas

1897. Ann. Mag. Nat. Hist. 6, XIX, p. 496.

Bahia Blanca, Buenos Aires Province, S.-E. Argentine.
Synonym: braziliensis, Waterhouse, 1839 , Zool. Voy. Beagle, Mamm. p. 58.
5. HOLOCHILUS GC1ANAE, Thomas
1901. Ann. Mag. Nat. Hist. 7, VIII, p. 149.

Kanuku Mountains, British Guiana.
f. HOLOCHILLS INCARLM, Thomas 1920. Proc. U.S. Nat. Nus. LVIII, p. 226.

Santa Ana, Cuzco district, Central Peru.
7. HOLOCHHLLES NANL'S, Thomas
1897. Ann. Mag. Nat. Hist. 6, NIX, p. 495.

Source, Marajó Island, N.-E. Brazil.
\& HOLOCHILU'S PHYSODES PHYSODES, Lichtenstein
1827. Lichtenstein in Brants; Het geslacht d. Muizen, p. 139.

Sào Paulo Province, s. Brazil.
9. HOLOCHILLS PHYGODES LELCOG.ASTER, Brandt
1835. Mém. Acad. Imp. Sci. St. Petersb. VI, no. r, p. 42 S.

Brazil.
10. HOLOCHILL'S RLSSATLS, Wagner
i $\$ 50$. Abhandl. Akad. d. Wiss. in München, V, p. 312.
I'panema, Sào Paulo Province, S. Brazil.
11. HOLOCHILC's scitl RFE $s$, Wamer

18゙\&き. Arch. für Naturg. VIII, I, p. 17.
Rıo San Francisco, E. Brazil.
12. HOLOCHILUS SIMIPSONI, Philippi
r000. An. Mus. Nac. de Chile, 1, p. 29.
Santo Domingo Island, W. Patagonia.
13. HOLOCHILUS VENEZUELAE, Allen 1904. Bull. Amer. Mus. Nat. Hist. XX, p. 330.

El Llagual, Central Venezuela.
14. HOLOCHILUS VULPINUS, Lichtenstein
1827. In Brants, Het geslacht d. Muizen, p. 137.

Maldonado, Uruguay.
The form lutescens, Gay, 1849, Hist. Nat. Chili Zool., 1, p. II 8 , is probably based on a Rattus (alexandrinus) (Thomas, note in his copy of Gay).

## Genus 44. SIGMODON, Say \& Ord

1825. Sigmodon, Say \& Ord, Journ. Acad. Nat. Sci. Philadelphia, vol. 4, pt. 2, p. 352.
'Type Species.-Sigmodon hispidum, Say \& Ord.
Range.-From Southern United States (Florida, Texas, Arizona, New Mexico), through Mexico, including Yucatan, to Honduras, Guatemala, Costa Rica, Panama, and in South America from Venezuela Colombia, Ecuador, and Peru.

## Number of Forms.-Forty-seven.

Characters.-Skull with heavy rostrum, powerful supraorbital ridges which extend on to the parietals; interparietal broad; zygomatic plate very sharply cut back above, with forwardly projecting process on upper border; bullae moderate. Incisive foramina extending to toothrows. Palate broad, reaching behind M.3; lateral pits well developed; pterygoid fossae unusually deep; coronoid process on mandible well developed. Lower incisor root tends to show on mandible.

Upper cheekteeth heavy, flatcrowned, with long narrow folds; M.i with two outer ones, placed posteriorly, and two inner ones, placed anteriorly, the folds surrounded by thick enamel, the second inner fold nearly meeting the first outer one. M. 2 like M.1, but anterointernal fold absent. M. 3 with first fold usually extending across tooth, and isolating the anterior loop; in the second lamina thus formed is a deep re-entrant outer fold. When cut the pattern is nearly identical; and it is traceable until old age. No tendency for the folds to isolate on crown surface, except the anteroexternal one in M.z.

Lower cheekteeth: two outer folds in M.I, and three inner ones. M. 2 with one outer, two inner ones. M. 3 with one fold each side, more or less S-shaped. With wear, M.2 also becomes S-shaped often, owing to the disappearance of the front inner fold. Incisors broad, plain.

Mammae $3-2=10$. Fur short, harsh. Ear relatively small. Tail shorter than head and body, moderately or poorly haired; three centre digits of hindfoot considerably longer than the outer two; plantar pads 6 . Form thickset.

A fossil species or closely allied genus is described from Eastern Asia.

Forms seen: berlandieri, bogotensis, chiriquensis, colimae, hirsutus, hispidus, littoralis, lömbergi, mascotensis, puna, simonsi.

The forms occurring north of Panama were revised by Bailey, 1902, Proc. Biol. Soc. Washington, 15, p. ion ; two groups were recognized:
hispidus group, naked-tailed; and
fulzizenter group, hairy-tailed. The South American species are not revised.

## List of Named Forms

(Nearctic forms (north of Panama); revised by Bailey, Proc. Biol. Soc. Washington, XV, p. 101, 1902.)
hispidus Group

1. Sigmodon hispidu's hispidu's, Say \& Ord
2. Journ. Acad. Nat. Sci. Philadelphia, IV, pt. 2, p. 354.

St. Johns River, Florida.
2. SIGMODON HISPIDUS LITTORALIS, Chapman 1889. Bull. Amer. Mus, Nat. Hist. II, p. 118.

East Peninsula, opposite Micco, Brevard County, Florida.
3. SIGMODON HISPIDC'S SPADICIPYGU'S, Bangs 1898. Proc. Boston Soc. Nat. Hist. XXV1II, p. 192.

Cape Sable, Monroe County, Florida.
4. SIGMODON Hispidus exsputus, G. M. Allen
1920. Journ. Mamm. Baltimore, 1, p. 236.

Big Pine Key, one of the southern Florida Keys, Monroe County, Florida.
5. SIGMIODON HISPIDU'S TEXIANUS, Audubon \& Bachman
1853. Quadr. N. Amer. vol. 3, p. 229.

Brazus River, Texas.
6. SIGMIODCN IIISPIDES BERLANDIERI, Bard
1855. Proc. Acad. Nat. Sci. Philadelphia, VII, p. 333.

Rio Nazos, Coahuila, Mexico.
Synonym: hispidus pallidus, Mearns, 1897, Advance Sheet Proc. U.S. Nat. Mus. XX, p. 4. Left bank of Rio Grande, about 6 miles above El Paso, Texas.
7. SIGMIODON HISPIDLS CONFINIS, Goldman
1918. Proc. Biol. Soc. Washington, XXX1, p. 2 r.

Safford, Graham County, Arizona.
8. Sigiodon hispides cienegal. Howell
1919. Proc. Biol. Soc. Washington, XXXII, p. 16 r.

Bullock's Ranch, 4 miles east of Fort Lowell, Pima County, Arizona.
9. SGGModon hispides erenilets, Mearns
1897. Advance Sheet Proc. U.S. Nat. Mus, XX, p. \&

Cienega Well, 30 miles south of monument no. 204, Mexican boundary line, left bank of Colorado River, Sonora, Mexico.
10. SIGMODON HIAPIDL: ARIZONAE, Alearns
1890. Bull. Amer. Mus. Nat. Hist. I1, p. 287.

Fort Xerde, Yavapai County, Arızona.
ir. SIGMODON HISPIDLS MASCOTENSIS, Allen
1897. Bull. Amer. Mus. Nat. Hist. IX, p. 54.

Mineral San Sebastian, Mascota, Jalisco, Mexico.
Synonym: colimae, Allen, 1897, Bull. Amer. Mus. Nat. Hist. IX, p. 55. Plains of Colima, Mexico.
12. SIGMODON HISPIDL'S TONALENSIS, Bailey 1902. Proc. Biol. Soc. Washington, XV, p. 109. Tonala, Chiapas, Mexico.
13. SIGMODON HISPIDU'S GRISEU'S, Allen 1908. Bult. Amer. Mus. Nat. Hist. XXIV, p. 657. Chontales, coast lowlands, Nicaragua.
14. SIGMODON HISPIDCS BAILEYI, Allen 1903. Bull. Amer. Mus. Nat. Hist. XIX, p. 601.

La Cienaga de las Vacas, N゙.-W. Durango, Mexico.
15. SIGMODON HISPIDUS MAJOR, Bailey
1902. Proc. Biol. Soc. Washington, XV, p. 109.

Sierra de Choix, 50 miles north-east of Choix, Sinaloa, Mexico.
16. SIGMODON HISPIDUS INEXORATUS, Elliot 1903. Field. Columb. Mus. Publ. 71, z.s. vol. 3, p. 144. Ocotlan, Jalisco, Mexico.
17. SIGMODON HISPIDUS JACKSONI, Goldman 1918. Proc. Biol. Soc. Washington, XXXI, p. 22.

3 miles north of Fort Whipple, Yavapai County, Arizona.
18. SIGMODON HISPIDUS TOLTECUS, Saussure 1860. Rev. et Mag. Zool. z, XII, p. 98.

Mountains of Vera Cruz, Mexico.
19. SIGMODON HISPIDUS SATURATL'S, Bailey
1902. Proc. Biol. Soc. Washington, XV, p. IIr.

Teapa, Tabasco, Mexico.
20. SIGMODON HISPIDL'S FURVUS, Bangs
1903. Bull. Mus. Comp. Zool. Harvard Coll. XXXIX, p. 15 S.

Ceiba, Honduras.
Synonym: fervidus, Lydekker, Zool. Record. vol. 40, 1903, Mammals, p. 34.
21. SIGMODON HISPIDU'S MICRODON, Bailey
1902. Proc. Biol. Soc. Washington, XV, p. 11 I.

Puerto Morelos, Yucatan, Mexico.
22. SIGMIODON HISPIDL'S BORLCAE, Allen
1897. Bull. Amer. Mus. Nat. Hist. IX, p. 40.

Boruca, Costa Rica.

```
    23. SIGMIODON HISPIDL'S CHIRIQLENSIS, Allen
1904. Bull. Amer. Mus. Nat. Hist. XX, p. 68.
            Boqueron, Chiriqui, Panama.
    24. SIGMODON HISPIDES PLENUS, Goidman
1928. Proc. Biol. Soc, Washington, XLI, p. 205.
    Parker, Arizona.
```

25. SIGAIODON ALSTERULLS, Bangs
26. Bull. Nus. Comp. Zool. Harvard Coll. XXXIX, p. 32.

Volcan de Chiriqui, Panama.
26. SIGMODON V゙ULCANI, Allen
1906. Bull. Amer. Nius. Nat. Hist. XXII, p. 247. Volcan de Fuego, Jalisco, Mexico.
27. SIG.MODON ALLENI, Baley
1902. Proc. Biol. Soc. Washington, XV, P. 112. San Sebastian, Mascota, Jalisco, Mexico,
(A synonym of mascotensis according to Allen, 1906.)
28. SIGNIODON ZANJUNENBLS, Goodwm 1932. Amer. Mus. Nov. no. 528, p. 1. Zanjon, Guatemala.

## fulriventer Group

29. SIGM(ODON GUERRERFNSIS, Nelson \& Goldman 1933. Proc. Biol. Soc. Vashington, XLVI, p. 196. Omilteme, Guerrero, Mexico,
30. SIG.\IODON FULVIVENTER, Allen 1889. Bull. Amer. Nus. Nat. Hist. 1I, p. ISo. Zacatecas, State of Zacatecas, Mexico.
31. SIGMODOX NELANOTIS, Barley
32. Proc. Biol. Soc. Washington, XV, p. 117.

Patzcuaro, Michoacan, Muxico.
32. LIGMODON MINIMUS MHNINIUS, Jearns

IS94. Proc. U.S. Nat. Nus. XVII, p. 130.
Upper corner monument, Grant County, New Mexico.
33. SIGNIODON MINIMLS GOLDMANI, Baley
1913. Proc. Biol. Soc. Washington, XXVI, p. 132.

7 miles north of Palomas, Quay County, New Mexico.
34. SIGMODON OCHROGNATHLS, Bailey
1902. Proc. Biol. Soc. Washington, XV, p. 115.

Chisos Mountains, Brewster County, Texas.
35. HGMODON LELCOTJS, Bailey
1902. Proc. Biol. Soc. Washington, XV, p. 115.

Valparaiso Mountains, Zacatecas, Mexico.
36. SIGMODON AJTICOLA ALTICOLA, Bailey
1902. Proc. Biol. Soc. Washington, XV, p. 116.

Cerro San Felipe, Oaxaca, Mexico.
37. SIGMODUN ALTICOLA ANIOLES, Bailey
1902. Proc. Biol. Soc. Washington, XV, p. 116.

Pinal de Amoles, Queretaro, Mexico.
38. SIGMODON PLANIFRONS, Nelson \& Goldman
1933. Proc. Biol. Soc. Washington, NLVI, p. 197.

Juquila, S.-IV. Oaxaca, Mexico.

Neotropical forms (unrevised; species listed alphabetically).
39. SIGMODON BOGOTENSIS, Allen
1897. Bull. Amer. Mus. Nat. Hist. IX, p. 121.

Quebrada Seco, Rio Magdalena, W. Colombia.
40. SIGMODON CHONENSIS, Allen
1913. Bull. Amer. Mus. Nat. Hist. XXXII, p. 479.

Chone, Manavi Province, W. Ecuador.
4r. SIGMODON HIRSUTUS, Burmeister 1854. Sitz. Naturf. Gesellsch. Halle, p. 16. Maracaibo, N.-W. Venezuela.
42. SIGMODON INOPINATUS, Anthony
1924. Amer. Mus. Nov, no. 114, p. 3.

Urbina, MIt. Chimborazo, Ecuador.
43. SIGMODON LONNBERGI, Thomas 192 I. Ann. Mag. Nat. Hist. 9, VII, p. 448. Quevedo, Rio Palenque, S.-IV. Ecuador.
44. SIGMODON PERUANUS, Allen 1897. Bull. Amer. Mus. Nat. Hist. IX, p. 18. Trujillo, Cajabamba district, N.-W. Peru.
45. SIGMODON PUNA, Allen
1903. Bull. Amer. Mus. Nat. Hist. NIX, p. 99. Puna, Puna Island, W. Ecuador.
46. SIGMODON SANCTAEMLARTAE, Bangs
1898. Proc. Biol. Soc. Washington, X11, p. 189.

Pueblo Viejo, Sierra Nevada de Santa Marta, N゙.-E. Colombia.
47. SIGMODON SINIONSI, Allen

190r. Bull. Amer. Mus. Nat. Hist. XIV, p. 40.
Eten, N.-W. Peru.

## Genus 45. SIGMIOMI'S, Thomas

1901. Sigmomys, Thomas, Ann. Mag. Nat. Hist. 7, VIII, p. 150.

Type Species.-Reithrodon alstoni, Thomas.
Range.-British Guiana and Venezuela.
Number of Forms.-Three.
Charactrrs.-Essentially like Sigmodon, but upper incisors one-grooved, and cheekteeth tending to become more shortened anteroposteriorly: Supraorbital ridges lighter. Nammae 3-2-10.

Forms seen: alstoni, savannarum, zenester.

## List of Named Formis

1. SIGMOMY's ALSTONI, Thomas
2. Proc. Zool. Soc. London, p. 69 r.

Cumana district, N. Venezuela.
2. Sl(;NOMIYS $\triangle A V+N N A R T M$, Thomas
1001. Ann. Nlag. Nat. Hist. 7, Vlli, p. 150.

Base of Kanuku Nountains, British Guama.
3. SIG.DUAM's VENENTER, Thomas
1914. Ann. Mag, Nat Hist, 8, XIV, p. 412.

El Trompillo, Lake Valencaa, N. Venezuela.
Genus 46. ANDINOMIYS, Thomas
1902. Andinomys, Thomas, Proc. Zool. Soc. London, i, p. 116.

Type Specifs-Andinomys cdax, Thomas.
Range,-Bolivia. (A new race is named, 1937, from Tucuman, Argentina.)
Nember of Forais (to 1936).-One.
Characters.-Skull of the same type as Auliscomys, with much interorbital constriction, and widely spreading zygomata. Braincase reduced; rostrum heavy, and nasals broad, expanded anteriorly, Zygomatic plate concave in front, and sharply cut back above. 'Toothrows slightly divergent posteriorly. Palatal foramina very long. Incisors broad. Cheekteeth strongly hypsodont, more prismatic than Phyllotis, flatcrowned when cut; M. 3 moderate; M1.1 originally with lour deep alternating folds; M1.2 with two outer, and one inner folds; M. 3 with a fold each side; the folds deep, well open, persistent; but the pattern becoming simplified with age. Lower tecth complex; M. i with three well-marked inner folds, and one fold in front of the tooth, also three outer folds, of which the centre one is deep, the outer two shallow. M.z with two folds each side, the posteroexternal one shallow; $\$ 1.3$ in adult retains only the one outer fold. M.i lower appears very complex and different from Phyllotis originally, but becomes considerably simplified with wear.

Form thickset; externally with no special peculiarities; tail not reduced, sometimes not fully haired; mammae $2-2=8$; plantar pads evidently 6 . In the young animals, the molars in this genus are about as prismatic as in Neotoma.

Forms seen: edax.

> List of Namied Formis

1. ANDINOMIS EDAX, Thomas
2. Proc. Zool. Soc. London, i, p. 116.

El Cabrado, between Potosi and Sucre, Central Bolivia.

## Genus 47. NEOTOMODON, Merriam

1898. Neotomodon, Merriam, Proc. Biol. Soc. Washington, NIl, p. 127.

Typf Specifs.-Neotomodon alstoni, Merriam.
Range.-Mexico: Michoacan, Puebla, Vera Cruz.
Number of Forms.-'Three.
Remarks.- This genus is represented in London only by one skull with very much worn teeth, so that perhaps it would have been
wiser if I had left it out; but for the sake of completeness I have included it, though its position in the key must be taken as provisional, and may be erroneous.

Characters.-Palate extending to just behind M. 3 (compare Neotoma and allies). Bullae not large. Interparietal well developed. Incisive foramina extending between the toothrows. "Molars large, rooted, and very massive, with flat crowns and heavy enamel, as Neotoma; enamel loops open throughout; M.I and M. 2 essentially alike; each with three salient enamel loops and two deep re-entrant angles on the outer side, and two salient loops, one shallow re-entrant angle on the inner side, as in Neotoma desertorum, from which the teeth differ in having the loops more nearly transverse. . . . M. 3 a cylindrical peg. Enamel pattern of lower molars in general like that of Hodomy's, with differences in detail; M.1 and M. 2 with three salient loops and two reentrant angles each side, the middle loops of the two sides not opposite; M. 2 with anterior loop on outer side narrow and followed by a shallow re-entrant angle; M. 3 shaped much like a letter S" (Merriam).

Goldman states that Neotomodon differs from the "Neotominae" in having the molar crowns half tuberculate in early life, in the shortness of the re-entrant angles, which in quite young individuals do not reach the alveoli, as well as in the extension of palatal bridges to posterior plane of last molars.

Mammae 6 (Merriam). Plantar pads 6 . Thick furred, rather small Rats with prominent ear and relatively well-haired long tail.

Forms seen : alstoni.

## List of Named Forms

1. NEOTOMODON ALSTONI, Merriam

I898. Proc. Biol. Soc. Washington, X1I, p. 128.
Nahuatzin, Michoacan, Mexico.
2. NEOTOMIODON ORIZABAE, Merriam

I898. Proc. Biol. Soc. Washington, XII, p. 129.
Mt. Orizaba, Puebla, Mexico.
3. NEOTOMODON PEROTENSIS, Merriam
1898. Proc. Biol. Soc. Washington, XII, p. 129.

Cofre de Perote, Vera Cruz, Mexico.

## Genus 48. NEOTONA, Say \& Ord

1825. Neotoma, Say \& Ord, Journ. Acad. Sci. Philadelphia, 4, p. 2, p. 345.
1826. Homodontomys, Goldman, North Amer. Fauna, no. 31, p. 86. (Neotoma fuscipes, Baird.) Valid as a subgenus.
1827. Teonoma, Gray, List. Spec. Mamm. Brit. Mus. p. iri7. (Myoxus drummondi, Richardson.) Valid as a subgenus.

Type Species.-Mus floridana, Ord.
Range.-North America: forms named from British Columbia and Alberta (subgenus Teonoma only); Washington, Oregon, Utah, Colorado, Nevada, Arizona, New Mexico, California, Lower California; Texas, Kansas,

Oklahoma, Nebraska, South Dakota, Illinois, Louisiana, Georgia, Florida, Pennsylvania; most of Mexico, and south to Guatemala and Nicaragua.

Number of Formis. - Ninety-six.
Cilaracters.-Skull with great interorbital constriction, supraorbital ridges usually developed, but not prominent; interparietal broader but otherwise as in Hodomys (below); rostrum pointed. Kygomatic plate evidently rather variable, but slightly cut back above. Incisive foramina broad and long, extending to toothrows. Bullae relatively large, hut may vary in size in the genus. Palate terminating about on a level with front portion of M.3. Coronoid process of mandible high. ('heekteeth flatcrowned, prismatic, and hypsodont, in appearance reminiscent of those of the Microtinae; M. with two outer, two inner folds, the anterointernal fold not deep, and sometimes may be suppressed, as in lepida; deepest in the mexicana group, and pennsylvanica. M. 2 with two outer, one inner folds; M. 3 with a similar pattern to $M .2$ as regards the folds, the inner fold weak, the middle transverse loop typically not divided. Outer fold originally deep, and dentine spaces sharp and angular; in M. 2, the first outer fold nearly meets the inner one; the second outer fold is deep; on M. 1, the second main inner fold meets or nearly meets the front outer one. The pattern becomes obliterated in old age. Lower cheektecth: two outer folds in M. I and M.2, one in M.3; three inner folds in M.1 (the anterointernal one can be ahsent); two inner folds in M.2, and one in M.3; the latter tooth is not Sshaped as in allied genera, but is formed by two straight transserse loops; the lobes formed by these folds in the lower molars are nearly straight. 'The outer folds, except of M.3 , are usually shallow.

Form Ratlike; size large. Tail relatively long, well haired, but not bushy in the typical subgenus. D. 5 of hindfoot relatively long.

Homodontomys is proposed as a subgenus for $N$. fuscipes group on account of the fact that the toothrow is only slightly narrower posteriorly than anteriorly, and M. 3 is broader than typical Neotoma, the middle enamel loop being partiallydivided by deepening of the inner re-entrant fold, so that sometimes this tooth may be divided into four closed triangles. External characters as in Ncotoma.

Teonoma is used as a subgenus for the cinerea group, in which the tail is about as bushy as that of a Dormouse or Squirrel. The sole is hairy, but the pads are not suppressed nor concealed. The skull is rather more angular as a rule than in Neotoma, and the ridges are better developed. Bullae large; cheektecth near Neotoma s.s., the anterointernal fold of M. i deep.

The genus is fully revised by Goldman, North Amer. Fauna, No. 3 r, 1910. Typical Neotoma is divided into six groups by this author, typified respectively by floridana, albigula, intermedia, mexicana, desertormm, and pemsy/zanica.

I have for reference purposes noted the chief characters of each group, hased on Goldman's key. In the first two groups, M. i has the anterointernal fold deep.

The pennsylanica group contains a large species (hindfoot more than fo), differing from other members of the genus in cranial characters.
The mexicuma group contains smaller forms, hindfoot $f 0$ and less.

In the remainder of the typical subgenus, the first upper molar has the anterointernal fold shallow or ahsent.
'l'he desertorum group contains small forms, total length less than 320 mm . The remainder with one exception have the total length more than 320.
'The floridana group differs from those that remain in having the interpterygoid fossae wider, and the bullae relatively smaller.
'The albigula group have the interpterygoid fossae narrower and the bullae relatively larger than the last; the rostrum is shorter and heavier than in the intermedia group which is said to have the rostrum long and more slender.

For full details see Goldman's revision.
Forms seen: affinis, annectens, arenacea, bryanti, cinerea, drummondii, fallax, floridana, ferruginea, fuscipes, intermedia, lepida, macrotis, micropus, mexicana, occidentalis, pennsylvanica, sinaloae, streatori, tennicauda.

Range maps of some of the groups will be found in Anthony, Field Book North Amer. Nammals, 1928. It will be seen that $N$. cinerea extends north just into Yukon.

## List of Named Forms

(Revised by Goldman, North Amer. Fauna, No. 31, 1910.)
Subgenus Neotoma, Say \& Ord
floridana group

1. NEOTOMA FLORIDANA FLORIDANA, Ord 1818. Bull. Soc. Philom. Paris, p. 181.

St. Johns River, Florida, probably near Jacksonville, Duval County.
2. NEOTONA FLORIDANA RUBIDA, Bangs
1898. Proc. Boston Soc. Nat. Hist. XXVIII, p. 185.

Gibson, 'Terrebonne Parish, Louisiana.
3. NEOTOMA FLORIDANA ILLINOENSIS, Howell
1910. Proc. Biol. Soc. Washington, XXII, p. 28.

Wolflake, Union County, Itlinois.
4. NEOTOMA FLORIDANA BAILEYI, Merriam 1894. Proc. Biol. Soc. Washington, IX, p. s 23.

Valentine, Cherry County, Nebraska.
5. NEOTOMA FLORIDANA CAMPESTRIS, Allen
1894. Bull. Amer. Mus. Nat. Hist. VI, p. 322.

Pendennis, Lane County, Kansas.
6. NEOTONA FLORIDANA ATTWATERI, Meams
1897. Proc. U.S. Nat. Mus. NIX, p. 721.

Lacey's Ranch, Turtle Creek, lierr County, Texas.

- NEOTOMA FLORIDANA HAEMATOREIA, Howell

1934. Proc. Nat. Sci. Acad. Philadelphia, LXXXVI, p. 403.

Summit of Blood Mountain, Lumpkin County, Georgia.

勺. NEOTO,MA MICROPL'S MIICROPLS, Baird
1855. Proc. Acad. Nat. Sci. Philadelphia, VIT, p. 333.

Charco Escondido, Tamaulipas, Mexico.
Synonym: surberi, Elliot, 1899, Field Columb. Mus. publ. 37, zool. ser. vol. 1, P. 279. 3 miles west of Alva, Woods County, Oklahoma.
9. NFOTOMA MICROPLS CANESCENS, Allen
1891. Bull. Amer. Mus. Nat. Hist. I1I, p. 285.

North Beaver Creck, Beaver County, Oklahoma.
10. NEOTOMIA MICROPU'S LITTORALIS, Goldman 1905. Proc. Biol. Soc. Washington, XVIJI, p. 31.

Alta Mira, Tamaulipas, Mexico.
II. NEOTOMA NHCROPLS PLANICEPS, Goldman 1905. Proc. Biol. Soc. Washington, XVIII, p. 32.

Rıo Verde, San Luis Potosi, Xlexico.
12. NEOTOMIA MICROPUS LELCOPHAEA, Goldman
1933. Journ. Washington Acad. Sci. 23, p. 472.

White Sands, ro miles west of Point of Sands, National Nonument, Otero County, New Mexico.
albigula Group
3. NEOTOMLA ALBIGLLA ALBIGCLA, Hartley
1894. Proc. Cal. Acad. Sci. ser. 2, IV, p. 157.

Vicinity of Fort Lowell, near Tucson, Pima County, Arizona.
Synonym: imtermedia angusticeps, Merriam, i894, Proc. Biol. Soc. Washington 1., p. 127. New Mexico.
14. NEOTONIA ALBIGULA NEARNSI, Goldman 1915. Proc. Biol. Soc. Washington, SXVIII, p. I 35.

Tinajas Atlas, Gila Mountains, Yuma County, Arizona.
15. NEOTOMIA ALBIGLLA SHELDONI, Goldman 1915. Proc. IBiol. Soc. Washington, XXVIII, p. 136.

Pinacate Mountains (Papago Tanks), Sonora, Mexico.
16. NEOTONA ALBIGLLA VENLATA, True IS94. Proc. U.S. Nat. Mus. NVII, p. 354.

Carrizo Creek, Imperial County, California.
Synonym: chmulator, Mearns, ISoS, Proc. U.S. Nat. Mus. S. . p. 503. (Old Fort Yuma, Imperial County, California.
desertorum grandis, Elliot, igo3. Field Columb. Mus. Publ. Zool. 3, p. 247. Cameron Lake, Kern County, Califorma.
17. NE(TTOMA ALBIGLLA WARREXI, Nerram
1908. Proc. Biol. Soc. Washington, XXI, p. $1+3$.

Gaume's Ranch, Baca County (north-west comer), Colorado.
18. NEOTOMIA AIBIGELA MELANLRA, Nerriam

1894 . Proc. Biol. Soc. Washington, 1X, p. 126.
Ortiz, Sonora, Mlexico.
10. NEJTOMA ALBIGLLA LELCODON, Nerriam
1894. Proc. Biol. Soc. Washington, IX, p. 120.

San Luis Potosi, State of San Lus Potosi, Mexico.
20. Neotoma albigula durangae, Allen 1903. Bull. Amer. Mus. Nat. Hist, NIX, p. 602. San Gabriel, N.-W. Durango, Mexico.
21. NEOTOMA ALBIGULA ZACATECAE, Goldman 1905. Proc. Biol. Soc. Washington, XVIII, p. 30. Plateado, Zacatecas, Mexico.
22. NEOTOMA ALBIGULA SERI. Townsend 1912. Bull. Amer. Mus. Nat. Hist. XXXI, p. 125. Tiburon Island, Gulf of California, Sonora, Mexico.
23. NeOtOMA ALbigULA MELAS, Dice 1929. Occ. Pap. Mus. Zool. Univ. Mich. no. 203, p. 3. Malpais lava beds, near Carrizozo, Lincoln County, New Mexico.
24. NEOTOMA ALbigUla Laplataensis, Miller
1933. Proc. Colorado Mus. Nat. Hist. 12, no. 1, p. 2. Near Bondad, La Plata County, Colorado.
25. NEOTOMA ALBIGULA BREVICAUDA, Durrant 1934. Journ. Namm. Baltimore, 15, p. 65. Castle Valley, about 15 miles north-east of Moab, Grand County, U'tah.
26. NEOTOMA LATIFRONS, Merriam 1894. Proc. Biol. Soc. Washington, IX, p. 121. Querendaro, Michoacan, Mexico.
27. NEOTOMA NELSONI, Goldman 1905. Proc. Biol. Soc. Washington, XV1I1, p. 29. Perote, Vera Cruz, Mexico.
28. NEOTOMA PALATINA, Goldman 1905. Proc. Biol. Soc. Washington, XVIII, p. 27. Bolanos, Jalisco, Mexico.
29. NEOTOMA MONTEZUMAE, Goldman 1905. Proc. Biol, Soc. Washington, XVIII, p. 29. Zimapan, Hidalgo, Mexico.
30. Neotoma varia, Burt 1932. Trans. S. Diego Nat. Hist. Soc. 7, p. 178. Turners Island, Gulf of California, Sonora, Mexico.

## intermedia Group

31. NEOTOMA INTERMEDIA INTERMEDIA, Rhoads
iS94. Amer. Nat. NXVIII, p. 68.
Dulzura, San Diego County, California. Synonym : californica, Price, 1894, Proc. Cal. Ac. Sci. ser. 2, IV', p. 154, pl. 11. Bear Valley, San Benito County, California.
32. NEOTOMA INTERMEIIA GILVA, Rhoads
33. Amer. Nat. NXVIII, p. 69.

Banning, Riverside County, California.
Synonym: desertorum sola, Merriam, 1894, Proc. Biol. Soc. Washington, IX, p. 126. San Emigdio, Kern County, California.
bella felipensis, Elliot, 1903, Field. Columb. Nus. Publ. 79, Zool. ser. 3, p. 217. San Felipe, Lower California.
33. NEOTOM.A 1NTERMEDIA PRI:T1OSA, Goldman
1909. Proc. Biol. Soc. Washington, XXII, p. 139.

Matancita, 50 miles north of Magdalena Bay, Lower California
34. NEOTOMA INTERMEDIA ARENACEA, Allen 1898. Bull. Amer. Mus. Nat. Hist. K, p. 150.

San José del Cabo, Lower California.
35. NEOTOMA INTERDIEDIA VICINA, Goldman 1909. Proc. Biol. Soc. Washington, XXII, p. i40.

Espiritu Santo Island, Gulf of California, Lower California.
36. NEOTONA INTERMIEDIA PERPALIIDA, Goldman
1909. Proc. Biol. Soc. Washington, XXII, p. 139.

San José Island, Gulf of California, Lower C'aliforna.
37. NEOTONA INTERMEDIA DEVIA, Goldman 1927. Proc. Biol. Soc. Washington, XL, p. 205.

Tanner 'Tank, Painted Desert, Arizona.
38. NEOTOMA INTERMEDIA RAVIDA, Nelson \& Goldman 1931. Proc. Biol. Soc. Washington, KLIV, p. 107. Comondu, S. Lower California.
39. NEOTOMA IN'TERMEDIA NOT1A, Nelson \& Goldman 1931. Proc. Biol. Soc. Washington, LXIV, ए. 108.

La Laguna, Sierra de la Victoria, S. Lower California.
40. NEOTOMA INSLLARIS, Townsend 1912. Bull. Amer. Mus. Nat. Hist. NXXI, p. 125.

Angel de la Guardia Island, Gulf of California, Lower California.
41. NEOTOMIA ABBRIVVIATA, Goldman 1009. Proc. Biol. Soc. Washington, XXII, p. Ifo.

San Francisco 1sland, near southern end of San José Island, Gulf of California, Lower California.
42. NEOTOMA NLDICAUDA, Goldman 1905. Proc. Biol. Soc. Washington, XV111, p. 28.

Carmen Island, Gulf of California, Lower California.
43. NEOTONIA BRYANTI, Merriam
1887. Amer. Nat. XXI, p. 191.

Cerros Island, Lower California.
4. NEOTOMA ANTHONY1, Allen

I898. Bull. Amer. Mus, Nat. Hist. X, p. 151.
T'odos Santos Island, Lower Califorma.
45. NEOTOMA MARTINENSIS, Goldman
1905. Proc. Biol. Soc. Washington, XVIII, p. 28.

San Martin Island, Lower California.

## mevicana Group

46. NEOTOMTA M1EXICANA MEKICANA, Baird

I 855. Proc. Acad. Nat. Sci. Philadelphia, VII, p. 333.
Aountains near Chihuahua, State of Chihuahua, Mexico.
47. NEOTOMA MEXIC.ANA FALLAN, Merram
${ }^{1894}$. Proc. Biol. Soc. Washington, IX, p, 123.
Gold Ilill, Boulder County, Colorado.
48. NEOTOMA MINICANA PINETORUN, Merriam
1893. Proc. Biol. Soc. Washington, VIII, p. 111.

San Francisco Mountain, Coconino County, Arizona.
49. NEOTOMA MENICANA BULLATA, Merriam
1894. Proc. Biol. Soc. Washington, IX, p. 122.

Santa Catalina Mountains, Pima County, Arizona.
50. NEOTOMLA MEXICANA MADRENSIS, Goldman
1905. Proc. Biol. Soc. Washington, XVIII, p. 31.

Sierra Madra, near Guadelupe y Calvo, Chihuahua, Mexico.
51. NEOTOMA MEKICANA SINALOAE, Allen
1898. Bull. Amer. Mus. Nat. Hist. X, p. 149.

Tatemeles, Sinaloa, Mcxico.
52. NEOTOMA MEXICANA INOPINATA, Goldman 1933. Journ. Washington Acad. Sci. 23, no. ro, p. 471.

Chuska Mountains, N.-W. New Mexico.
53. NeOTOMA NAVLS, Merriam
1903. Proc. Biol. Soc, Washington, XV1, p. 47.

Sierra Guadelupe, Coahuila, Mexico.
54. NEOTOMA TORQLATA, Ward

1S91. Amer. Nat. XXV, p. 160.
Abandoned mine between Tetela del Volcan and Zacualpan, Morelos, Mexico.
Synonym: fulviventer, Merriam, Proc. Biol. Soc. Washington, IX, p. 121, 1894 . Toluca Valley, State of Mexico.
orizabae, Merriam, 1894, Proc. Biol. Soc. Washington, IX, p. 122. Mt. Orizaba, Puebla, Mexico.
55. NEOTOMA DISTINCTA, Bangs
1903. Proc. Biol. Soc. Washington, XV1, p. 89.

Teocelo, near Jalapa, Vera Cruz, Mexico.
56. NEOTOMA TROPICALIS, Goldman
1904. Proc. Biol. Soc. Washington, XVII, p. Si.

Totontepec, Oxxaca, Mexico.
57. NEOTOMA PARVIDENS, Goldman
1904. Proc. Biol. Soc. Washington, XVII, p. 81 . Juquila, Oaxaca, Mexico.
58. NEOTOMA FERRUGINEA FERRUGINEA, Tomes 1861. Proc. Zool. Soc. London, p. 282.

Dueñas, Guatemala.
59. NEOTOMA FERRUGINEA CHAMULA, Goldman 1909. Proc. Biol. Soc. Washington, XXII, p. 141.

Mountains near San Cristobal, Chiapas, Mexico.
fio. NEOTOMA FERRLGINEA SOLITARIA, Goldman 1005. Proc. Biol. Soc. Washington, XVIII, p. 31. Nenton, Guatemala.

[^12]6z．NEOTUNLA FERRTGINEA PIC＂TA，Goldman 1904．Proc．Biol．soc．Washington，XV＇11，p． 79.

Mountains near Chilpancıngo，Guerrero，Mexico．
63．NEOTOMA FERRLGINEA T\＆NLICALDA，Merram
1892．Proc．Biol．Soc．Washington，VII，p． 169.
North slope of Sierra Nevada of Colima，State of Colima，Nexico，
6．4．NEOTONA FERRLGINEA（）CHRACEA．Goldman
1905．Proc．Biol．Soc．Washington，XV11I，p． 30.
Atemajac，near Guadalajara，Jalisco，Mexico．
65．NEOTOMA FERRLGINEA VELCANI，Sanborn 1935．Field Mus．Nat．IIst．Publ．Zool．ser．NX，p．S4．

Volean Tajumulco，south slope，San Marcos，Guatemala．
66．NEOTOMI CHRYSONELAS．Allen
1908．Bull．Amer．Mus．Nat．Hist．XXIV．p． 653.
Matagalpa，Nicaragua．
descrtorum Group
6－NEOTOAIA DESERTORLX，Merram
189．4．Proc．Biol．Soc．Washington，1X．p． 125.
Furnace Creek，Death Valley，Inyo County，California．
Synonym：bella，Bangs，isyg，Proc．New Engl．Zool．Club，1，p． 66.
Palm Sprongs，Riverside County，Calıfornia．
netadensis，Taylor，1910，Lnuw．Calıf．Pub，Zool．V，p． 289. Virgin Valley，Humboldt County，Nevada．
fis．NEOTOMA LEPIDA LEPIDA，Thomas 1893．Ann．Mag．Nat．lIst．6，X゙lI，p． 235.
（？）Utah．
60．NEOTONA LEPIDA STEPLENミI，Goldnan
1905．Proc．Biol．Soc．Washington，XVIII，p． 32.
Ilualpai Mountains，Nohave County，Arizona．
70．NEOTOMA LEPIDA MONiTRABILIS，Goldman
1932．Journ．Mamm．Baltimore，I3，F． 62.
Ryan，Kaibab Natıonal Forest，Coconino County，Arızona．
71．NEOTOMA LEPIDA MARCONEN゙心1S，Burt
1932．Trans．S．Diego Nat．Hist．Soc．7．P． 179.
San Marcos Island，Gulf of California，Lower California．
72．NEOTOXIA LEPIDA LATIROSTRA，Burt
1032．Trans．S．Diego Nat．Hist．Soc．7，p． 180.
Danzante 1sland，Gulf of Calffornia，Lower California．
73．NEUTOSIA LEPIDA EGRESSA．（）rr
1934．Proc．Biol．Soc．Washington，XLVII，p． 109.
A mile ceast of El Rosario，Lower California．
74．NEOTOMA LIEPID．A BENSONI，Blossom
1935．Occ．Pap．Mus．Zool．Univ．Mich．no．315，p． 1.
Papajo Tanks，Pinacate Mountams，Sonora，Mexico．
75．NEOTONA LEPIDA RELICTA．Goldman
1932．Journ．Namm．Baltimore，13，p． 66.
Keams Canyon，Navajo County，Arizona．
76. NHOTOMA LEPIDA FLAVA, Benson
1936. Occ. Pap. Mus. Zool. Univ. Mich. no. 317, p. 7.

Tinajas Atlas, Yuma County, Arizona.
77. NEOTOML GOLDMANI, Merriam
1903. Proc. Biol. Soc. Washington, XVI, p. 48.

Saltillo, Coahuila, Mexico.
78. NEOTOMA AURIPILA, Blossom
1934. Occ. Pap. Mus. Zool. Univ. Mich. no. 273, p. 1.

Agua Dulce Mountains, 9 miles east of Papago Well, Pima County, Arizona.

## pennsylvanica Group

79. NEOTOMA PENNSYLVANICA, Stone
80. Proc. Acad. Nat. Sci. Philadelphia, p. 16.

South Mlountain, Cumberland County, Pennsylvania.
Subgenus Homodontomy's, Goldman
8o. NEOTOMA BUNKERI, Burt
1932. Trans. S. Diego Nat. Hist. Soc. 7, p. 181.

Coronados Island, Gulf of California, Lower California.
81. NEOTOMA FL'SCIPES FUSCIPES, Baird
1857. Namm. N. America. p. 495.

Petaluma, Sonoma County, California.
Synonym: monochroura, Rhoads, 1894, Amer. Nat. XXVIII, p. 67. Grant's Pass, Josephine County, Oregon.
splendens, True, 1894, Proc. U.S. Nat. Mus. NVII, p. 353. Marin County, California.
82. NEOTOMA FUSCIPES STREATORI, Merriam
1894. Proc. Biol. Soc. Washington, IX, p. 124.

Carbondale, Amador County, California.
83. NEOTOMA FUSCIPES ANNECTENS, Elliot
1898. Field Columb. Mlus. Publ. 27, zool. ser. vol. 1, p. 201.

Portala, San Mateo County, California.
Synonym: fuscipes affinis, Elliot, same reference, p. 202. Alum Rock Park, Santa Clara County, California.
84. NEOTOMA FUSCIPES SLMPLEX, True
1894. Diagnoses of some undescribed wood rats (genus Neotoma) in the National Museum, p. 2 ; Reprint: Proc. U.S. Nat. Mus. NVII, p. 354.
Old Fort Tejon, Tehachapi Mountains, Kern County; California.
Synonym: fuscipes dispar, Merriam, i S94, Proc. Biol. Soc. Washington, 1N, p. 12.4. Lone Pine, Inyo County, California.
85. NEOTOMA FLSCIPES MOHAVEXSIS, Elliot 1903. Field Columb. Mus. Publ. 87, z.s. vol. 3, p. 246.

Oro Grande, Mohave Descrt, San Bernardino County, California.
86. NEOTOMA FLSCIPES MACROTIS, Thomas
1893. Ann. Mag. Nat. Hlist. 6, XII, p. 234.

San Diego, San Diego County; California.
Synonym: cnemophila, Elliot, 1904. Field Columb. Nus. Publ. 90, z.s. vol. 3, p. 267 . Lockwood Valley, Mt. Pinos, Ventura County, California.

87．NEOTOMLA FLSCIPES MARTIRINSIS，OT
1934 Proc．Biol．Soc．Washington，XLV1I，p． 1 io．
Valladares，Sierra San Pedro Martır，Lower California．

## Subgenus Teonoma，Gray

88．NEOTUNA CINERIA CINEREA，Ord
1815．Guthrie＇s Geogr．2d．Amer，ed．vol．2，p． 292.
Near Great Falls，Cascade County，Calıfornia．
Synonym：cincrea acraia，Elliot，1903，Field Columb．Mus．Publ．87． Zool．ser．vol．3，p． 247.
89．NFOTONIA CINERIEA ILCID．A，Goldman 1917．Proc．Biol．Soc．Washington，X゙オ゙，p． 111.

Charleston Peak，Charleston Mountains，Clark County，Nevada．
yo．NEOTOMLA C［NERE．A DRLWMONDII，Richardson 1828．Zool Journ．vol．3，p． $5: 7$.

Probably near Jasper House，Alberta，Canada．
91．NEOTONLA CINEREA SAXANANN，（）sgood 1900．North Amer．Fauna，no．19，p． 33.

Bennett City，head of Lake Bennett，British Columbia，Canada．
92．NEOTONIA CINEREA OCCIDENTALIS，Bard
1855．Proc．Acad．Nat．Sci．PhiladeIphia，p． 335.
Shoalwater Bay，Pacific County，Washington．
Synonym：columbiana，Elliot，1899，Field Columb．Mus．publ．32， zool．ser．1，p．255．Ducks，British Columbia．
93．NEOTOMLA CINEREA FUSCA，True
${ }_{1894}$ Diagnoses，etc．（vide No．8\＆supra），p．2；Reprint：Proc．U．S．Nat．Mus．NVII， p． $35+$
Fort Umpqua，Douglas County，Oregon．
Synonym：apicalis，Elliot，1903，Field Columb．Nus，publ．74，zool． ser．vol．3，p． 160. Gardiner，Cous County，Oregon．
भ4．NEOTOMA CINEREA OROLESTES．Merriam
1894．Proc．Biol．Soc．Washington，IX，p． 128.
Saguache Valley，zo miles west of Saguache，Saguache County，Colorado．
Synonym：cimamomea，Allen，isgs，Bull．Amer．Mus．Nat．Hist．VII， p．331．Kinney Ranch，Bitter Creek，Sweetwater County，Wyoming．
grangeri，Allen， 594 ，Bull．Amer Nus Nat．Mist．Vi， p．32．4．Custer，S．Dakota．
95．NEOT OMA CINEREA ARIZONAE，Alerriam
1893．Proc．Biol．Soc．Washington，VIII，p． 110.
Keam Canyon，Apache County，Arizona．
96．NEOTOMA CINEREA RLPICOLA，Allen
${ }_{1}$ Sot．Bull．Amer．Mus．Nat．Hist．VI，p． 323.
Corral Draw，Pine River Indian Reservation，south－eastern base of Black IItls，S．Dakota．

## 

1894．Hodomys，Merriam，Proc．Acad．Nat．Sct．Phuladclphia，NLVi，p． 232 ．
Type Species．－．Vootonu ulleni，Merriam．

Range.-Mexico (Puebla and Colima).
Number of Forms.-Two.
Characters.-Skull with supraorbital ridges tending to extend over the parietals; interparietal in the small series seen abnormally long anteroposteriorly. Incisive foramina long, narrow, extending to toothrows. Bullae small. Palate as in Neotoma. Coronoid process of mandible high. M.i, M. 2 four-rooted, M. 3 three-rooted (Merriam). Cheekteeth in general like those of Neotoma, but second inner fold of M.I and inner fold of M. 2 extending much further across the tooth; and M. 3 lower S-shaped.

Size relatively large; feet as in Neotoma; tail moderately haired.
Merriam states, "Only two species of Hodomys are known. Both make extensive inosculating runways among the agaves and other plants on the brushy sidehills where they live. This habit is unknown in the allied genera, Neotoma and Xenomys. Neotoma builds houses or amasses large piles of sticks, cactus spines, and other rubbish; Xenomys lives in hollow trees. Hodomys is not known to do either."

Forms seen: alleni.

## List of Named Forms

[^13]The allied genus Xenomys, not represented in London, will be noticed at the end of the subfamily. Here it may be stated that the Neotoma series of genera were referred to a subfamily Neotominae by Merriam (Nelsonia, Neotoma, Teanopus, Hodomys, Xenomys); this was referred to the Cricetinae by Miller \& Gidley in their classification of the Order. The genera of the Neotoma series seem no more distinct from the main stem of Neotropical Cricetinae than do such forms as Sigmodon, Holochilus, Neotomys, and Reithrodon, on dental characters; and prismatic teeth of a similar type to those of Neotoma are found in the Neotropical Andinomys, and are suggested in Chinchillula and Irenomys. These were not compared by Merriam with his "Neotominae." Dentally Andinomys seems to lead straight into the Neotoma branch. Probably Phyllotis may be regarded as the starting-point both for the Neotoma-Andinomys section of the subfamily, and for the Sigmodon-Reithrodon section; or if not, then something which has or had a dental pattern like that of Phyllotis.

Genus jo. NELSONIA, Merriam $^{\circ}$

1897. Nelsonia, Merriam, Proc. Biol. Soc. Washington, XI, p. 277.

Type Species.-Nelsonia neotomodon, Merriam.
Range.-Mexico (Michoacan and Zacatecas).

Number of Forvs.-Two.
Characters.--Skull rather flat; zygomatic plate straight anteriorly; hullae prominent. Palate as in Neotoma. (Only one skull seen.) Cheekteeth flaterowned, prismatic; M.i and M. 2 as in Neotoma, but the folds in the one specimen examined seem to be less well open; M. 3 very simplified, differing from all Neotomine genera; with one anteriorly placed outer fold which nearly extends across the tooth, the rest of the tooth simple, without folds. The tooth is little reduced. 1.2 is ahout as large as M.1. M.i possesses only one inner fold.

Lower molars: M. I with two outer, three inner folds, the anteroexternal and posterointernal ones much reduced. 11.2 with one main outer fold, and a very small posterointernal fold; also one main inner one. N1.3 with an inner fold, and a slight constriction on the outer side.

Size apparently much smaller than Hodomys or Neotoma; fur soft; ear prominent; tail long, well haired, tufted terminally; feet not abnormal.

Forms seen: neotomodon.

## List of Named Forais

\author{

1. NELSONIA GOLDMAN1, Mernam <br> 1903. Proc. Biol. Soc. Washington, XVI, p. So. Mt. Tancitaro, Michoacan, Mexico. <br> 2. NELSONIA NEOTOMODON, Merriam <br> 1897. Proc. Biol. Soc. Washington, XI, p. 278. <br> Mountains near Plateado, Zacatecas, Mexico.
}

## Genus 51. HYPOGEONIYS, Grandidier

1869. Hypogeomys, Grandidier, Rev. et Mag. Zool. XXI, p. 338.

Type Species.--IHypogcomys antimena, Grandidier.
Range.-Madagascar.
Number of Forms.- One.
Characters.-Skull very large, but not much ridged; rostrum prominent; interparietal large; occipital region upstanding and strong, ridged centrally. Paruccipital process thick and long, hullae very large. Incisive foramina excessively large and long, broadest in the middle, extending from the back of the incisors to the middle of M.r. Zygomatic plate broad but low; infraorbital foramen very large above. Jugal thick and unusually long for a Murine Rodent; zygoma very heary. Lpper cheektecth flaterowned, with inner and outer re-entrant folds, more or less prismatic in appearance; the folds strongly curved, the outer ones curving backwards. M. 3 smaller than M1.2, which is about equal to M.I. Two outer, and one inner folds in all teeth; the anteroesternal one of M. 2 reduced, this fold in all teeth nearly meeting the inner foid. Checkteeth strongly hypsodont. Perhaps the nearest approach to this dentition is Aeotoma, but the folds in Hypogeomes are rather less open, and the
general effect is less Microtine. There is a wide difference between the types, and IIypogeomys seems to be a very isolated genus.

Lower molars almost a series of transverse plates; M.I with two outer, two inner folds, and three laminae, each of which are just joined by a narrow bridge. M. 2 with three laminae, the front one completely separated; the two posterior ones joining centrally. M. 3 more or less $S$-shaped, the folds nearly extending aeross the tooth.

These notes are based on one skull only.
Size very large, probably the largest member of the subfamily, though not comparing with some Oriental Murinae in this respect. 'Tail relatively long, scaly, moderately haired. Forefoot normal, with vestigial pollex, and the five pads normally developed. Hindfoot relatively long, with four digital pads well developed, but behind these the sole is naked to the heel, the normal pair of plantar pads evidently suppressed (a vestige of one may be traced, behind the hallux). Claws of hindfoot powerful, and outer digits not appreciably reduced. Ear large, and very simple within. (Notes based on one adult spirit specimen.)

Some fossil species of this genus have been described from Madagascar comparatively recently. The genus Macrotarsomys, which might belong here but is not represented in London, is noticed at the end of the subfamily.

Forms seen: antimena.

## List of Named Forms

1. HYPOGEOMYS ANTIMENA, Grandidier
2. Rev. et Mag. Zool. XXI, p. 339.

Banks of the Tsidsibon and the Andranouméne, Menabé, W. Madagascar.

## The Fishing-Rats <br> (Ichthyomys Section)

Only three out of five named genera are represented in London. The others are Daptomys and Neusticomys.

## Genus 52. ICHTllYOMIS, Thomas

${ }^{1893}$. Ichthyomys, Thomas, Proc. Zool. Soc. London, p. 337.
Type: Species.-Ichthyomy's stolzmanni, Thomas.
Range.-South America: Peru, Ecuador, Colombia, and Venezuela.
Number of Forms.-Seven.
Characters.-Skull and form extremely modified for aquatic life. Skull bearing considerable resemblance to that of the Australian IIydromys. Nasals shortened anteriorly; whole skull flattened; braincase long and wide, interorbital constriction tending to become extreme. Interparietal may be vestigial or moderately developed. Infraorbital foramen very large; zygomatic plate extremely narrow, but well tilted upwards, just as in Hydromys.

16--Living Rodents-II

Zygomata threadlike. Bullae small. Palate continued considerably behind last molars as a rule. Incisive foramina long, nearly to M.1. Mandible with large coronoid process. Upper incisors broad, their cutting edges worn to the shape ol an inverted $\vee$. Lower incisors rather compressed, but not abnormally so. Upper cheekteeth simple, the cusps strictly oppositc to each other, the depressions between them wide and prominent; six cusps in M.ı, four in M.z, the folds separating them opposite, and weak; M. 3 reduced. M. 1 evidently three-rooted. Lower molars: M. 3 bilaminate, in two clear portions; M.2 with four cusps, and two opposite re-entrant folds; M.1 with six cusps and four opposite folds, the two anterior cusps very narrow and close together. The depressions hetween the cusps conspicuous.

Fur thick, though less soft than in allied genera here noticed. IIndfoot large, broad, with well-developed swimming-fringe, the toes partly webbed; forefoot very small. Tail long, completely haired. All digits including hallux well developed on hindfoot. Nammae $1-2-6$ (Thomas). Caecum much reduced (Thomas). Plantar pads five.

Forms seen: caurimus, hrdrobates, nicefori, orientalis, stol玉manni, söderströmi.

## List of Nanied Forms

1. ICHTHYONIY CALRINUS, Thomas
2. Ann. Nag. Nat. Hist. 9, XIII, p. 541.

Gualea, W. Ecuador.
2. ICHTHYOMYS HYDROBATES, Winge
ispr. Vid. Meddel. Naturh, Foren. Kjobenhavn, p. 20. Sierra de Merida, W. Venezuela.
3. ICHTHYONYS NICFIORI, Thomas
1924. Ann. Mag. Nat. Hist. 9, X111, p. 165.

Paima, Bogota region, Central Colombia.
4. ICHTHYOMIS ORIENTALIS, Anthony
1923. Amer. Mus. Nov. no. 55, p. 7.

Rio Napo, E. Ecuador.
5. FCHYTHHMIYS SÖDERSTRÖMII, de Winton
i896. Proc. Zool. Soc. London, p. 512.
Rio Nachangara, W. Ecuador.
6. ICHTHYOMIYS STOLZMANNI, Thomas
i So3. Proc. Zool. Soc. London, p. 339.
Central Peru, Chanchamayo.
7. ICHTHIOMIS TWEFDII, Anthony
1921. Amer. Mus. Nor. no. 20, p. i.

Portovelo, Provincia del Oro, S.-W. Ecuador.
Genus 53. RIIEOMIYS', Thomas
190f. Rheomys, Thomas, Ann. Mlag. Nat. Hist. 7, XVV11, p. +2r.
TYpe Specifs.- Rheomys underazoodi, Thomas.
R.ange.-Colombia, Panama, Custa Rica, II Salvador.

Number of Forms.-Five.
Characters.-(These notes based on one skull, type of maderwoodi, and two skins, type of underzooodi and trichotis). Like Ichthyomy's externally; fur rather softer, ear much reduced, as in Ichthyomys, but not vestigial. Skull with less interorbital constriction than Ichthyomys perhaps; upper incisors much narrower, their cutting edges normal; lower incisors much compressed, though evidently not so abnormal as Anotomys.

Remarks.-Perhaps not more than a subgenus of Ichthyomys.
Forms seen: trichotis, underwoodi.

## List of Named Forms

1. RHEOMYS RAPTOR, Goldman
2. Smiths. Misc. Coll. LX, no. 2, p. 7.

Near head of Rio Limon, Mt. Pirri, E. Panama.
2. RHEOMYS STIRTONI, Dickey
1928. Proc. Biol. Soc. Washington, XLJ, p. 12.

Los Esemiles, Dept. Chalatenango, El Salvador.
3. RHEOMYS THONASI, Dickey
1928. Proc. Biol. Soc. Washington, XLI, p. II.

Mt. Cacaguatique, Dept. San Miguel, El Salvador.
4. RHEONIYS TRICHOTIS, Thomas
1897. Ann. Mag. Nat. Hist. 6, XX, p. 220.

Near Rio Magdalena, Cundinamarca district, W. Colombia.
5. RHEOMYS UNDERWOODI, Thomas
1906. Ann. Mag. Nat. Hist. 7, XVII, p. 422.

Tres Rios, Costa Rica.

## Genus 54. ANOTOMYS, Thomas

1906. Anotomys, Thomas, Ann. Mag. Nat. Hist. 7, XVII, p. 86.

Type Species.-Anotomys leander, Thomas.
Range.-Known only from Western Ecuador.
Number of Forms.-One.
Characters.-(One skull seen only.) Skull of Ichthyomys type, but braincase more inflated and heavier; interorbital constriction extreme; nasals slanting upwards anteriorly, their opening in front very high, the nasals nearly projecting over the incisors; upper incisor root showing rather prominently on side of rostrum in front of infraorbital foramen. Lower incisors extremely compressed, but the upper ones evidently not so. In this character the genus approaches the highly aberrant Murine Anisomys, but the result is very different as in Anotomys the lower incisors are in no way deepened, whereas in Anisomys they are extremely deepened.

Ear vestigial, lacking functional ear conch. Tail longer than head and body;
fur very soft; hindfoot much larger than forefoot, as in Ichthyomys; proportions of digits about as Ichthyomys.

Forms seen : leander.
List of Named Forms
r. ANOTONIYS LEANDER, Thomas
1906. Ann. Mag. Nat. Hist. 7, XVII, p. 87.

Mt. Pichincha, W. Ecuador.

## Genera Unrepresented in the British Museum

Eight named genera of Cricetinae are not represented in the British Museum. The most important of these is Jenomys, a member of the Neotoma section.

## Genus i. XENOMYS, Merriam

1892. Proc. Biol. Soc. Washington, VII, p. I60.

Type Species (and sole named form).-Nenumys nelsoni, Merriam. 1892. Proc. Biol. Soc. Washington, VII, p. 161. Hacienda Magdalena, between the city of Colima and Manzanillo, Colima, Mexico.

Characters (compiled from original description)-"With a skull much like that of Neotoma mexicana, it has well developed supraorbital beads, like Nyctomys, large lachrymals, a large interparietal, and large and greatly inflated audital bullae." "In dentition it combines the three-rooted upper molars of true Murines with the non-tubercular prismatic grinding crowns of the Arvicolines and has broadly rounded alternating triangles of Phenacomys, only even more crowded." "The anterior border of the squamosal above the zygomatic process is marked by a projecting vertical ridge corresponding to the postorbital process of Cumiculus ( Dicrostonyx), Myodes ( $=$ Lemmus), and Phenacomys." "Paroccipital processes are long and stout." "Nolar series large and heavy, much broader than Neotoma, or Aricola; crowns flat, prismatic, non-tubercular, with broadly rounded and crowded alternating triangles as in Phenacomys and Arcicola ... and bearing no resemblance to the narrow transversely elongated loops of Neotoma." The third lower molar is described as S-shaped.

> 2. TEANOPLS, Merriam
1903. Proc. Biol. Soc. Washington, XVI, p. 8 r.

Type.-Teanopus phenax, Merriam. Same reference. Camoa, Rio Mayo, Sonora, Mexico.
A member of the Veotoma section; bullae large and inflated, cl. Xenomy's. Molars described as like Ncotoma albigula group, but third lower molar as Hodomis.

## 3. NEUSTICOMYS, Anthony

1921. Amer. Mus. Nov. no. 20, p. 2.

Type.-N. monticolus, Anthony. Same reference. Nono, W. Ecuador.

A member of the Ichthyomys section. Described as less modified for aquatic life than Ichthyomys and Anotomys. The hallux greatly reduced.

## 4. DAPTOMYS, Anthony

1929. Amer. Mus. Nov. no. 383 , p. 1 .

Type.-D. venezuelae, Anthony. Same reference, p. 2. Neveri, Cumanacoa, N. Venezuela.

A member of the Ichthyomy's section. Less modified for aquatic life than lchthyomys.

> 5. PODOXIMYS, Anthony
1929. Amer. Mus. Nov. no. 383 , p. 4.

Type.- $P$. roraimae, Anthony. Same reference. Mlt. Roraima, British Guiana.
From description probably very closely allied to Microxus. Claws said to be long.

> 6. OTONYCTOMYS, Anthony
1932. Amer. Mus. Nov. no. 586, p. 1.

Type.-Otonyctomys hatti, Anthony. Same reference. Chichen Itza, Yucatan, Mexico.
Like Nyctomys, but with enormous bullae (as figured). U'nless intermediate forms are discovered, this is probably to be regarded as a very distinct genus.

## 7. SCOLOMYS, Anthony

1924. Amer. Mus. Nov. no. 139, p. I.

Type.-Scolomy's melanops, Anthony. Same reference, p. 2. Mera, E. Ecuador.
From description evidently near Neacomys, and differing in cranial characters, such as very short rostrum, pro-odont incisors, shortened palatal foramina, etc. Fur spinous. Mammae $1-2=6$. Molars very small.

## 8. MACROTARSOMYS, Milne-Edwards $\mathbb{N}$ Grandidier

${ }_{1} 5_{9} 8$. Bull. Mus. Paris, 4, p. 179.
Type.-Macrotarsomy's bastardi, Milne-Edwards \& Grandidier. Same reference. South of Mangoky, S.-W. Madagascar.
External form as figured very similar to Hypogeomys. Molars as figured evidently similar to Hypogeomys. Skull not mentioned in original description. But head and body only 90 mm . (IIypogeomys is a giant form.) Notwithstanding this, it is probable that Macrotarsomys stands nearest Hypogeomys.

The subfamily Cricetinae is known fossil according to Niller \& Gidley from the Oligocene.

According to Gyldenstolpe, the following names (all described as belonging to the genus Mus(!), all from Chile, and all Ann. del Museo Nac. de Chile, 1900 , pp. $5^{-70}$ ) cannot be identified. All of Philippi.

| saltuum | Andes near Puerto \Iontt. |
| :---: | :---: |
| capito | Atacama. |
| tarsalis | Valdivia Prov: |
| megalotis | Santiago Pror. |
| psilurus | Colchagua Prow: |
| cwigues | Andes of Santiago. |
| chonoticus | Chonos Island. |
| commutatus | Valdivia. |
| melanizon | Chile. |
| melanotis | (?) |
| macronvchos | Central Chile. |
| vanthopus | Osorno. |
| agilis | Illapel. |
| subrufus | Chile. |
| pencamus | Concepeion. |
| platytarsus | La Ligua. |
| permix | La Pigua. |
| leptodactylus | Valparaiso. |
| glaphyrus | Taule Pros. |
| coquimbensis | Serena, Coquimbo Prov. |
| boedeckeri | Maule Prov. |
| osorminus | Osorno. |
| microtis | Maule Prov. |
| atratus | Maule Prov: |
| glirmus | Atacama, |
| lantatus | Atacama. |
| pucrulus | Atacama. |
| cauquenensis | Quirihue, Maule Prov. |
| melacmus | Taule Prov. |
| foncki | Puerto Montt, llanquihue Prov. |
| longibarbus | Valdivia Prov: |
| araucanus | Concepcion. |
| landbecki | Illapel. |

( jyldenstolpe also lists the following names as unidentifiable:
porcimus, Philippi\& Landh. Arch. f. Naturg. XXIV, i, iS58, p. 7 \&. Santiago Province.
concolor, Wagner, Arch. f. Naturg. XI, 1, $1845, \mathrm{p} .147$. Rio Curicairi, Brazil.
brachyous, Wagner, same reference. Itarare, Brazil.
camizantris, Wagner, same reference, p. 14s. Brazil.
camellinus, Wagner, 1843, Schreber's Säugeth. Suppl, iii, p. 552. Brazil.
brasiliensis, Desmarest, Nouv. Dict. Hist. Nat, xxix, i\$I9, p, 6z. Brazil.
cephalotes, Desinarest, same reference, p. 63 . St. Ignaz Guazu, Paraguay. nigripes, Desmarest, same reference, p. 64. Paraguay.
brezicaudatus, Philippi, 1872, Zeitschr. Ges. Nat. vi, p. 446. Puerto Mlontt, Chile.
labiosus (Scapteromys), Winge, E. Museo Lundi, 1, iii, 1888, p. 39. Lagoa Santa, Minas Geraes.
modestus, Ribeiro (Scapteromys), 1914, Comm. Linhas. Telegr. de Matto Grosso, Zool. Annex, 5, p. 39. Caceres, Matto Grosso.
cinnamomeus, Pictet, 1841, Anim. Nouv. Mus. Genève, p. 64.
maculipes, Pictet, same reference, p. 67.
longitarsus, Rengger, Nat. d. Säugeth. Paraguay, 1830, p. 232. North of Villa Real. Paraguay.

## CRICETINAE:

## SPECIAL WORKS OF REFERENCE

Gyldenstolpe, A Manual of Neotropical Sigmodont Rodents, 1932, Kungl. Svenska Vetensk.-Akad. Handl. 3, Bd. II, no. 3.
Tate, Taxonomy of Neotropical genera, 1932. Amer. Mus. Nov. nos. 529, 541, 562 , $579,58 \mathrm{o}, 58 \mathrm{r}, 582,583$.
Goldnlan, North Amer. Fauna, 43, 1918. Revision of forms of Oryzomys occurring north of Panama.
Howell, 1914, North Amer. Fauna, no. 36. Revision of Reithrodontomys.
Osgood, North Amer. Fauna, no. 28, 1909. Revision of Peromyscus and Baiomys.
Hollister, 1914, Proc. U.S. Nat. Mus. XLVII, p. 427. Revision of Onychomys.
Osgood, 1925, Field. Mus. Nat. Hist. 229, zool. ser. no. 9. Notes on the species of the genus Notiomys.
Argyropulo, 1933, Zeitschr. für Säugetierk. Bd. 8, Heft 3, p. 133. Revision of Palaearctic Cricetinae, Cricetus, Mesocricetus, Cricetulus, Phodopus, Calomyscus.
Balley, 1902. Proc. Biol. Soc. Washington, XV, p. Ior. Revision of N. American Sigmodor.
Goldman, North Amer. Fauna, igio, no. 31. Revision of Neotoma.
Merrtam, Proc. Nat. Sci. Philadelphia, 1894, p. 225. Subfamily Neotominae.
Miller, Cat. Mamm. West Europe, 1912, p. 592. Cricetulus, Cricetus, and Mesocricetus.

## Subfamily GYMNUROMIINAE (New)

1896. Thomas: Sigmodontinae, part.
1897. Tullberg: Nesomyidae, part.
1898. Miller \& Gidley: Cricetidae, Cricetinae, part.
1899. Winge: Muridae, Rhizomyini, part.
1900. Weber: Nesomyidae, part.

Geographical Distribution:-Madagascar.
Number of Gevera.-One.
Characters.-Cheekteeth highly abnormal, and differing conspicuously in pattern from all other genera of Muridae examined. They are completely flaterowned, laminate, with the laminae excessively tightly
pressed together and compressed, much more so than in Murinae: all traces of cusps obliterated; M. 3 slightly broader and longer than XI.2, and M. M slightly larger than M.I; the pattern a series of parallel isolated folds, these folds excessively narrowed and line-like. The laminae are much curved, and the dental pattern is in general complex. (Differing in this respect from laminate Murinae in which when the cusps are suppressed, the pattern becomes simplified). 'The folds separating the lamina not open at all (compare Cricetinae).

This dental pattern is probably derived from that of Nesomys, as it agrees with it in essential fundamental arrangement, but is so much more highly modified that I have come to the conclusion that Gymmomys should have a special subfamily. In Vesomys, the folds are open, the cusps apparent, and the general pattern is not much more progressive than primitive Oryzomys-like Cricetinae, in which subfamily Nesomys has been retained.

It is of exceptional interest that the general dental pattern of Gymmuromys also agrees fundamentally, or so it seems to me, with the Dormouse Platacanthomys, differing indeed only in the fact that whereas in Platacanthomys the ridges are prominent, and the spaces between them deep, and well open at the outer side of the tooth (in the upper molars), in Gymmmomys the whole of the teeth have become tightly pressed together, with completely flat crowns, and the recurrent spaces closed. This supports the theory I have put forward in Vol. I that Muscardinidae cannot be regarded as very widely distinct from Muridae, and certainly are not to he considered as forming a distinct superfamily from them.

## Genus 1. GYMNUROMIS, Forsyth Major

1896. Gymnuromys, Forsyth Major, Ann. Mag. Nat. Hist. 6, XVIII, p. 32.4.

Type Species.-Gymnuromys roberti, Forsyth Major.
Range.-Madagascar.
Number of Forms.-One.
Characters.- Skull with long rostrum, moderate interorhital constriction, infraorbital foramen well open; jugal long. Incisive foramina very short, far in front of toothrows. Bullat small. No supraorhital ridges. Cheekteeth completely flat; proportions of teeth as already described; the pattern a series of narrow straight and usually isolated line-like folds, such as are not seen elsewhere in the superfamily.
M.i usually has five folds, the second extending right across the tooth, the third and fourth not completely isolated, or sometimes may be so; the first and fifth isolated, and small. Al. 2 has the same pattern, but often lacking the small front fold. At. 3 with four main folds, and various small islands placed posteriorly. The anterior part of M. I slopes rather abruptly inwards anteriorly, as in Nesomys (i.e. compared with a Cricetine type of tooth, the elements of the antereinternal cusp probably have been suppressed). Lower molars with a similar pattern to that of the upper tecth; M.I with four folds as a rule, the second and fourth often not completely isolated; the third evidently originates
from the inner side, the other oncs from the outer side; M. 2 similar to M.i; M. 3 very large, with the same pattern, and also traces of one or two posterior folds.

Tail long, scaly, poorly haired. Feet rather broad, D. 5 relatively long; form Ratlike, rather large ( 160 mm . or probably more).


Fig. 29. Gyminuromys roberti, Forsyth Major. Cheekteeth: B.M. No. 97.9.1.142, $9 ; \times 12$.
There is considerable individual variation in the exact pattern of the molars. In the type skull one side of the mouth has evidently been used more than the other, as the left-side pattern differs from that of the right.

Forms seen: roberti.

## List of Named Forus

1. GYMNUROMYS ROBERTI, Forsyth Major 1896. Ann. Mag. Nat. Hist. 6, XVIII, p. 324.

Ampitambé Forest, N.-E. Betsileo, Madagascar.

## Subfamily TACHYORYCTINAE

1896. 'Thomas: Spalacidae, Rhizomyinae, part; Muridae, Sigmodontinae, part.
1897. 'Tullberg: Spalacidae, part; Nesomyidae, part.
1898. Miller \& Gidley: Rhizomyidae, part, 'Tachyoryctinae; Cricetidae, Cricetinae, part.
1899. Winge: Muridae, Rhizomyini, part.
1900. Weber: Spalacidae, part; Nesomyidae, part.

Gfographical Distribution.-Eastern Africa, and Madagascar.
Sumber of Genera. - In this subfamily I include two genera, Brachyuromys and Tachyoryctes.
Charactirs.- Cheekteeth hypsodont, with pattern reminiscent of that of the family Rhizomyidae, but more specialized, the adult pattern consisting of parallel curved thick cross-ridges of enamel on a more or less flat crown; the pattern changing slowly during adult life. Zygomasseteric structure apparently much less specialized than in Rhizomyidae, and not essentially different from normal Muridae.

Remarks.-Forsyth Major many years ago drew attention to the similarity between the molars of Tachyoryctes and Brachyuromy's, and stated that in his opinion, the family Spalacidae (consisting in those days of Spalax, Rhisomys, and Tachyorvctes) could be referred to the Muridae. Whether there is any close relationship between Brachuuromys and Tachyoryctes, or whether the dental similarity existing between the two genera has been derived independently is not clear; certain members of the subfamily Cricetinae, it should be noted, have a dental pattern consisting of more or less flatcrowned teeth with enamel islands isolating on crown surface in a manner reminiscent of the present group, but it seems that in none of these is the dental peculiarity carried to such an extreme point as in the two genera included here. Brachyuromys betsileoensis appears to have a less specialized dental pattern than either Brachywomys ramirohitra or Tachyoryctes, and to be intermediate in some ways between these species and the less-specialized Cricetinae with flatcrowned molars. (I have clsewhere stated that the "Nesomyinae" containing all the Rats from Madagascar is an indefinable group.) By some authors, all the . Nadagascar Rats are referred to the Cricetinae; but Eliurus seems to have its affinities rather with the Murinae; Brachytarsomys appears to be a primitive Microtine; and Brachywromys may, I think, be regarded as nearer to Tuchyoryctes than to other Muridae, in spite of its generalized skull.

Tachyuryctes has usually been classed as a member of the Spalacidae, or more lately (Niller \& Gidley) of the Rhizomyidae. The genus has none of the extreme fossorial specializations of Spalax (loss of eyes, tail; zygomatic plate turned downwards and infraorhital foramen enlarged; lambdoid slanting forward to posterior zygomatic root, etc.); and appears to be more advanced than Spalax in its dental pattern. It is needless to state that the old "family Spalacidae," containing all the Old World fossorial Rodents, and even at one time the Bathyergidae, is a most unnatural group. Nor has Tachyoryctes the extreme zygomasseteric peculiarities of the Rhizomyidae. 'Tullberg's figures of the masseteric insertion of Tachyoryctes beside the infraorhital foramen show clearly that there is nothing in this genus which is widely different from normal Tluridae; whereas Rhisomys is very distinct not only from Tachoryctes but from all other Muroid Rochents. A glance at the infraorhital foramen of Tachyoryctes compared with Rhisumys clearly indicates this fact. There seems no reason to regard the genus therefore as anything but a highly specialized member of the Nuridae, with a dental pattern sinular to that of Brachyuromys from Madagascar; also, according
to Miller \& Gidley, paralleling that of the fossil genus Protechimys (member of the Theridomyidae, Dipodoid or Anomaluroid Rodents).

The two genera here included in the Tachyoryctinae may each be regarded as type of a generic group.

## Key to the Generic Groups of Tachyoryctinae

Skull fossorial; incisive foramina much reduced; mandible with prominent process formed by root of lower incisor; upper incisors pro-odont; palate much raised above general level of base of skull; infraorbital foramen with lower portion reduced; external form modified for subterranean life; jugal very long, often nearly extending to the lachrymal.

Skull not fossorial; incisive foramina very long; mandible with no process formed by lower incisor root; palate not much raised above general level of base of skull; upper incisors not pro-odont; infraorbital foramen with lower portion not reduced; external form generalized; jugal long, but not approaching lachrymal.

Group Brachyuroniyes
(Brachyuromys)

## The Brachymromy's Group (Brachyuromyes)

Essential characters as in Key above.

Genus r. BRACHYUROMIS, Forsyth Major

1896. Brachyuromys, Forsyth Major, Ann. Mag. Nat. Hist. 6, XVili, p. 322.

Type Species.-Brachyuromys ramirohitra, Forsyth Major.
Range.-Mladagascar.
Number of Forms.-Two.
Characters.-Skull not fossorial. Frontals considerably constricted, supraorbital ridges not well marked. Interparietal large. Nasals slightly broadened anteriorly. Incisive foramina long, about to M.i. Palate slightly constricted anteriorly, much less raised and compressed than in Tachyoryctes. Bullae medium. Incisors rather broad. Jugal relatively long, though shorter than Tachyoryctes. Infraorbital foramen relatively large; zygomatic plate projecting forwards above, normal. Cheekteeth, of the type species, large, hypsodont; the pattern evidently long retained in the adult. The pattern is near that of Tachyoryctes, though a little less simplified; the tecth are rounded and flatcrowned; cach tooth has two cross-ridges, slanting backwards from the outer side, and dividing the tooth into three parallel portions; the enamel on the main folds less thick than in Tachyoryctes as a rule. The teeth are roughly equal in size. 11.3 tends to have a slight heel posteriorly, as in Tachyoryctes. Lower molars like those of Tachyoryctes, the ridges perhaps rather more oblique.

Brachyuromys betsileoensis appears to be a much more primitive form, which perhaps should be separated subgenerically, in which the 'Tachyoryctine dental pattern is not fully dereloped, or at least not so until extreme old age. The species was originally described as a Nesomys, but referred to the present genus by Forsyth Major. In the upper molars, the fold forming the anterior cross-ridge is separated in the middle in M. I and M.2, the inner part isolated as a small island. $\mathrm{M}_{3} 3$ is reduced in size, with the elements less clearly defined, and often isolated as three small enamel islands. The pattern may be described as that of two outer and one inner folds in M. 1 and MI.z. The lower teeth usually have one outer and two inner folds. N .3 is the smallest tooth.

Notwithstanding these differences, B. betsileoensis appears to stand nearer the typical Brachyaromys type of Jentition than say to that of Hypogeomys, which probably approaches this type more closely than the other Muridae from Madagascar. The species is probahly a forenuner of $B$. ramirohitra.

External form Ratlike. Fur thick and soft. Ear rather large; tail relatively short, moderately haired; feet not albnormal.

Forms scen: betsilcoensis, ranirohitre.

## List of Namied Forms <br> ramirohitra Group

i. BRACHILTROMIYS RAMIIROHITRA, Forsyth Major
1896. Ann. Mag. Nat. Hist. 6, XV'til, p. 323.

Ampitambe Forest, on border of N.-E. Betsileo, Madagascar.
betsileoensis (iroup
2. BRACHYLROMIS BETSILEOENSIS, Bartlett
t 879 . Proc. Zool. Soc. London, p. 770.
S.-E. Betsileo, Madagascar.

## The Tachyoryctes Group (Tachyoryctae)

Differing from Brachyuromy's in a number of characters which have been already noted in the above Key, chiefly appertaining to specialization towards subfossorial life.

## Genus 2. TACHYORVCTES, Rüppell

1835. Tachyoryctes, Rüppell, Neue Wirbelth. Fauna Abyssinien, Säugeth. p. 35.

Type Spfedfs.-Bathyergus splendens, Rüppoll.
Range.-last Africa: Abyssimia, Somaliland, Kenya, Uganda, North Tanganyika, Eastern Congo.
Number of Fornis.-Ahout twenty-one are named.
Characters.-Skull with considerably constricted frontals; a sagittal ridge formed in the adult, behind the frontals and extending to the lambdoid crest. Occipital region prominent, but not very high, and little sloped forwards. Bullate relatively large. Rostrum thick; incisors very thick,
pro-odont. Jugal very long for a Muroid, in some cases extending nearly to lachrymal. Palate much narrowed anteriorly, broad posteriorly, and with a prominent raised ridge running down the centre; pterygoid fossae deep; incisive foramina minute, situated considerably in front of anterior toothrows. Infraorbital foramen Murine in formation, wider above than below, quite well open, its lower portion reduced by fusion of zygomatic plate with side of rostrum, but $V$-shaped, as in normal specialized Muridae. Mlandible with high recurved coronoid process (which is higher than the condylar), and very prominent process caused by root of lower incisor, hetween condylar and angular processes.

Cheektecth extremely hypsodont, though not evergrowing, the upper molars cursing backwards and outwards; pattern originally as follows: M. I with a deep inner fold curving between two shallow outer folds (both of which wear out early); M. 2 with a fold cutting across the tooth and dividing it into a narrow anterior and a wider posterior portion, the latter with an extra fold, which isolates and ultimately may wear out; M. 3 like M.2, but tending with wear to become slightly larger. Each tooth in the adult has one very thick enamel ridge forming its anterior border, and another one parallel to it running across the centre of the tooth; the other elements, as indicated, are isolated or obliterated. The teeth are flatcrowned; M.I is about equal to M. 2 in size; M. 3 slightly larger, with the posterior outer isolated fold forming a third thick enamel ridge, which is retained longer than the similar element in M.I and M.2. The upper incisor root sometimes appears in the palate in front of M.i. Lower molars: M.i divided almost into three lobes, the anterior one smallest, and just connected with the second; M. 2 in two lobes, the anterior one with a deep inner fold; M. 3 like M. 2 ; this arrangement wears down to a pattern with four thick curved enamel ridges, which are oblique; the anterior and posterior respectively forming the terminations of the teeth; each tooth divided into three lobes by these ridges. The original folds appear to isolate less than those of the upper teeth.

Form Mole-like. Eyes and ears very small. Fur very thick and soft. D. 3 the longest digit of the manus, slightly longer than D. 2 which is a little longer than D.4; D. 5 shorter than D.4; pollex rudimentary. Hindfoot with D. 2 the main digit in all skins seen; D. 3 and D. 4 each successively a little shorter. Outer digits subequal and reduced. Claws not very large. Tail short, about twice the length of hindfoot, and well haired.

Forms seen: andax, ankoliae, annectens, badius, cheesmani, daemon, ibeanus, macrocephalus, naivashae, ruddi, somalicus, spalacinus, splendens, storeyi.

The genus is in much need of revision. All the named forms appear to me to be essentially similar, and possibly even only races of one species, except macrocephalus, a little-known form which differs from the others in its unusually large size.

## List of Named Formis

(References and type localities the work of Mr. R. W. Hayman.) macrocephalus Group

1. TACHYORYCTES MACROCEPHALUS MACROCEPHALU'S, Ruppell

18ұ2. Mus. Senckenberg, III, p. 97.
Shoa, S. Abyssinia.


Fig. 30. Tachyoryctes cheesmani cheesmani, Thomas.
B.21. No. 28.1.11.162, 7; $1 \frac{1}{2}$.


Fig. 31. Tachyoryctes cheesmani cheesmani, Thmmas. B. 11 No. $28.1 .11 .162,: 11$.
2. TACHYORYCTES MACROCEPHALUS HECKI, Neumann \& Rummler 1928. Zeitschr. für Säugetierk. 3, p. 302.

Abakkara, 100 miles west of Lake Abassi, S. Abyssinia.
splendens Group
3. TACHYORYCTES SPLENDENS SPLENDENS, Rüppell 1835. Neue Wirbelt. Fauna Abyss. p. 36. Gondar, Abyssinia.
4. TACHYORYCTES SPLENDENS SOMLALICL'S, Osgood 1910. Ann. Mag. Nat. Hist. 8, V, p. 276. 100 miles south-west of Berbera, Somaliland.


Fig. 32. Tachyoryctes cheesmani cheesmani, Thomas. Cheekteeth: B.MI. No. 28.1.11.162, $;$; $\times 6$.
5. TACHIORYCTES SPLENDENS OMOENSIS, Neumann \& Rümmler 1928. Zeitschr. für Säugetierk. 3, p. 297.

Doko, S.-W. Abyssinia.
6. TACHYORYCTES SPLENDENS CANICAUDLS, Osgood 1936. Field. Mus. Nat. Hist. Publ. Zool. ser. XX, p. 232.

Sirre, Awash Valley, N. Arusi, Abyssinia.
7. TACHYORYCTES SPLENDENS IBEANLS, Thomas 1900. Proc. Zool. Soc. London, p. 179.

Machakos, Kenya.
8. TACHYORYCTES PONTIFEX, Neumann \& Rummler 1928. Zeitschr. für Säugetierk. 3, p. 300.

Bufa, Kaffa, S. Abyssinsa.

9．TACHYORYCTES CHEESMANI CHEESNANI，＇Thomas 1028．Ann．Mag．Nat．Hist．X，1，p． 302.

Dangila，Abyssinia．
10．TACHYORYCTES CHEESMANI GALIARUMI，Osgood 1936．Field．Mus，Nat．Hist．Publ．Zool．ser．XX，p． 233.

Mt．Abasso，N．－E．Chilalo Nlountains，Arusi，Abyssina．
11．TACHYORVCTES AN゙NECTENS，Thomas
1891．Ann．Nag．Nat．Hist．6，V1l，p． 304.
Mianzini，Masailand，Kenya．
12．TACHYORICTES STOREYI，Thomas
1909．Ann．Nag．Not．Hist．8，IV，p． 547.
Lake Elmenteita，Kenya．
13．TACHY＇ORYCTES NAIVASHAE，Thomas
1909．Ann．Mag．Nat．Hist．8，IV，p． 547.
Lake Naivasha，Kenya．
14．TACHYORYCTES SPALACLN［＂S，Thomas
1909．Ann．Mag．Nat．Hist．8，IV，p． 547.
Embi，near Mt．Kenya．
15．TACHYORJCTES ALDAX，Thomas 1910．Ann．Mag．Nat．Hist．8，V，p． 421.

Aberdare Nlountains，Kenya．
16．TACHY（）RYCTES REX，Heller
1910．Smiths．Nise．Coll．IVI，no．9，p． 4.
West slope of Ml．Kenya．
17．TACHYORYCTES RUDDI RLDDI，Thomas
1909．Ann．Nag．Nat．Hist．8，IV，p． 546.
ぶirui，Mt．Elgon，K゙enya．
18．TACHYORVC＇TES RLDDI BADILS，＇Thomas
1909．Ann．Mag．Nat．Hist．8，IV，p． 546.
Eldoma Ravine，Kienya．
19．T．ACHYORYC＂TES ANKOLIAE，Thomas
1909．Ann．Mag．Nat．Hist．S，IV，p． 545.
Burumba，Ankole，S．－IV．Uganda，
20．TACHYORY＂TES DAEMON，Themas
1909．Ann．Nag．Nat．Hist．S，IV，P． 545.
Mt．Kilimanjaro．
21．TACHY（）RY＇（＇TEA RLAND．AL．Lomberg \＆Giskenstolpe
1925．Arkiv．Zool．Bd．I7B，no．5，p． 6.
Xit．Muhavura，Birunga Volcanoes，Kivu，E．Congo．
＇ICHYORYC＇INNE：
SPECI．H．IH＇OKKS OF REFEREVCE
Forsith Major，1897，Proe．Zool．Soc．London， 5,695 ，on the Malagasy Rudent Genus
Brachyuromys．

## Subfamily GERBILLINAE

1896. Thomas: Muridae, Gerbillinae.
1897. Tullberg: Family Gerbillidae.
1898. Miller \& Gidley: Cricetidae, part, Gerbillinae.
1899. Winge: Muridae, Murini, part, Gerbilli.
1900. Weber: Muridae, Gerbillinae.

Geographical Distribltion.-Throughout Africa in suitable localities, north and south of the Sahara, from Gambia to Somaliland, and from Morocco and Egypt to the Cape (not occurring in heavily forested west-central area). South-western Asia, from Arabia, Syria, Palestine, Asia Minor, Persia, Afghanistan, Peninsular India, Ceylon, and Russian 'Iurkestan, west to the Caucasus and adjacent parts of South-east Russia, east to Chinese Turkestan, Mongolia, Shansi and Chihli.

Number of Genera.- Twelve are here retained.
Characters.-Skull characterized by tendency towards the form found in saltatorial Rodents (Dipodidae, Heteromyidae, etc.), with broadening of brain-case, great inflation of mastoids and auditory bullae in the majority, slender abruptly sloping zygoma, and weak narrow rostrum. Nasals usually projecting forwards over incisors. Zygomatic plate always cut back above, and sometimes projected forwards abnormally in front; infraorbital foramen often much narrowed, never large; a tendency present towards development or retention of a second pair of palatal foramina, between the toothrows (in some cases these as long as toothrows); mandible with small coronoid process (absent in one genus), high condylar process, and narrow angular portion, a wide curved space separating the condylar from the angular process behind; jaw relatively weak. Upper incisors normally grooved (plain in Psammomys and a few forms of Tatera).

Externally always modified for terrestrial plains or desert life; a tendency present for the limbs to be lengthened; tail normally fully haired (some genera or species are probably to a certain degree saltatorial ; others are not so judging by specimens seen in Zoological Gardens).

Cheekteeth in progressive species extremely hypsodont, or in one genus, Rhombomys, evergrowing; in specialized forms the pattern consists of transverse plates separated by inner and outer folds (the folds deep and nearly meeting in median line of teeth); in primitive forms, the teeth as a rule not separated into plates, the folds weaker, and each lamina bearing clear traces of two cusps except the front one in M.r, which is single, in the upper molars. M. ${ }^{3}$ usually strongly reduced; the third lower molar is absent in one genus (Desmodilliscus).

It may be noted that Miller \& Gidley refer the group to their "Cricetidae," rather than their Muridae, while Winge refers them to the "Murini" rather than "Cricetini." According to Tullberg the malleus and incus differ (in those he examined) from other groups of Muridae, the incus being larger. The group seems to be rather isolated among Muridae, and I can form no opinion as
to whether it stands nearest Murinae or Cricetinae. It is considerably more specialized than either.
'Too many genera are recognized at the present moment. Winge, 1924, in his classification, retained two only, Gerbillus and Rhombomys. The present currently accepted classification is based on that of Lataste, 1882 , who keved the groups roughly as follows (abbreviated):
"Lobes of molars, except the first and last, originally comprised each of two tubercles. Incisors always one-grooved. Genus Gerbillus
Occipital region . . . deeply surrounded by the bullae, which are enormous. . . Tail club-shaped. Two carpal pads; sole hairy.

Subgenus Pachytronis
Occipital region normal, the posterior surface plain or convex; bullae smaller. Tail sometimes thick, never massive. One carpal pad; feet hairy.

Subgenus Gerbillus 'Two carpal pads; feet naked.

No tarsal pads. Occipital vertical, as in Meriones. Subgenus Tatera One or two tarsal pads. Occipital arched.

One tarsal pad; molar cusps opposite; bullae well developed and projecting beyond the occipital posteriorly.

Subgenus Hexdecapleura
Two tarsal pads; molar cusps more or less alternating; bullae moderate, clearly passed by the occipital. Subgenus Dipodilles Nolars originally laminated, and with lobes more or less clearly lozengeshaped. Grooves of upper incisor absent, single, or double.

Genus Mertunes
Incisors two-grooved. Subgenus Rhonbomys
Incisors one-grooved. No tarsal pads.
Incisors plain.
One tarsal pad.

Subgenus Meriones
Sulgenus Psammonys"

All the above subgenera are currently given generic rank and have stood as full genera for many years with the exception of Inchdecapleura, which was shown in 1895 by Thomas to be scarcely distinguishable from Dipotillus. With the great increase of named forms described since 1895 it is not always possible to say whether Lataste's characters of the fcet are constant throughout the various groups. 'The most distinct of Lataste's "subgenera" are Pachyuromys and Rhombomys (the latter having rootless molars). Desmodillus was erected by Thomas $\mathbb{E}$ Schwann for a specie's referred by I ataste to Gerbillus s.s. Since Lataste's key, two very distinet genera, Desmodilliscus and Ammodillus, have been described, and a large number of names, some not even valid as subgenera, have been added to the list, as Taterillus, Taterona, Taterina, Gerbilliscus, Pallasiomys, Brachiones, Microdillus, Clucliones, and Parameriones. Of these three only Bracliones, Microdillus, and Taterillus (the last two rather doubtful), are here retained as genera; and Dipodillus, as fully noted below, is not regarded as a valid genus.

## Key to the Genera of Gerbillinae

Mandible with no coronoid process. Toothrows converging posteriorly.
Ammodillés
Mandible with at least a small coronoid process. Toothrows not or scarcely converging posteriorly.
Cheektecth not bccoming extremely hypsodont, the pattern not consisting of deep re-entrant folds separating transwerse plates, the general appearance of the molars less prismatic and more complex; the laminae when cut each bear clear traces of two tubercles in the upper molars (the foremost lamina is single, in M.i.).
\lastoids appearing prominently each side of and behind occiput when skull is viewed from above. Tail under 80 per cent of head and body length.
Third lower molar absent. (Second pair of palatal foramina much lengthened and widened; cheekpouches present.) Desmodiliscus Third lower molar present.

Mastoids and bullae abnormally inflated, profoundly modifying the whole aspect of the skull. Tail strongly shortened, thickened, and club-shaped; second pair of palatal foramina widened.

Pachycromis
Mastoids and bullae less abnormally inffated. Tail less strongly shortened, not club-shaped. Second pair of palatal foramina not widened.

Desmodillus
Mastoids and bullae not appearing prominently each side of and at back of occiput when skull is viewed from above. Third lower molar present. 'Tail never thickened and club-shaped.
Zygomatic plate not projected unusually far forwards anteriorly; occipital region weak; bullae moderately to well inflated; general form essentially normal for the group (Gerbil-like).
Tail shortened, not over 80 per cent head and body length. Frontals narrowed abruptly, not evenly divergent backwards.

Microdillts
Tail longer than head and body. Frontals more evenly divergent backwards.

Gerbillu's
Zygomatic plate normally excessively projected forwards anteriorly; occipital region usually strong; bullae usually little inflated (for members of the present group); general form as a rule more Rat-like.
Second pair of palatal foramina much lengthened. 'Paterillis
Second pair of palatal foramina not much lengthened.

Cheekteeth becoming excessively hypsodont to evergrowing, the pattern consisting of deep approximately equal-sized re-entrant folds separating transterse plates, these plates showing no signs of the original tubercles even when cutting, the general appearance of the molars simpler, prismatic.
Cheektecth evergrowing.
Rhombomys
Cheektecth (so far as known) developing roots in adult.
Skull ahnormal, in appearance almost triangular owing to extremely weak short rostrum, broadened frontals, and wery wide braincase. Brachiones
Skull not more or less triangular in aspect; rostrum less reduced, and frontals more narrowed.
Upper incisors plain. Tail on average less than 80 per cent of head and body length.

Psamamomys
Lpper incisors grooved. Tail on average more than So per cent of head and hody length.

Meriones

## Genus 1. GERBlLIUS, Desmarest

r8ot. Gerbillus, Desmarest, Nouv. Dict. Hist. Nat. XXiV, Tab. Méth. p. 22. iSSi. Difodilles, Lataste, Le Naturaliste, Paris, I, p. 506. (Gerbillus simomi, Lataste.) Valid as a subgenus.
1882. Hendecapleura, Lataste, Le Naturaliste, Paris, II, p. 127. (Gorbillus garamantis, Lataste.)

Type Species.-Dipus gerbillus, Olivier (Gerbillus aegyptius, Desmarest).
Range.-Sind, Baluchistan, Euphrates, Palestine, Syria, Sinai, Arahia south to Aden, across North Africa from Egypt to Norocco; Sudan, Somaliland, Kenya, Tanganyika, Abyssinia, Nigeria, South and South-west Africa.

Number of Forms.- Ahout seventy-seven.
'Ihis genus is currently divided into two genera, Dipodillus and Gerbillus, based on the hairiness or nakedness of the sole. In typical Gerbillus, there is said to be one carpal pad, and soles of hindfoot without pads; in Diporlillus, five carpal and six plantar pads. Dipodillus is a longstanding genus, with many named forms. Ileptner, 1937, regards Dipodilles as a sulgenens only of Gerbillus. I think he is correct in this classification, for threc reasons:

1. The character noted above is not used in a full generic sense clsewhere in the Order, unless correlated with cranial and dental characters. (lt is not possible to distinguish Dipedillus from Gerbillus on these characters.) For instance, the Sciurine genera Sciurus and Citcllus may hoth have species which have on the one hand naked sole without reduction of plantar pads (cf. Sciurus anomalus), or hatiry sole (ci. Sciurns zulgaris).
2. The intermediate forms Gerbillus nancillus and particularly Gerbillus vallinus. Some specimens of the latter appear to lave soles that might either belong to Dipodillus or Gerbillus.
3. The lack of constancy of this character within the Gerbilline genus Meriones. Normal Meriones has furred soles, but in three groups, persicus, res, and calurus, the soles are naked. M. persicus is referred to a subgenus Parameriones on this character, but given subgeneric rank only.

The alternative would be to retain Dipodillus and give Parameriones generic rank. But on account of the remarks above on intermediate forms and the character elsewhere in the Order, it is wiser provisionally to suppress Dipodillus as a full genus, in my opinion. Too many forms are named both for Dipodillus and Gerbillus for it to be possible to say whether the characters of the carpal and plantar pads given by Lataste and more lately Aharoni are valid throughout these genera or not.

Characters.-Skull with broadened braincase and narrow rather long rostrum; supraorbital ridges usually developed, though sometimes absent; in some forms, as poecilops, acticola, and pyramidum, becoming very prominent in adult. Zygoma narrow, rising abruptly anteriorly, the zygomatic plate heavy and thickened, well ridged, the general effect reminiscent of that of Notomys, but more extreme. Infraorbital foramen much narrowed. Upper incisors compressed, opisthodont, one-grooved. Palatal foramina long; a well-developed second pair present between the toothrows, which are not as long as the front pair. Bullae and mastoids well inflated, very much more so than in normal Murines, but not abnormally compared with some members of the present group. The size of the bullae varies in different species, but not to an abnormal degree. Basioccipital as a rule much narrowed. Paroccipital relatively well developed; occipital region weak. Zygomatic plate not abnormally projecting forwards (compare Tatera). Mandible as described above, in the characters of the subfamily. Upper cheekteeth: M.I with three laminae, the front one narrower than the others, and in young specimens not bearing two cusps. All other laminae of upper cheekteeth bearing two cusps when unworn. In M.I and M.2, the posterointernal cusp area is larger than the posteroexternal one. M. 2 with two laminae, like the two posterior laminae of M. in appearance. M .3 as a rule single and simple, when cut usually with a minute posterior lamina behind the main one. This tooth reduced. The laminae are as a rule not pressed closely together. Even in well-worn teeth, traces of the original cusps are often present. Lower incisors plain; lower molars with three laminae in M.1, two in M.2, one in $\mathrm{Ml}_{3}$; originally with traces at least in some laminac of cusps; the inner side of M. 2 often tending to be enlarged and raised up. N. 3 is very small.

Ilindlimbs relatively long (some at least of the members of this genus are probably more or less saltatorial, as for instance a specimen of G. gerbillus in the London Zoological Gardens which appears to be so); hindfoot long, the sole in the typical subgenus hairy, though in zallinus part of the heel is naked, and the sole may be poorly haired. D. 5 and the hallux both relatively long.

Forefoot hairy, the claws well developed. Ear large ; fur very soft ; tail well haired, longer than head and body, tufted terminally. Form light, and size not large; colour usually modified for life in desert. Jlammae 8 (Shortridge: forms from South-west Africa).

In the subgenus Dipodillus, the hindfoot is, as already noted, naked; the forefoot is also naked below. Ifondecupleura was erected by Lataste as a subgenus for a few forms in which there is one main tarsal pad instead of two (Dipodillus s.s.), and the bullae were said to be larger. Thomas in 1895 pointed out that this group was probably unretainable; many forms have subsequently been described with relatively large bullae; and it is not possible at the moment to say with certainty which forms would belong to which group on the character of the tarsal pads, as very many species are now named. 'The forms included in Hondccapleura by Lataste were garamantis and namus, also bottai and quadrimuculatus; fammlus was referred to it by Thomas.

Forms seen: acticola, agag, allenbyi, amoenus, andersoni, arabium, urduus, brackmani, broomi, bonlhotci, campestris, calidus, cheesmani, cimamomcus, cosensi, dasyurus, diminutus, dodsoni, dumi, eatomi, famulus, floweri, garamantis, gerbillus, gleculozei, harzoodi, henlevi, hilda, hiripes, indus, jordani, juliomi, kalaharicus, latastei, leucanthus, lixa, lowvet, lutcolus, luteus, mackilligimi, mariae, mimulus, muriculus, nancillus, nanus, nigeriae, oralis, pueba, percizali, poecilops, principulus, pusillus, pyramidum, "p1gargas," rosalinda, rigsenhachi, rozsikae, ruberrinus, simoni, somalicus, stigmonyx, szalius, tarabuli, zallinus, zizax, zwatersi.

This group is very difficult to classify, on account of the number of named forms which appear to be based on one specimen, and on account of the extremely small range (apparently) of some of the species.

The present arrangement must be regarded as an attempt to get some semblance of order out of considerable chaos; but it is very provisional, and no doubt most of the groups can be broken down.

Subgenus Dipodileus. (Range: Sind, Baluchistan, Kathiawar; Southern Arabia; Sinai, Palestine; across North Africa from Nlorocco and the Algerian Sahara (south to Asben), east to Egypt, the Sudan, Somaliland, Kenya, Tanganyika.)

Of the material examined, five groups appear to be distinguishable:

1. campestris group. Large forms; adult usually over or approaching 100 mm . head and body (up to 115). Bullae relatively small.

With unusually heavy supraorbital ridges in the adult: poecilops, from Aden. (Tail shortest of group.)

With more moderate supraorbital ridges in adult: Lozce, from the Sudan; and campestris (with other named forms, dodsoni, cte., as races; Noroces to Asben and Tripoli).
2. famulus group. Containing one species, from Aden: head and hody (92100 in those seen; hullae larger than is normal; tail very heavily tufted terminally.
3. varamantis group. Noderate-sized forms ( $6.4-86$ head and body length of those hearing measurements); bullae as in fomulus group. Containing
nanus from Baluchistan and Sind, garamantis from Algeria and Arabia, and apparently principulus from the Sudan.
4. dasyurus group. Like the last, but bullae relatively smaller. Head and body $66-90$, but usually in adult over 70 . This group may not be retainable compared with the garamantis group. It contains the majority of the genus.
G. vivax from 'Tripoli appears an unusually short-tailed form. Others referable to the group are somalicus (tail rather shorter), and brockmani (tail rather longer), from Somaliland; stigmonyx, percizali, and watersi (Sudan or Kenya); harwoodi, Kenya, with rather a shorter tail than the last three (on average); also mimulus from Arabia; dasyurus from Sinai, and amoenus from Egypt. Finally mackilligani, from Egypt, has a proportionately longer tail than any other species examined bearing measurements ( 166 per cent of head and body length).
5. simoni group. Pygmy forms, normally under 70 mm . head and body length (usually about 65 ).
D. simoni, Algeria, appears to stand apart from other members of the group on account of its small bullae. Others are henleyi (tail shorter), and mariae (tail longer), from Egypt; jordani from Algeria; muriculus from the Sudan; diminutus from Kenya; and perhaps juliani from Somaliland.

Many of these forms are very imperfectly known.
I have seen too few of lixa (probably simoni group), hilda, and ruberrimus to be able to allocate them.
Subgenus Gerbillus. (Range: Sind, Palanpur; Lower Euphrates; Palestine, Arabia (Central), Sinai; North Africa from Norocco to Egypt, and south to Sahara, Nigeria, Sudan, Kenya, Abyssinia and Somaliland; also South-west Africa and South Africa.)

1. nancillus group. Size much smaller than other Gerbillus s.s. Sole very poorly haired. Head and body $54^{-60} \mathrm{~mm}$. Sudan.
2. vallinus group. Transitionary towards Dipodillus in the poorly haired sole. Bullac relatively large. Tail longer than in other South African species. South Africa. Head and body up to iro.
The three remaining groups are poorly distinguishable from each other.
3. swalius group. South African. Noderate sized: 76-112 mm. head and body. Bullae rather small. Tail rather short, under 120 per cent head and body length on average. With swalius, calidus, and paeba; the first two seem closely allied; I have seen very few specimens of the last named.
4. gerbillus group. Northern. Noderate-sized: not over 100 mm , thus at maximum rather smaller than largest members of group 3 ; tail on average, though not always, longer; usually over 120 per cent of head and body length. Head and body $74-99$. Includes gerbillus, with which 1 think may be affiliated many "species" as races (listed below); dunni, with rather larger bullae, from Somaliland; the Asiatic forms (arduus, gleadozci, cheesmani), usually rather longer tailed than in gerbillus (though not
always); cheesmani has a powerfully ridged skull, and larger bullae than is usual in the group. Also riggenbachi, with a well-ridged skull, and rosalinda, with rather striking coloration, may be perhaps provisionally referred here.
5. pyramidum group. With strongly ridged skull, and size normally larger than in the last; usually over 100 mm . head and body (95-128). "The form hirtipes may I think be regarded as a subspecies. Provisionally the Somali species acticola may be included here, though the size seems variable; the bullae are large; the tail is relatively longer than in pyramidum and races which are, for the genus, shortish-tailed forms. In the genus, the tail is always longer than head and body.

## List of Named Forms

(References and type localities for most of the Gerbillinae are the work of Mr. R. W. Ilayman. A few of the smaller genera are by Mr. G. W. C. Holt.)

> Subsenus Dipodillus, Lataste
> campestris Group

1. GERBILLE's POECILOPs, Yerbury \& Thomas
2. Proc, Zool. Soc, London, p. 549.

Lahej, Aden, S. Arabia.
2. GERBILLL'S I.OWEI, Thomas \& Hinton
1923. Proc. Zool. Soc. London, p. 261.

Jebel Marra, Darfur.
3. GERBILLUS CAMPESTRIS CAMIPESTRIS, Levallant
1857. Atlas Expl. Sc. Alg. Mamm. pl. V, fig. 2.

Philippeville, Province of Constantine, Algeria.
Synonym: gerbii, Loche, 1858 , Cat. Namm, \& Oiseaux Ohservées en Algerie, p. 23.
mimutus, Loche, i\$67, Expl. Alg, p. 100 , Namm. deserti, Loche, i 867 , Expl. Alg. p. 107.
4. GERBILLL'S CANIPESTRIS RO)ZAIKAL, Thomas
1908. Ann. Nag. Nat. Hist. 8, II, p. 374.

Biskra, Algeria.
5. GFRBILLLS CAMIPESTRIS CINNAMOMIELS, Cabreta

Iyto. Bol. Real. Soc. Esp. IIst. Nat. 16, P. $3^{8} 5$.
Taguidert, south of Mogador, Morocco.
6. GERBILLLS CANIPESTRIS RIPARILS. Cabrera 1922. Bol. Real. Soc. Esp. Hist. Nat. 22, p. IIz.

Wadi Martan, Morocco.
7. GFRBILILS (AMPESTRIS DODSONI, 'lhemas 1902. Proc. Zool. Soc. London, p. 7.

Ain Hammam, 'I'ripoli.
8. GERBJILLS CAXIPESTRLS PATRIZII, de Beaun
1932. Ann. Nus, Civ, Stor. Nat, Benova, LV, p. 379.

Oasis dı Cufra, Libyan desert, Libya.

## famulus Group

9. GERBILLUS FAMULUS, Yerbury \& Thomas
10. Proc. Zool. Soc. London, p. 551.

Lahej, Aden, S. Arabia.

## garamantis Group

10. GERBILLLS NANUS, Blanford
11. Ann. Mag. Nat. Hist. 4, XV1, p. 312.

Gedrosia, Baluchistan.
if. GERBILLL'S INDCS, Thomas ${ }^{1}$
1920. Journ. Bombay Nat. Hist. Soc. XXVI, no. 4, p. 935.

Gambat, Khairpur, Sind, N.-W. India.
12. GERBILLUS GARAMANTIS GARAMANTIS, Lataste
1881. Le Naturaliste, Paris, 1, p. 507.

Sidi-Roueld, Ouargla, Algeria.
13. GERBILLLUS GARAMANTIS ARABILMI, Thomas
1918. Ann. Mag. Nat. Hist. 9, II, p. 61.

Tebuk, Arabia.
14. GERBILLUS PRINCIPLLUS, Thomas \& Hinton 1923. Proc. Zool. Soc. London, p. 262.

El Malha, Jebel Maidob, N. Darfur.

> dasyurus Group
15. GERBILLLS VIVAX, Thomas
1902. Proc. Zool. Soc. London, p. 8.

Sebha, Tripoli.
16. GERBILlUS Mimulus, Thomas
1902. Ann. Mag. Nat. Hist. 7, IX, p. 362.

Lahej, Aden, S. Arabia.
17. GERBILLUS DASYURLS, Wazner
1842. Arch. Naturg. 1, p. 20.

Sinai.
Synonym: dasyuroides, Nehring, 1901, Sitz. Ber. Ges. Nat. Fr. Berlin, p. 173. Palestine.
18. GERBILLU'S AMOENUS, de Winton 1902. Ann. Mag. Nat. Hist. 7, IX, p. 46.

Giza Province, Egypt.
19. GERBILLL'S WATERSI, de Winton
5901. Nov. Zool. VIII, p. 399.

Shendi, Nubia.
20. (;ERbILLLS STIGMONY: STIGMONIX, Heuglin
1877. Reise Nordost. Africa, 2, p. 78.

Khartoum, Sudan.
21. GERBILLUS STIGMONYA LLTEOLL'S, Thomas
rgor. Ann. Mag. Nat. Hist. 7, VIII, p. 275.
Duem, Sudan.
${ }^{1}$ G. indus probably belongs to the dasyurus group and is wrongly allocated here.
22. (;IERBILI.L \& HARWOODI HARWOODI, Thoma
1901. Ann. Mlag. Nat. Hist. 7, VJII, p. 275.

Lake Naivasha, Kenya.

1914. Ann. Nlag. Nat. Hist, S, XIV, p. 4 Big.
S. Guaso Nyiro, Nyanza Province, Kenya.

24 GERBILLI'S EPRCISALI, Doilman 1914. Ann. Nag. Nat. Hist. S. SlV. p. 488.

Voi, línya.
(According to Hollister, this species may be the same as pusillus, 10. 41.)
2ғ. GERRIBILLUS SOMIAI.ICLS, Thomas
1910. Ann. Mag. Nat. Hist. S, V, p. 197.

Upper Sheikh, Somaliland.
21. GERBILLLS BROCKMIANI, Thomas
1910. Ann. Naщ. Nat. Hist. 8, V, p. 420.

Burao, 85 miles south of Berbera, Somaliland
27. 1FERBILL.L'S NACKILLIGLNI, Thomas 1904. Arn. Mag. Nat. Hist. $7, \mathrm{KlV}^{\top}, \mathrm{p} .15 \mathrm{~S}$.

Wladi Alagi, castern Egrptian desert.

## simoni Group

28. (jERBIILIL SIDIONH, Lataste

ISSi. Le Naturaliste, Paris, I, p. 497.
Oued-Magra, north of Hodna, Aggeria.
2\%. GERBILLLS JORDANI, Thomas 1918. Ann. Mag. Nat. Hist. 9, JI, p. 60. Guelt-es-Stel, Central Plateau, Algeria,
30. GERBILLL\& HEXLIEY, de Winton 1903. Nov. Zool. N, p. 284.

Zaghig, Wadi Natron, Egypt.
31. (iERBILLUS MAR1AE, Bonhote
1909. Proc. Zool. Soc. London, p. 792.

Nokattan Hills, Cairo, Egypt.

1923. Proc. Zool. Soc. London, p. 263.

Madu, So miles north-east of El Fasher, Darfur, Sudan.
3) Gi:RBILLU゙\& DINIINLTCシ, Dollman

I911. Ann. Nag. Nat. Hist. S, VII, p. $5 \geq 0$.
Nyana Nyango, Guaso Nyiro, Kenya.
34 GERRBLLLCS ULIANI, St. Jeeret
2935. Ann, Mag. Nat. Hist. 10, XV, p. 669.

Bulhar, British Somaliland.
Species not allocated to cimups
3 ( 3 ERBILLLS LIXA, Yorbury \& Thomas
1895. Proc. Zool. Soc. London, p, 550.

Shark Othman, Aden, Arabia.
36. GEIRBILLU's HILDA, Thomas
1918. Ann. Mag. Nat. Hist. 9. II, p. 62.

Sca coast 70 miles south-west of Tangier, Morocco.
37. (;ERBILLUS RUBERRIMUS, Rhoads
1896. Proc. Acad. Nat. Sci. Philadelphia, p. 538.

West Somaliland.
38. GERBILLUS BOTTAI, Lataste
1882. Le Naturaliste, Paris, II, p. 36.

Senaar, Sudan.
39. GERBILLU'S V'ENLSTUS, Sundevall
1842. K. Svenska V'et. Akad. Handl. p. 230.

Near Bahr-el-Abiad, Sudan.
40. GERBILLU'S QUADRIMIACLLATUS, Lataste
1882. Le Naturaliste, Paris, II, p. 27.

Nubia.
41. GERBILLUS PLSILLUS, Peters
1878. Monatsber. K. Preuss. Akad. Wiss. Berlin, p. 201. Taita, Kenya. (See note under number 24 , percivali).
42. GERBILLUS GROBBENI, Klaptocz
1909. Zool. Jahrb. Syst. 27, p. 252.

Dernah, north coast of Barka, Cyrenaica.

## Subgenus Gerbillus, Desmarest

nancillus Group
43. GERBILLUS NANCILLUS, Thomas \& Hinton
1923. Proc. Zool. Soc. London, p. 260.

45 miles north of El Fasher, Sudan

## vallinus Group

44. GERBILLUS VALLINUS, Thomas
45. Ann. Mag. Nat. Hist. 9, II, p. 148.

Tuin, Kenhart, Hartebeest River, Bushmanland, South Africa.
paeba-swalius Group
45. GERBILLLS SWALIUS SWALILS, Thomas \& Hinton 1925. Proc. Zool. Soc. London, p. 235.

Karibib, S.-WV. Africa.
46. GERBILLUS SWALILS ORALIs, Thomas \& Hinton 1925. Proc. Zool. Soc. London, p. 236.

Rooibank, S.-IV. Africa.
47. GERBILLL'S SWALIL'S LEUCANTHUS, Thomas 1927. Proc. Zool. Soc. London, p. 382.

Ondongwa, N.-W. Ovamboland.
48. GERB1LLUS CALIDLS CALIDUS, Thomas
1918. Ann. Mag. Nat. Hist, 9, II, p. 63.

Dolopo, Bechuanaland.

## GERBILLUS

49. (il:RBILLUS CALIIOS KALAIIARICLS, Roberts
50. Ann. Transv. Mus. SV, p. 10.

Gomodino Pan, C'entral Kalahari.
50. GEIRBILLLA PAIBA PAEBA, smith

1\$36. Rep. Exp. Int. S. Africa, app. p. 43.
Litaku, Bechuanaland.
Synonym: tenuis, Smith, 1849 Jll, Zool. S. Africa Jlamm. pl. xxxvi, fig. 2 and text.
51 (iERBILLLE PAIEBA BRGONII, Thomas
1918. Ann. Nag. Nat, Hist. 9, II, p. 64.

Port Nolloth, Namaqualand.
52. GERBILLUS PAEBA COOMIBSI, Roberts
1929. Ann. Transv. Mus. XHI, p. q8.

Zoutspansberg, west of Sand River, Transvaal.

## gerbillus Group

53. GERBILLUS GIERBILLL'S GIERBIILLS. Whver 1So1. Bull. Sci. Phil. Paris, II, p. 121,

Giza Province, Egypt.
Synonym: acgyptius, Desmarest, 1804, Nouv. Dict. II. N. XXIV, Tab. Méth. P. 22. Near Alexandria.
longicandus, Wagner, $1 S_{43}$, Schreber Säug. Suppl. III, 477
54. GERBIJLLTS GERBILLUS ALLENBY1, Thumas 1918. Ann. Nag, Nat. Hist. 9, II, p. $1+6$.

Rehuboth, near Jaffa, Palestine.
55. GIRRBILIAS GIFREILLL: ANDIERAONI, de Winton 1902. Ann. Mag. Nat. I Iist. 7, 1X, p. 45.

Mandara, Egypt.
56. GERBILLUS GERBILLUTS BONHOTEI, Thomas
1919. Ann. Nag. Nat. Hist. 9, III, p. 560.

Khabra Abu Guzour, south-east of Et Arish, N, Sinai,
57. (iERBILILS GERBILLES EATONI, Thomas
1902. Proc, Zool. Soc, London, F. 6.

Elcusher, 'Tripoli.
58. GIERBHLJLS GERBHLJLS IATASTJE, 'Thmmas \& Trouessart 1903 . Bull. Soc. Zonl. France, XXVIll, p. 172.

Kebili, s. Tunis.
5y. GIFRBILICSGERBILLUS AGAG; Thomas IyO3. Proc. Zool. Soc. Londen, P. 296.

Agageh Wells, W. Kordofan.
to (;ERBIILCE GERIBILIXS NIGIERIAI: Thomas \& Hinton 1920. Nov, Zool. XSVII, p. 317.

Kano, N. Nigeria.

[1914 Sbstract Proc. Zool. Soe. London, No. 13 I, p. 25 ; Proc, Zool. Soc. London, p. 311.
Neamatak, 'Turkwel River, Leqanda.
62. GERBILLUS DUNNI, Thomas
1904. Ann. Mag. Nat. Hist. 7, XIV, p. 101. Gerlogubi, Somaliland.
63. GERBILLUS ARDUUS, Cheesman \& I linton 1924. Ann. Mag. Nat. Hist. 9, XIV, p. 551.

Jafura, Central Arabia.
64. GERBILLCS GLEADOWI, Murray 1886. Ann. Mag. Nat. Ilist. 5, XVII, p. 246. Rohri, Upper Sind, N.-W. India.
65. GERBILLUS CHEESMANI, Thomas
1919. Journ. Bombay Nat. Hist. Soc. XXVI, p. 748.

Near Basra, Lower Euphrates.
66. GERBILLU'S RIGGENBACHI, Thomas
1903. Nov. Zool. X, p. 301.

Rio de Oro, W. Sahara.
67. GERBILLUS ROSALINDA, st. Leger
1929. Ann. Mag. Nat. Hist. 10, IV, p. 295.

Abu Zabad, Kordofan.

## puramidum Group

68. GERBILLU'S ACTICOLA, Thomas 1918. Ann. Mag. Nat. Hist. 9, II, p. 147.

Berbera, Somaliland.
69. GERBILLUS PYRAMIDUM PYRANIDUN, Geoffroy
${ }_{1}$ S25. Dict. Class. Hist. Nat. V1I, p. 32 r.
Giza Province, Egypt.
Synonym: burtoni, Cuvier, 1838 , Trans. Zool. Soc. London, II, p. 145. pygargus, Cuvier, 1838 , Trans. Zool. Soc. London, II, p. 142. dongolanus, Heuglin, 1877, Reise N. Ost. Afr. II, p. 79. Dongola, Sudan.
70. GERBILLUS PYRAMIIDUM TARABLLI, Thomas
1902. Proc. Zool. Soc. London, p. 5.

Sebha, Tripoli.
71. GERBILLUS PYRAMIDDUI FLOWERI, Thomas
1919. Ann. Mag. Nat. Hist. 9, III, p. 559.

South of El Arieh, N. Sinai.
72. GERBILLUS PJRAMIDDU HIRTIPES, Lataste
1882. Le Naturaliste, Paris, II, p. 21.

Bamendile, Ouargla, Algeria.
73. GERBILLUS PYRAMIDUM HESPERINCS: Cabrera 1906 . Bol. Real. Soc. Esp. Hist. Nat. p. 365.

Mogador, Morocen.
Not allocated to Group
74. GERBILLU'S PLLVINATLS, Rhoads
1896. Proc. Acad. Nat. Sci. Philadelphia, p. 537.

Lake Rudolf.
(Described as near pyramidum).
75. GJRBILIL\& BJLENSIS, Frick
ro14. Ann. Carnegie Mus. 1X, p. 12. Biten, Abyssinia.
76. GERBILLL'S DALI,ONII, Hems de Balsac 1936. Nem. Acad. Sci. Paris, 62, p. 43 . Tibesti, Chad Military Territory.
ㅇ. GERBBILLL'S FOLEYI, Heim de Balsac
1936. Suppl. au Bull. Biol. de France et de Belgique, Paris, 21, 317.389. Beni-abbes, WV. Algeria.

## Genus 2. MHCRODILLUS, Thomas

1910. Microdillt's, Thomas, Ann. Mag. Nat. Hist. 8, V, p. 197.

Type Species.-Dipodillus peeli, de Winton.
Range.-Gomaliland.
Nuatber of Forms.-One.
Characters.-Tail well haired, but considerably shorter than head and body, and not tufted. lindfoot with naked sole.
Skull differing from Dipodillus in the more narrowed interorbital region (which narrows abruptly, differing from any Dipodillus seen); the skull is more bowed than in Dipodillus; the bullae are large, though the mastoids do not appear conspicuously in superior aspect of skull; they surpass the occiput posteriorly. Supraorbital ridges feeble; posterior palatal foramina well developed. 'l'he braincase is broad. The tail is about 79 per cent of head and body length. The head and body length is about $66-73 \mathrm{~mm}$.

This form differs from Dipodillus in a combination of rather trivial cranial and external characters which are, however, clearly marked, and so it may perhaps stand as a genus.

Forms seen: peti.
List of Named Forms
3. Microdillés peELI, de Winton
s598. Ann. Mlag. Nat. Hist. 7, 1, p. 250.
Eik, Somaliland.

Genus 3. 'T'ATERA, Lataste
18\$2. Tatera, Lataste, Le Naturaliste, Paris, 11, p. 126.
1917. Taterona, Wroughton, Journ. Bombay, Nat. Hist. Suc. XXV, no. 1, p. qo (Gerhillus afer, Gray.)
sin97. Gerbilliscts, Thomas, Proc. Zool. Soc. London, p. 433. (Gerbillus bochmi.
Noack.) Valid as a subgenus.
T`ype Spreifs.-Dipus indicus, Hardwicke.
Ravgr.-India, from Punjab and Sind south through the Peninsula, to Ceylon, cast to Bengal. Persia, Mesopotamia, Syria. Atrica, south
of the Sahara; Gambia, Nigeria, Gold Coast; Sudan, Abyssinia, Somaliland, Kenya, Uganda, Tanganyika, East Congo, Angola, Portuguese East Africa, South-west Africa, and generally throughout South Africa, Arabia.

Number of Forms.-About ninety.
Characters.-This genus contains large numbers of Gerbils which, though dentally about as Gerbillus, differ in the more strongly ridged and upstanding occipital region as a rule, the smaller bullae (on average, mastoids about at minimum for subfamily), and the more Ratlike general external appearance. The braincase as a rule seems not to appear so enlarged and broadened posteriorly as in the other genera. Supraorbital ridges usually present, but as a rule not very heavy (for instance, the skull is less prominently ridged in large species of Tatera than in such types as Rhombomys). Rostrum pointed and narrow usually; zygomatic plate always very strongly projected forwards, more so than in any other genus, so far as I have seen; the infraorbital foramen narrowed, particularly below; in some forms, particularly the Asiatic species, the zygomatic plate is curved round in front, so that its lower border is curved backwards to a degree. Upper incisors typically one-grooved, often opisthodont. In the subgenus Gerbilliscus, there are very faint traces of two grooves; or in this subgenus, the incisors may be practically plain. They are also almost plain in liodon, though not in all its races. Anterior palatal foramina long, usually reaching the toothrows, or almost so. Posterior palatal foramina variable, sometimes much reduced, sometimes comparatively lengthened, though less so than in Taterillus, Paroccipital process large. Bullae large for a Muroid, but not comparing with the majority of the Gerbillinae in size, as a rule. Upper cheekteeth less hypsodont than in Meriones, and cuspidate originally; in the adult they are mostly a series of plain straight plates, being rather simpler than Gerbillus, though with the same general arrangement; M. 3 not excessively reduced, usually bilaminate. M. 1 evidently four-rooted. Lower molars normal, but the anterior lamina of M. 1 may have a small fold present in the front of the tooth. In some forms the lower incisor root tends to be apparent on the mandible.

Fur medium or soft; sole naked; tail may be slightly shorter than head and body length, or considerably longer than this measurement; it is fully haired, and may be conspicuously tufted in some forms. D. 5 of hindfoot considerably shorter than the three central digits; hindfoot narrow. Form often heavy and Ratlike. Foreclaws tend to become prominent.

Wroughton's "excuse" for dividing the Indian species from the African generically is so weak that it appears waste of time and space to repeat the characters. "Taterona" was erected on a trivial character of the shape of the parietals, which if constant in African forms is not so in the Asiatic races; and the colour of the tail, which is hardly a specific character in the group as it seems variable in many of the African forms. How this name, based on characters such as these, has ever been in general use is something of a mystery.

The group is an exceedingly difficult one to arrange in any natural order, and it appears that there are far too many species. Wroughton (Ann. Mag. Nat. Hist. 7, CVII, p. 474, 1906) gave a key to the forms, and described many new
species. This arrangement appears to be weakened by the amount of variation shown in large series of specimens in head and body length measurements, so that I do not think his arrangement would stand in a general revision.
flinton \& liershaw stated that in the northern part of Afriea two groups were recognizable, the robusta type (with migricauda, macropus, etc.), with opisthodont incisors, small molars, and tufted tail; and the bencenuta-liodon type, with orthothont incisors, large molars, and tail without tuft.

Kiershaw had previously divided the African forms into two groups, those with tufted tails, in which the posterior palatal foramina were longer, and those without tufted tails, in whieh these foramina were shorter; remarking that the tufted-tail species agreed in the characters of the length of the palatal foramina with the Indian species, which also have a well-tufted tail; but these foramina vary within the Asiatic group.
'The arrangement of groups based on forms with tufted or untufted tails is weakened by the fact that there is a certain amount of variation in the development or otherwise of the tuft. It may, for instance, appear in schinzi, which is normally untufted.

However, for the present f see no other way to divide the genus. The groups recognized here are very provisional.

The characters given for the groups cannot for the moment be correlated with the cranial characters given for the groups by Hinton \& Kershaw. A detailed revision of this genus is undoubtedly much needed. I provisionally recognize the following groups:

1. indica group. The tail is coloured dark above and below, and pale at the sides, and bears a well-marked tuft. The size is as a rule large (up to 187 mm . head and body or perhaps more).

I do not think that there is more than one valid species in this group. All races with extremes of colour seem to intermix with a race of more normal colour, from one to the other. The forms curieri and cevlonica have, it is true, a proportionately longer tail; but hardwickei seems to be intermediate, at least on average, in this respect. I therefore list all named forms provisionally as subspecies of indica.
2. robusta group. The tail is not coloured as in the Indian and Persian species, being dark above, light below (in all African speeies except nigricauda, in which it is entirely black). The tail is, normally, conspicuously tufted. This includes several species from North and East Africa. $\bar{T}$. nigricateda at first sight appears very distinct, on account of its hlack tail; but in the race nyama, it is not wholly black; and according to Hollister, cicina should be regarded as a closely allied type. T. minuscula appears a very small species (about ioy head and body); the other members of the group are moderate-sized, and include phillipsi and shound from Abyssinia, macropus from Sudan, swaythlingi from 'langanyika, and guincae from West Jfrica.
3. "fra group. 'To this may le referred a very large number of named species and races, including all the southern forms. According to shortridge, there are 6 mammae in brantsi (of which I think draco is
not more than a subspecies), and 8 in the other South African types, as afra, lobengulae, schinzi, miliaria. Normally the tail is not tufted. A specimen of letcogaster at the British Museum is labelled as with 6 mammae. The group appears to be represented in West Africa by a number of species which may all be the same, but provisionally they are retained as species. The forms inclusa and nyasae are provisionally listed as full species; I think these will be either races of lobengulae or miliana. T. nigrita, a small dark form, and T. taborae, are probably distinct species.
4. liodon group. Doubtfully distinguishable from the above, but with a tendency, most pronounced in typical liodon, for the incisors to be almost plain; and at extreme development tending to become largest of African forms (up to 190 mm . head and body). Perhaps on average larger than the afra group, but there is much variation in this character. Includes liodon and its races (including ruwenzori apparently), benvenuta, the forms soror and flaripes (not seen, but said to be near benvenuta by Hinton \& Kershaw); also valida and dichrura.
5. ruddi group. Containing one species, with an unusually long tail (over ${ }^{1} 30$ per cent of head and body length), the tail not tufted, but with terminal portion white. The incisors are clearly grooved. This species, but for the grooving of the incisors, seems very near fallax, a member of the subgenus Gerbilliscus. Apart from ruddi and Gerbilliscus, the tail is, as far as traced, less than 130 per cent of head and body length in the genus.
6. boehmi group. Subgenus Gerbilliscus. Incisors very faintly grooved; typically with traces of two grooves. Tail with terminal portion white, and the tail normally much lengthened (about as ruddi). To this subgenus have been referred boehmi, fallax, and fraterculus. The size is large for the genus. T. boehmi has the tail tufted.
Forms scen: afra, angolae, bailwardi, bechuanae, benvenuta, boehmi, brantsi, ceylonica, cosensi, cuzieri, dichrura, draco, dundasi, dunni, fallax, fraterculus, gambiana, giffardi, griquae, guineae, hardzickei, hopkinsoni, iconica, inclusa, indica, joanae, kempii, leucogaster, liodon, lobengulae, lucia, mashonae, miliaria, minuscula, mombasae, monticola, ndolae, "neazei," nigrita, nigricauda, nyama, nyasae, panja, perpallida, persica, phillipsi, picta, pitmani, robusta, ruddi, ruzenzori, salsa, scansa, schinzi, sherrini, shirensis, smithi, stellac, swaythlingi, taborae, taeniura, umbrosa, valida, zelmanni.

> List of Named Forvis
> Subgenus Tatera, Lataste
> indica Group

1. TATERA INDICA INDICA, Ilardwicke
2. Trans. Linn. Soc. London, VIll, p. 279.

India. (?Kumaon).
Synonym: otaria, Cuvier, Trans. Zool. Soc. London, II, p. I44, pl. 26, figs. 14 -18, 1838 .
17 Living Rodents-II
2. TATERA INDICA DUNNI, Wroughton
1917. Journ. Bombay Nat. Hist. Soc. XXV, 1, p. 43. Punjab, Ambala.
3. TATERA INDICA SHERRIXI, Wroughton
1917. Journ. Bombay Nat. Hist. Soc. KXV, 1, p. 43. Jacobabad, Sind.
4. TATERA INDICA HARDWICKEI, Gray

18 43 . List, Mamm. p. 132. Dharwar, India.
5. TATERA 1NDICA CLVIERI, Waterhouse 1838. Proc. Zool. Soc. London, p. 56. Arcot, Madras, India.
6. TATERA INDICA CEYLONICA, Wroughton 1906. Ann. Mag. Nat. Hist. 7, XVII, pp. 477, 499. Ceylon.
7. TATERA INDICA PERSICA, Wroughton 1906. Ann. Mag. Nat. Hist. 7, XVII, pp. 477, 496. Seistan, Persia
8. TATERA INDICA SCANSA, Wroughton 1906. Ann. Mag. Nat. Hist. 7, XVII, pp, 477, 496. Kerman, Persia.
9. TATERA INDICA BAILWARDI, Wroughton 1906. Ann. Mag. Nat. Hist. 7, XVII, pp. 477, 498. Karun River, Persia,
10. TATERA INDICA MONTICOLA, Wroughton 1906. Ann. Mag. Nat. Hist. 7, XVII, pp. 477, 498. Mala Mir, Persia.
ir. TATERA JNDDICA TAENILRA, Wagner 1842. Schreber's Säug. Suppl. 111, p. 471. Syria.
12. TATERA INDICA PITMIANI, Cheesman 1921. Journ. Bombay Nat. Hist. Soc. XXV11, p. 337. Tigris, Mesopotamia.

## robusta Group

13. TATERA ROBLSTA ROBL sTTA, Cretzchmar
14. Atlas Reise. Nordl. Afrika von Rüppell, I, p. 75, pl. 29, fig. b.

Ambukol, Sudan.
Synonym: murina, Sundevall, $1842, \mathrm{~K}$. Svenska Vet. Ak. Handl. p. 231 . White Nile.
14. TATERA ROBL'STA TAYLORI, Hatt
1935. Amer. Mus. Nov. 791, p. 1.

Khor Birum, Red Sea Hills, Sudan.
15. TATERA MACROPCS, Heuglin
1864. Nov. Act. Acad. Caes. Leop. Dresden, 3 1, act. 7, p. 9.

Bongo, Sudan.
16. TATERA PHILI,IPsi PhIlLIPSI, de Winton
1898. Ann. Mag. Nat. Hist. 7, 1, p. 253.

Hanka Dadi, Somaliland.
57. TATERA PHHLLIPSI I MBROSA, Dollman
1912. Ann. Nag. Nat. Hist. 8, LX, p. 219. Baringo, Kenya.
18. TATERA SHOANA, Wroughton
1906. Ann. Mag. Nat. Hist. 7, XV1I, pp. 477, 492.

Jefer Medir, Somaliland.
19. TATERA MIINUSCL'LA, Osgood
1936. Field. Mus. Nat. Hist. Pub. Zool. ser. XX, p. 230.

Sheik Hussein, near Webbi Shebeli River, Bale, Abyssinia.
20. TATERA SWAYTHLING1, Kershaw
1921. Ann. Mag. Nat. Hist. 9, VIII, p. 565.

Morogoro, Tanganyika.
2r. TATERA VICINA VICINA. Peters
1878. Monatsber. K. Preuss. Akad. Wiss. Berlin, p. 200.

Kitui, Kenya.
Synonym: mombasae, Wroughton, 1906, Ann. Mag. Nat. Hist. 7, XVII, p. 493. Takaungu, Kenya.
22. TATERA VICINA BODESSANA, Frick 1914. Ann. Carnegie Mus. IX, p. 15.

Bodessa, Abyssinia.
23. TATERA V1CINA MUANSAE, Matschie 1911. Sitz. Ber. Ges. Nat. Fr. Berlin, p. 333. Mwanza, Tanganyika.
24. TATERA VICINA ICONICA, Dollman 1911. Ann. Mag. Nat. Hist. 8, VII, p. 521.

Nyama Nyangu, northern Guaso Nyiro, Kenya.
25. TATERA VICINA POTHAE, Heller
1910. Smiths. Misc. Coll. LVI, no. 9, p. 2.

Potha, Kapiti Plains, Kenya.
26. TATERA NIGRICALDA NIGRICACDA, Peters 1878. Monatsber. K. Preuss. Akad. Wiss. Berlin, p. 200.

Ndi, Taita, Kenya.
27. TATERA NIGRICALDA NYANIA, Dollman 1911. Ann. Mag. Nat. Hist. \&, VII, p. 522.

Nyama Nyangu, northern Guaso Nyiro, Kenya.
28. TATERA NIGRICALDDA PERCIVALI, Heller
1914. Smiths. Misc. Coll. LX゙III, no. 7, p. 8.

Lorian Swamp, Kenya.
29. TATERA NIGRICACDA BAYERI, Lönnberg 1918. Rer. Zool. Afr. 5, p. 179.

Maroon River, near Mt. Elgon, Kenya.
30. TATERA NIGRICALDA bODESSAE, Frick 1914. Ann. Carnegie Mus. IX, p. 14.

Sagan River, Bodessa, Abyssinia.

3i. TATERA GLINEAE GLINEAE, Thomas 1910. Ann. Mag. Nat. Hist. 8, V', p. 353. Gunnal, Portuguese Gumea.
32. TATERA GUINEAE PICTA, Haynman 1935. Proc. Zool. Soc. London, p. 930. Pong, Tamale, N. Territories of Gold Coast.
liodon Group
33. TATERA BENVENLTA BENVENITA, Hinton \& Kershaw 1920. Ann. Mag. Nat. Hist. 9, V1, 1. 97.

Mongalla, Sudan.
34. TATERA BENVENLTA LLCIA, Hinton \& K゙ershaw 1920. Ann. Mag. Nat. Hist. 9, V1, p. 99.

Musisi River, Lake Albert, Uganda.
35. TATERA SOROR, G. M. Allen
1914. Bull. Mus. Comp. Zool. Harvard Coll. LVIIl, 7, p. 333.

Fazogli, Blue Nile, Sudan.
36. TATERA FLAVIPES, G. M. Allen 1914. Bull. Mus. Comp. Zool. Harvard Coll. LVIIl, 7, p. 331.

Above Roseires, Blue Nile, Sudan.
37. TATERA LFODON LIODON, Thomas
1902. Ann. Mag. Nat. Hist. 7, 1X, p. 44.

Lake Mweru, N. Rhodesia.
Synonym: neazei, Wroughton, 1907, Nem. Manchester Phil. \& Lit. Soc. L1, no. 5, p. 18. Ndola, N. Rhodesia.
38. TATERA LIODON SMITTII, Wroughton 1909. Ann. Nag. Nat. Hist. 8, III, p. 249.

Mubende, Unyoro, Uganda.
39. TATERA LIODON DUNDASI, Wroughton 1909. Ann. Nag. Nat. Hist. 8, IV, p. 539.

Kirui, Mt. Elgon, Kenya.
40. TATERA LIODON RUWENZORII, Thomas \& Wroughton 1910. Trans. Zool, Soc. London, SII, p. 500.

Ruwenzori, Uganda.
41. TATERA DFCHRLRA, Thomas
1915. Ann. Nag. Nat. Hist. 8, SVI, p. 147.

Poko, Upper Welle, Congo.
42. TATERA VALIDA, Bocage

I890. J. Sci. Math. Phys, Nat. Lishon, pt. V, p. 6.
Caconda, Angola.

## afra Group

+3. TATERA NIGRITA NIGRITA, Wroughton
1go6. Ann. Mag. Nat. Hist. 7, SVII, p. 49 I.
Masindi, Unyoro, Uganda.
44. TATERA NIGRITA BENIENSIS, Hatt
1935. Amer. Mus Nos: 791, p. 2.

Beni, E. Congo.
45. TATERA BRANTSI BRANTSI, Smith
1836. Rep. Exp. Int. S. Afr. Appendix, p. 43.

Orange River Colony.
Synonym: montanus, Smith, 1840 , Ill. S. Afr. Zool. pl. 36, fig. 1 . Orange River Colony.
maccalimus, Sundevall, 1846, Ofv. た. Svenska Vetensk Akad. Stockholm, p. 120. Transvaal, Magaliesberg.
46. TATERA BRANTSI PERPALLIDA, Dollman
1910. Ann. Mag. Nat. Hist. 8, VI, p. 394.

East Bank Tamalakan River, Ngamiland, Bechuanaland.
47. TATERA BRANTSI DRACO, Wroughton
1906. Ann. Mag. Nat. I list. 7, XVII, p. 479.

Wakkerstroom, S.-E. Transvaal.
48. TATERA LELCOGASTER, Peters
1852. Reise nach Mossambique: Sãugeth, p. 145, pl. 33, fig. 1, pl. 35, fig. 4.

Coast of N. Zambesi, Portuguese E. Africa.
49. TATERA AFRA AFRA, Gray
1830. Spicil. Zool. pt. 2, p. 10.

Cape Town.
Synonym: africanus, Cuvier, 1836, Trans. Zool. Soc. London, p. 141. schlegelii, Smuts, Enum. Namm. Cap. p. 41, 1832.
50. TATERA AFRA GILLI, Roberts
1929. Ann. Transv. Mus. XIII, p. 100.

Lambert's Bay, Cape.
51. TAtera lobengulae lobengulae, de Winton 1898. Ann. Mag. Nat. Hist. 7, 11, p. 4. Essex Vale, near Bulawayo, S. Rhodesia.
52. TATERA LOBENGLLAE BECHUANAE, Wroughton 1906. Ann. Mlag. Nat. Hist. 7, XVII, p. 482.

Molopo, Bechuanaland.
53. TATERA LOBENGLLAE GRIQUAE, Wroughton 1906. Ann, Mag. Nat. Hist. 7, XVII, p. 48.

Kuruman, Bechuanaland.
Synonym: miliaria stellae, Wroughton, 1906, Ann. Mag. Nat. Hist. 7, SVII, p. 485. Kuruman, Bechuanaland.
54. TATERA LOBENGL゙LAE MASHONAE, Wroughton 1906. Ann. Mag. Nat. Hist. 7, XVII, p. 483.

Mazoe, Mashonaland.
55. TATERA LOBENGLLAE PESTIS, Roberts 1929. Ann. Transv. Mus. Xill, p. 103. Bothaville, Orange Free State.
56. TATERA LOBENGULAE MItCHELLI, Roberts 1929. Ann. Transv. Mus. XIll, p. 103.

Wonderfontein, Transvaal.
57. TATERA LOBENGULAE PRETORLAE, Roberts
1929. Ann. Transv. Mus. X111, p. 104.

Pretoria North, Transvaal.
58. 'IITERA LOBENGLLAE LIAIPOPGEXSIS, Ruberts 1929. Ann. Transv. Mus. XIII, p. 104.

Njellele River, Zoutspansberg district, 'Transvaal.
59. 'TITERA IOBENGULAE TZANELNENSIS, Roberts 1929. Ann. Transv. Mus. XIIII, p. 105.

Tzaneen, N.-E. Transvaal.
bo. 'TATERA I, ()BENGLLAE IITTORALIS, Roberts 1929. Ann. Transv. Mus. XIII, p. 105. Masiene, coast of Portuguese E. Africa.
(61. 'TATERA LOBENGLLAE BEIRENSIS, Roberts 1929. Ann. Transv. Mus. XIII, p. 106. Near Beira, Portuguese E. Africa.
62. 'I'ATERA LOBENGUIAE NDOLAD, Kershaw 1022. Ann. Mag. Nat. Hist. 9, X, p. 105

Ndola, N. Rhodesia.
63. TATERA LOBENGULAE ZULEENSIS, Roberts 1931. Ann. Transv. Mus. XIV, p. 230. Zululand.
64. TATERA LOBENGULAE PANJA, Wroughton 1906. Ann. Mag. Nat. Hist. 7, XVII, p. 486. 60 miles above Tette, Mozambique.
65. TATERA SCHINZI, Noack
1889. Zool. Jahrb. Band IV, p. 134 .

Kalahari, S.-IV. Africa.
66. TATERA JOANAE, Thomas 1926. Proc. Zool. Soc. London, p. 294.

Ukuambi, Ovamboland.
67. TATERA MILIARIA MILIARIA, Wroughton 1906. Ann. Mag. Nat. Hist. 7, XVII, p. 484. Deelfontein, Cape Colony.
68. TATERA MILIARIA SALSA, Wroughton 1906. Ann. Mag. Nat. Hist. 7, ぶV11, p. 485. Zoutspansberg, Transvaal.
69. TATERA ANGOLAE, Wroughton 1906. Ann. Mag. Nat. Hist. 7, XVI1, p. 488.

Fort Quilenges, Angola.
Synonym: nigrotibialis, Monard, 1933, Bull. Soc. Neuchatel, 57, p. 54. Angola.
70. TATERA INCLUSA, Thomas \& Wruughton 1908. Proe. Zool. Soc. London, p. 169.

Gorongoza, Portuguese E. Africa.
71. 'TATERA NYASAE NYASAE, Wroughton 1906. Ann. Mag. Nat. Hist. 7, XVII, p. 490.

Decp Bay, Lake Nyasa.
72. 'TATERA NYASAE SHIRENSIS, Wroughton 1906. Ann. Mag. Nat. Hist. 7, XVII. p. 490.

Mt. Malosa, Upper Shire, Nyasaland.
73. TATERA NYASAE LOVERIDGEI, Hatt
1935. Amer. Mus. Nov. 791, p. 2.

Kilosa, Tanganyika.
74. TATERA COSENSI, Kershaw 1921. Ann. Mag. Nat. Hist, 9, VIII, p. 567.

Ruvu Station, 40 miles inland from Dar-es-Salaam, Tanganyika.
75. TATERA KEMPII, Wroughton 1906. Ann. Mag. Nat. Hist. 7, XVII, p. 375.

Anambra Creek, S. Nigeria.
76. TATERA HOPKINSONI, Thomas 19II. Ann. Mag. Nat. Hist. 8, VIII, p. 375. Kudang, Gambia.
77. TATERA GIFFARDI, Wroughton 1906. Ann. Mag. Nat. Hist. 7, XVII, p. 489. Gambaga, Gold Coast.
78. TATERA GAMIBIANA, Thomas 1910. Ann. Mag. Nat. Hist. 8, VI, p. 428. Marakissa, Gambia.
79. TATERA IVELMANNI, St. Leger 1929. Ann. Mag. Nat. Hist. 1o, III, p. 387. Maiduguri, N. Nigeria.
8o. Tatera taboraE, Kershaw 1921. Ann. Mag. Nat. Hist. 9, VIII, p. 566.

Tabora, Tanganyika.

## ruddi Group

81. TATERA RUDDI RUDDI, Wroughton 1906. Ann. Mag. Nat. Hist. 7, XVII, p. 478. Umvolosi, Zululand.
82. TATERA RUDDI TONGENSIS, Roberts 1931. Ann. Transv. Mus. XIV, p. 230.

Maputa, N. Zululand.
Subgenus Gerbilliscus, Thomas
83. TATERA FALLAX, Thomas \& Schwann
1904. Abstr. Proc. Zool. Soc. London, no. 6, p. 22; Proc. Zool. Soc. London, p. 461. Burumba, Ankole, S.-W. Uganda.
84. TATERA FRATERCULUS, Thomas
1898. Proc. Zool. Soc. London, p. 392.

Songwe, N. Nyasa.
85. TATERA BOEHMII BOEIIMII, Noack
1888. Zool. Jahrb. Syst. II, p. 241.

Marunga, N. Rhodesia.
86. TATERA BOEHMII VARIA, Heller
1910. Smiths. Misc. Coll. LVI, no, 9, p. I.
S. Guaso Nyiro, Sotik district, Kenya.

Species not allocated to Groups

```
    87. TATERA BREYERI, Roberts
1926. Ann. Transv. Mus. NI, p. 250
    NyIstroom, Transvaal.
    (Described as near brantsi.)
    88. TATERA NATALENSIS, Roberts
1929. Ann. Transv. Mus. NIII, p. ior.
            Lidgetton, Natal.
            (Described as near ruddi.)
    $o. TATERA CAFFER, Wagner
1842. Archiv. für Naturg, I, p. 18.
        S. Africa.
    go. TATERA MAPUTA, Roberts
1936. Ann. Transv. Mus. XVIII, p. }238
        Maputa, N. Zululand.
```

            Genus 4. 'TA'JERILLUS, Thomas
    1910. Taterillus, Thomas, Ann. Mag. Nat. Hist. 8, VI, p. 222.
1911. Taterina, Wettstein, Anz. Akad. Wiss. Wien. 53. p. 152. (Taterina lorenzi,
Wettstein.)

Type Species.-Gerbillus emini, Thomas.
Ringe.-African: Senegal, Nigeria, Lake Chad, Sudan, East Congo, Uganda, Kenya, Abyssinia.
Number of Forms.-Twenty.
Characters.-Like Tatera, but usually smaller, and posterior palatal foramina always much lengthened, as a rule reaching forward to level of front molars, and often nearly as long as toothrow; sometimes broadened. Anterior palatal foramina broad, of medium length. Upper incisors grooved. Zygomatic plate usually as in Tatera, but sometimes a little less extreme. Supraorbital ridges present or traceable in adult. Nolars as in Tatera; second lower molar often tends to be large.
'Tail usually well tufted. Hindfoot long, usually with naked sole, but this sometimes hairy in the region of the hallux. Head and hody about 100-130; tail considerally longer than head and body.

For the status of "Taterina," Wettstein, see Thomas \& Hinton, 1923, Proc. Zool. Soc. Lundon, p. 257.

Whether there is more than one valid species in this genus is not clear. I am inclined to doubt it.

Forms seen: ansehus, butleri, clizosus, congicus, cmini, gyas, gracilis, harringtomi, illustris, lacustris, lozcei, nigeriar, nubilus, osgoodi, perluteus, rufus, tenebricus.

## List of Named formis

1. TATERILLES ( $R$ RACILIS GRACILIS. Thomas
2. Ann. Mag. Nat. I Iist. 6, IX, p. 77.

Gambia.
2. TATERILLUS GRACILIS ANGELUS, Thomas \& Hinton
1920. Nov. Zool. XXVII, p. 317.

Kano, N. Nigeria.
3. 'TATERILLUS NIGERIAE, Thomas 191r. Ann. Mag. Nat. Hist. 8, VII, p. 459. Kabwir, N. Nigeria.
み. TATERILLUS LACUSTRIS, Thomas \& Wroughton
1907. Ann. Mag. Nat. Hist. 7, XIX, p. 378.

Lake Chad.
5. TATERILLUS CONGICUS, Thomas
1915. Ann. Mag. Nat. Hist. 8, XVI, p. 147.

Poko, Upper Welle, Congo.
6. TATERILLUS EMINI EMINI, Thomas
1892. Ann. Mag. Nat. Hist. 6, IX, p. 78.

Wadelai, N. Uganda.
7. TATERILLUS EMINI ZAMMARANI, de Beaux
1922. Att. Soc. Ital. Sci. Nat. 6i, p. 26.

Dolo, Abyssinia.
8. TATERILLUS EMIINI ANTHONYI, Hatt
1934. Amer. Mus. Nov. 708, p. 2.

West bank of the Nile, south of Jebelein, Sudan.
9. TATERILLUS OSGOODI, Wroughton 1910. Ann. Mag. Nat. Hist. 8, VI, p. 293.

Voi, Kenya.
10. TATERILLUS NUBILUS NUBILU'S, Dollman 1911. Ann. Mag. Nat. Hist. 8, VIII, p. 656.

Mt. Nyiro, Kenya.
11. TATERILLUS NLBILUS ILLUSTRIS, Doliman
1911. Ann. Mag. Nat. Hist. 8, VIII, p. 656.

12 miles north of N. Guaso Nyiro, Kenya.
12. TATERILLUS LOWEI, Dollman
1914. Abstr. Proc. Zool. Soc. London, p. 25 ; Proc. Zool. Soc. London, p. 312. 10 miles west of Ngamatak Hills, Turkwel River, Uganda.
13. Taterillus melanops, G. M. Allen
1912. Bull. Mus. Comp. Zool. Harvard Coll. LIV, p. $44^{6}$.

Meru River, N. Guaso Nyiro, Kenya.
14. TATERILLUS TENEBRICUS, Dollman
1911. Ann. Mag. Nat. Hist. 8, VII, p. 520.

Nyama Nyangu, N. Guaso Nyiro, Kenya.
15. TATERILLE'S HARRINGTONI, Thomas
1906. Ann. Mag. Nat. Hist. 7, XVIII, p. 303.

East of Lake Rudolf.
16. TATERILLU'S RUFUS, Wettstein
1916. Anz. Akad. Wiss. Wien. 53, p. 15 r.

El Obeid, Sudan.
17. TATERILLUS GYAS, Thomas 1918. Ann. Nag. Nat. Hist. 9, I1, p. 150.

Kamissa, Dinder River, Sudan.
18. TATERILLUS CLIVOSL'S, Thomas \& Hinton 1923. Proc. Zool. Soc. London, p. 258.

Jebel Marra, Darfur, Sudan.
I9. TATERILLU'S PERLETECS, Thomas $\mathbb{S}$ Hinton
1923. Proc. Zool. Soc. London, p. 259.

100 miles east of El Fasher, Sudan.
$=0$ 'TATERILLES BLTLER1. Wroughton
1910. Ann. Mag. Nat. Hist. 8, VI, p. 294.

Dug-dug, Bahr-el-Ghazal.
Synonym: kadugliensis, Wettstein, 1916, Anz. Akad. Wiss. Wien. 53 , p. 151. Kadugli, S. Kordofan. Status fide Thomas \& Hinton, 1923.
lorenzi, Wettstein, 1916, Anz. Akad. Wiss. Wien. 53, p. 152. E] Obeid, Kordofan. Status fide Thomas \& IInton, 1923.

## Genus 5. DESMODILLUS, Thomas \& Schwann

${ }^{110} 0$. Desmodllus, Thomas \& Schwann, Abstr, Proc. Zool. Soc, London, p. 6; Proc. Zool. Soc. London, p. 177.
Type Species-Gerbillus auricularis, Smith.
Ravge.-South-west Africa, and South Africa.
Number of Forms.-Two.
Characters.- The mastoids appear conspicuously at the back of each side of the skull in superior aspect, and project backwards behind the foramen magnum to a certain degrec. The bullae are much more inflated than is normal in Gerbillus, though considerably less so than in Pachyuromys. Posterior palatal foramina well developed, but not widened. Supraorbital ridges developed; grooving of upper incisors faint. Other cranial characters, and dental characters, much as in Gerbillus. Hindfoot with sole hairy. Tail well haired, considerably shorter than in Gerbillus; shorter than head and body, not tufted, but not club-shaped (compare Pachyuromys). Head and body about yo-122 mm. Nammae $2-2=8$ (Shortridge). This author states that it runs like an ordinary Rat, and is not saltatotial. The tail is roughly 78 per cent of head and body length; the hindfoot about 20-22 per cent of this measurement.

Forms seen: auricularis, pudicus.
List of Nimid Forys
DESAODDILLUS ALRICLLARIS AURICULARIS, smith
1834 S. Afr. Quart. Journ. ii, p. 160.
Kamiesberg, Namaqualand.
Synonym: brecicaudatus, Cuvier, 1836, Trans. Zool. Soc. London, II, P. 144. (Cape.)
2. DESMODILLU'S AURICULARIS PUDICU'S, Dollman
1910. Ann. Mag. Nat. Hist. 8, VI, p. 395.

Lehutitung, Kalahari.

## Genus 6. DESMODILLISCUS, Wettstein

1917. Desmodillisces, Wettstein, Denkschr, Akad. Wiss. Wien. 94, p. 115.

Type Species.-Desmodilliscus braueri, Wettstein.
Ravge.-Known from Sudan and North Nigeria.
Number of Forms.-Two.
Characters.-Skull rather like that of a Desmodillus in miniature; bullae much inflated; mastoids appearing conspicuously when skull is viewed from above. Palate broad, the anterior foramina wide, the second pair long, nearly as long as toothrow, and much broadened, as in Pachyuromy's, or to an even greater degree. Coronoid process very small.

Upper cheekteeth of Gerbillus type: M. 3 extremely reduced. Lower cheekteeth: M. 2 relatively large; M. 3 entirely suppressed. The genus therefore has a cheektooth formula ( $\frac{8}{2}$ ) not known elsewhere in the family Muridae.

Cheekpouches said to be present. Size very small; tail shorter than head and body, not tufted; sole naked. Very few specimens examined.

Head and body about $50-60$; tail about 76 per cent head and body length.
Forms seen: braueri, buchanani. I do not think there is more than one valid species.

## List of Named Forms

1. DESMODILLISCUS BRAUERI BRALERI, Wettstein
2. Denkscrh. Akad. Wiss. Wien. 94, p. 116.

Near El Obeid, Kordofan, Sudan.
2. DESMODILLISCL'S BRALERI BUCHANANI, Thomas \& Hinton 1920. Nov. Zool. XXVII, p. 317.

Famiso, near Kano, N. Nigeria.

## Genus 7. PACHIUROMIYS, Lataste

1880. Pachyuronys, Lataste, Le Naturaliste, Paris, I, p. 313.
'T'ype Spectes.—Pachyuromys duprasi, Lataste.
Range.-North Africa: Algerian Sahara, and Western Lower Egypt.
Number of Forms,-Three.
Characters.-Bullae and mastoids extremely and abnormally enlarged, projecting far behind the foramen magnum, and profoundly modifying the aspect of the skull. Suprameatal triangle very large. The bullae are developing in a similar manner to those of the North American Heteromyine genus Microdipodops, though less extreme than in that genus. Their apices arc not in contact behind the palate. Supraorbital ridges developed. Zygomatic plate and infraorbital foramen about as in Gerbillus. Paroccipital
process relatively large, closely applied to the bullae. Basioccipital much narrowed. Anterior palatal foramina well open, and the posterior pair considerably broadened.

Lepper cheekteeth in adult more or less prismatic, but as in Gerbillus in pattern when cut; upper incisors grooved; lower molars as in Gerbillus. Mandible of the usual type for this subfamily.

Build rather heavy. Fur very soft. Tail uniformly haired, thickened and club-shaped. Hindfoot with four nearly subequal digits, and reduced hallux; the digits heavily haired, the posterior part of the sole naked. Foreclaws relativety well developed. Tail less than 40 per cent of head and body length in the few examples seen which bear measurements. Ilindfoot about i7 per cent of head and hody length only. Head and body about 120-134.

Reamarks.- One of the most specialized and distinct genera in the subfamily. Forms seen: duprasi, faroulti, natronensis.

List of Named Forms

1. PACHYTROMIYS DLPRASI DEPRASI, Lataste
2. Le Naturaliste, Paris, I, p. 314.

Laghouat, Algerian Sahara.
2. PACHYLROMIY DLPRASI FAROLLTI, Thomas

19zo. Nov. Zool. XXVII, p. 3 r3.
Mecheria, plateau of W. Algeria.
3. PACHYLROAFY DLPRASI NATRONENSIS, de Winton 1903. Nov. Zool. X. p. 285.

Bir Victoria, on the way to Wadi Natron from the Nile, Egypt.

Genus 8. ANIMODILLUS, Thomas
1904. Ammodilles, Thomas, Ann. Mag. Nat. Hist. 7, XIV, p. 102.

Type Species.-Gerbillus imbellis, de Winton.
Range.-Somaliland.
Number of Forms.-One.
Characters.-Skull broad posteriorly; supraorbital ridges thick; nasals projecting far forwards over incisors. Nastoids not appearing conspicuously in superior aspect of skull. Zygomatic plate as in Gerbillus. Second pair of palatal foramina almost obsolete (normal for a Murine). Palate broader anteriorly than posteriorly, the toothrows converging behind. Nandible without coronoid process, though other than this peculiarity it is about as usual. Cheekteeth (only three skulls seen) apparently more hypsodont than in Gerbillus, and more like those of .Ieriones in pattern. They have been well figured by Thomas, Ann. Nag. Nat. Ilist. 7, XIV, 1904, p. 102. Nore specimens would be welcome before a definite conclusion can be reached as to which branch of the subfamily in dental characters this animal stands nearest.

Hindfoot narrow, with naked sole. Tail long, tufted terminally, but not as
well haired as is usual. Foreclaws relatively well developed. Head and body about 106 ; tail about 136 per cent head and body length.

This genus appears to be an isolated type, differing from the other genera in the shape of the palate and the lack of the coronoid process, both specialized characters, though generalizations are shown in the comparatively poorly haired upper portion of the tail, and the naked sole. In the hinder part of the palate are a pair of conspicuous pits.

Forms seen: imbellis.

## List of Named Forms

> 1. AMMODILLUS IMBELLIS, de Winton
> 1898. Ann. Mag. Nat. Hist. 7, I, p. 249.

> Goodar, Somaliland.

## Genus 9. MERIONES, Illiger

18if. Meriones, Illiger, Prodr. Syst. Mamm. p. 82.
1900. Idomeneus, Schulze, Zeitschr. Nat. Stuttgart, LXXIII, p. 201. (Mus tamaricinus, Pallas.)
1933. Pallasiomys, Heptner, Zeitschr. für Säugetierk. 8, p. 150. (Gerbillus erythrourus, Gray.)
1919. Cheliones, Thomas, Ann. Mag. Nat. Hist. 9, III, p. 265. (Gerbillus hurrianae, Jerdon.) Valid as a subgenus.
1937. Parameriones, Heptner, Bull. Soc. Nat. Moscou. Biol. 46, p. 190. (Meriones persicus, Blanford.) Valid as a subgenus.

Type Species.-Mus tamaricinus, Pallas (according to Lataste, Flower and Heptner).
Range.-Northern Africa, and South-western and Central Asia. South-east Russia (Caucasus, Kalnyk, Volga-Ural steppe), more or less throughout Russian Turkestan (Kazakstan area): extreme Southern Transbaikalian region; Mongolia, Pekin, Shansi, Shensi, Chinese Turkestan; Punjab, Delhi, Baluchistan, North-west Frontier; Afghanistan, Persia; Syria, Palestine, Arabia; Egypt, Tripoli, Algeria, Morocco, the Sahara, and the Sudan.

Numbfr of Forms.-About seventy-five.
Characters.-Skull with the usual aspect of members of the subfamily. Supraorbital ridges usually developed; sometimes weak, as in meridianus group, unguiculatus, tamaricinus group (including blackleri and allies); sometimes becoming excessively heavy, as in rex, and some of the larger North African forms. In rex, small postorbital notches are formed by them. First pair of palatal foramina long; second pair relatively short, or may be obsolete. Bullae very variable, in some forms relatively small; at maximum development, as crassus, etc., the mastoids show prominently in superior aspect of skull, the bullae extremely inflated; between both extremes there are many intermediates (full notes below). Lpper incisors one-grooved. Zygomatic plate well ridged, but not as a rule abnormally thrown forwards above (compare Tatera).

Upper checkteeth usually hypsodont, but not evergrowing (so far as known); no traces of cusps even when first cut (this character constant in specimens


Fig. 33. Mertones libycus crassus, Sundevall.
B.M1. No. 19.5.7.1, ; ; 2 (one of the series described by Thomas as M. pelermus).


Fig. 34. Meriones libycus crassus, Sundevall.
B.M. No. 19.5.7. I, ; ; 2.
examined, including very young forms from Africa, Arabia, Mongolia, and Central Asia). The pattern is more or less prismatic; M.x is cut by two outer and two inner folds into three plates, the folds opposite to each other, and nearly meeting in middle of tooth; M. 2 has one fold each side; M. 3 simple, or very rarely with traces of an inner fold. The folds, exeept in extreme old age, as a rule remain open. Lower cheekteeth: three plates on M.I, two on M.2, one on M.3, the front plate on M.i as a rule smaller than the others, the folds nearly meeting. In the very young, the teeth have an extremely hypsodont appearance, such as is seen elsewhere in genera with rootless cheekteeth.


Fig. 35. Meriones libycus crassus, Sundevall. Cheekteeth: B.M. No. 19.5-7.1, $;$
Bullae. In M. crassus, and some Arabian species, as ismahelis, the bullae are at maximum for the genus, the mastoids appear conspicuously at back each side of skull, the bullae are extremely inflated, the suprameatal triangle is very large. In members of the libycus-erythrourus group, as a rule, the inflation is less extreme, and the suprameatal triangle is rather smaller; but throughout North African specimens there appears to be much individual(?) variation in the size and degree of inflation of the bullae. In some forms the bullae are not pressed against the posterior part of the zygoma (as they are normally in those above), and the suprameatal triangle may become small. In the meridianus group, the mastoids are weaker, but the bullae are much inflated, considerably so in front of the meatus. In M. calurus, the bullae are very large indeed, but the suprameatal triangle is vestigial. In 11. mnguiculatus, the bullae are moderate, being apparently intermediate in shape and size between meridianus group and such forms as tamaricinus. In tamaricinus the bullae are relatively smaller, and
the suprameatal triangle is vestigial, so far as seen. 11. blackleri has the smallest bullae known in the genus, except perhaps for M. hurvianae. In M. persicus, the bullae are about as in tamaricimus, or perhaps sometimes a little larger; the suprameatal triangle is moderate. In M. hurrianae, the bullae are relatively small, and the suprameatal triangle is not abnormally reduced.

These notes should show that the bullae are far too variable in this genus for any generic names to be hased on their structure. Heptner in 1935 divided the genus into two, Meriones and "Pallasiomys," the latter for forms with more inflated bullae. The characters he gives are vague, and he seems to ignore the North African forms, which is just the section of the genus in which the most variability of bullae takes place. His "Pallasiomys" unguiculatus seems to be intermediate between the two types of bullae with which he characterizes his genera; certainly some of the North African forms are also intermediate between his types, and I am quite unable to tell one type of bulla structure from the other in the British Museum material. Thomas divided the North African species into groups based on bulla structure, but there appears to be too much variation for this classification to be maintained.

The following percentages, based chiefly on measurements of type skulls, indicate that in percentage of bullae against occipitonasal length there is overlapping throughout all groups in the genus:
> tamaricinus-blacklcri group-30, 31, 32 per cent.
> persicus group-31.33 per cent, or 37 per cent in baptistae.
> rex group-32,33,34 per cent.
> hurrianae group-circa $32-34$ per cent.
> unguiculatus group-about $37\left(3^{6-38}\right)$ per cent.
> meridianus group- 37 (type of auceps) to +1 per cent.
> libycus group-34 (longiceps), $36,37,38,39,40,41,4^{2}, 43$ per cent, or 44.45 per cent in tripolius, ismahclis.
> calurus-39-4o per cent.

Normally the fur is very soft, but it becomes rather short in unguiculatus, and excessively short and rough in rex and hurrianae. 'The hindfoot is usually narrow, with proportions of digits normal; as a rule the sole is haired, in northern types completely; in some members of the libycus group, a certain amount of the heel is naked; in persicus, rex group, and culurus the sole is almost completely naked, or completely so. The persicus group is on this account referred in 1937 to a subgenus Parameriones by Heptner. It will have to include the rex group, and calurus. Parameriones and Meriones parallel Gerbillus and Dipodillus; and if Dipodillus is given generic rank (which I think it should not be), Parameriones must be also. 'lhe foreclaws are usually not enlarged, but are considerably so in hurrianae (being broader and larger than usual, though not extreme, compared with completely fossorial genera, as Prometheomys, for instance), and they are considerably eniarged in unguiculatus, which appears in this respect intermediate between lumrianae and the rest of the genus. The ear is moderate, or large; but in hurrianae is reduced. The tail is often subequal to head and body length, but may be considerably longer than this measurement, or may be
shorter. It is always fully haired, and usually tufted terminally; in persicus it is extremely heavily tufted as a rule; also in calurus.

Cheliones was proposed as a genus for M. hurrianae by Thomas, on account mainly of the heavy bowed skull, small bullae and elongated foreclaws. The foreclaws, as just described, are certainly enlarged, but unguiculatus also seems to have this character to a certain degree; there is some variation in Cheliones in the development of the claws, specimens with smaller claws being nearer unguiculatus; the bullae are not it seems smaller than in some Meriones (see percentage measurements above) ; the skull is certainly not highly abnormal, as it is for instance in Brachiones. 1 do not think Cheliones can be accepted as more than a subgenus. Its main character is I think the reduction of the ear, which is as a rule under 12 mm . (sometimes under 10 ), whereas in the other species it is as a rule 15 or more, though sometimes in meridianus group or unguiculatus it may be 12 or 13. The fur is unusually short and rough in Cheliones, but is very similar in M. rex.

Forms seen: ambrosius, aquilo, arimalius, auceps, ausiensis, baptistae, blackleri, büchneri, buryi, calurus, caudatus, charon, collinus, crassibulla, crassus, cryptorhinus, edithae, erythrourus, evelynac, "getulus," grandis, guyoni, hurrianae, ismahelis, "isis," libycus, longiceps, longifrons, lycaon, melanurus, meridianus, pallidus, "pelerinus," persicus, psammophilus, rex, ricardi, roborozskii, sacramenti, schouesboei, sllawi, swinhoei, syrius, tamaricinus, tripolius, tristrami, trouessarti, tuareg, unguiculatus.

I recognize in this genus the following well-marked eight groups:
Subgenus Paranieriones: sole normally completely naked.

1. calurus group. Bullae very large (about 39-40 per cent of occipitonasal length), but suprameatal triangle vestigial. Supraorbital ridges clearly developed. Tail heavily tufted, the tuft black, bordered by two conspicuous strips of white (one each side), unique in the genus. Head and body about 127 mm .; tail rather shorter than this measurement. A rare and little known species from Sinai.
2. persicus group. Bullae typically small (about 31-33 per cent of occipitonasal length, but larger than this in the race baptistae ( 37 per cent)). Tail considerably longer than head and body (usually more than 120 per cent), heavily tufted terminally. Supraorbital ridges well developed. Hindfoot long, over a quarter of head and body length; ear proportionately large. Head and body about 130 mm . or more.
lrobably all named forms are races of persicus, though Heptner suggests baptistae is a distinct speeies. Persia, Southern Russian Turkestan, and Transcaucasia.
3. rex group. Bullae small (about $32-34$ per cent of occipitonasal length); supraorbital ridges tending to become extremely prominent in adult; fur very short and rough (rex), or moderate (buryi); tail not heavily tufted, in buryi subequal to head and body, in rex a little longer. Head and body $160-175 \mathrm{~mm}$. (as large as any member of the genus in B.MI material, though tamaricinus may equal it). Hindfoot shorter than persicus
group, less than a quarter of head and body length. Two species, rex and bursi, South Arabia.

Subgenus Meriones: sole at least partly, often fully haired.
4. tamaricinus group. Bullae small ( $30-32$ per cent of occipitonasal length), and suprameatal triangle very small. Supraorbital ridges relatively very weak, though the size is large. In tamaricinus, the tail is sometimes rather shorter than the head and body, and the size is in B.M. material up to 180 mm . head and body length; the tail is sharply bicolour (dark above, light below); the middle part of the sole has a noticeable patch of brown fur. In the other species referred to the group, which has usually been known as blacklcri (and allies), the size is rather less (about 137 or less), the tail is less sharply bicolour, and the sole is normally coloured. According to Heptner, 1937, this species should he known as tristrami, and include as races blackleri, lycaon, bogdanozi, karjateni, and bodenheimeri; I have not seen many specimens of tristrami, but as it appears not to agree in external characters or size with tamaricinus from Siberia, this classification is followed. The group ranges from Palestine, Asia Minor, Caucasus, South-east Russia, Southern Russian Turkestan, and the Gobi.
5. libycus group. Bullae larger than the last ( 34 (rarely), $3^{6-45}$ per cent occipitonasal length). Sole often with bare patch on heel. Supraorbital ridges strong to extreme. Size moderate, about 120-160. Tail normally rather shorter than head and body, or subequal to it, or sometimes longer. The bullae may be moderate, and not joining zygoma, or in some forms at maximum inflation for genus, joining zygoma, and with very large mastoids, but there are intermediates between the extremes. Tail tufted.

This group includes the North African species, most of which are listed as races of lybicus by G. M. Allen; one form is recognized only of this group by Flower in Egypt. Whether more than one species can be reeognized on size and structure of bullae in North Africa is not clear, though some forms, as crassus, appear to have much larger bullae than some forms previously referred to shaze; libyous is intermediate. As well as the North African forms, I include here erythrourus, which has a wide range in U.S.S.R. from lower Ural River to Semirechyia, and extends to Zungaria, Syria, Afghanistan, and Central Arabia; whether erythrourus and its races are distinct from libyous, or whether they represent subspecies of libycus, is by no means clear. Also the group ineludes the Arabian species armalius and ismuhelis, with very large bullae ( 45 per cent of occipitonasal length in ismuhelis), and the Persian species churon, which seems to have a shorter hindfoot than is usual in the genus. M. arimalius has an unusually long tail (about 125 per cent of head and hody). Probably also M. longifrons belongs here.
6. meridianus group. Bullae large, strongly inflated ( 37 to $4^{1}$ per cent of occipitonasal length). Supraorbital ridges weak. 'Tail tufted, as a rule yellow throughout (differing in this character from members of libycus yroup). Very generally smaller than in the librous group (head and body
about $100-123$ in B.M. material). Tail as a rule subequal in length to head and body. Sole fully haired. Probably all the named forms may be regarded as races of meridianus, which ranges from Caucasus, through Kazakstan to Semirechyia, Zungaria, Chinese Turkestan, Shansi, Chihli, and Mongolia.
7. unguiculatus group. Bullae moderate (about $36-38$ per cent of occipitonasal length), less swollen anteriorly than in meridianus. Supraorbital ridges weak. Sole fully haired. Tail usually slightly shorter than head and body. Fur rather less soft than is normal in the genus. Foreclaws becoming large. Head and body about 105 to 117 mm . or perhaps a little more.

One species from Mongolia, North Shansi, North Shensi, Ordos, and just extending north into Siberia.
Subgenus Cheliones.
§. hurrianae group. The ear is more reduced than in other species. Supraorbital ridges developed. Bullae small, about 32-34 per cent of occipitonasal length (but larger than in some groups). Sole haired. Tail tufted, about as long as or slightly shorter than head and body. Foreclaws largest of genus. Head and body about $106-130 \mathrm{~mm}$. or perhaps may be larger. Fur short and rough, about as in M. rex. One species, from Northern India.

## List of Named Forms

Subgenus Parameriones, Heptner
calurus Group

1. MERIONES CALURUS, Thomas
2. Ann. Mag. Nat. Hist. 6, IX, p. 76.

Sinai.

## persicus Group

2. Meriones persictes persicus, Blanford 1875. Ann. Mag. Nat. Hist. 4, XVI, p. 312.

Persia.
3. Meriones persicus séschkini, Kashkarov 1925. Trans. Sci. Soc. Turkestan, 2, pp. 51, 56.

Great Balhany Mountains, Turkestan.
4. MERIONES PERSICU'S ANibrosil's, Thomas 1919. Ann. Mag. Nat. Hist. 9, III, p. 270.

Ahwaz, Persia.
5. Meriones persicus rossicus, Heptner
1931. Zool. An2. 94, p. 120.

Arzni, 20 kilometres northwards from Eriwan, Transcaucasia.
6. MERIONES PERSICU'S BAPTISTAE, Thomas
1920. Journ. Bombay Nat. Hist. Soc. NXVI, p. 934.

Pasht K゙uh, S.-W゙. Baluchistan.
7. NIERIONES BCRYI, Thomas
1902. Ann. Mag. Nat. Hist. 7, X, p. 488.

Zabed, Aden, S. Arabia.
S. MERIONI:S REX, Verbury \& Thomas
1895. Proc. Zool. Soc. London, p. 552.

Lahej, Aden, S. Arabia.

## Subgenus Meriones, Illiger

## tamaricinus Group

万. MIRRIONES TR1STRAMI TRISTRANII, Thomas
1892. Ann. Mag. Nat. Hist. 6, IX, p. 148.

Dead Sea, l'alestine.
10. MERIONES TRISTRAMI KARIATENI, Aharoni 1932. Zeitschr. für Säugetierk. 7, p. 200.

El Karjaten, Syrian Desert,
11. MIERIONES TRISTRAMI BODENHEINERI, Aharoni
1932. Zeitschr. für Säugetierk. 7, p. 199.

Kafrun, north of Lebanon, Palestine.
12. MERIONES TRISTRANI BLACKLERI, Thomas 1903. Ann. Mag. Nat. Hist. 7, XII, p. 189.

Smyrna, Asia Minor.
13. MERIONES TRISTRANII LYCAON, Thomas 1919. Ann. Mar. Nat. Ilist. 9, III, p. 272.

Lycaonia, Asia Minor.
14. MERIONES TRESTRRANI INTRAPONTICLS, Neuhäuser 1936. Zeitschr. für Säugeticrk. II, p. 150.

Tosya, Vilayet Kastamonu, Asia Minor.
15. NIFRIONES TRISTRANII BOGDANONI, Heptner
1931. Zool. Anz. 94, p. 12 r.

Dilskaja-Steppe, Saljanj District, I'irchin-tapa Hill, Transcaucasia.
16. MERIONES TAMARICINL'S TAMARICINL'S, Pallas 1778. Nov. Sp. Quad. Glir. Ord. p. 322.
baratschikovsk, near mouth of Ural River.
17. NERIONES TAMIARICINLS CISCALC゚ASICUS, satumn 1907. Mitt. Kaukas. Mus. 3, pp. 20, 63.
N.-E. Caucasus.
18. NERIONES TANARICINLE JAXARTENSIS, Ognev \& Ileptner 1928. Zool. Anz. 75, p. 264.

St. Kara Usiak der Orenberg-Tashkent-Bahn, Perovsky-Bezirk, SyrDarjinsky District, 'Turkestan.
19. MERIONES TAMARICINUS KOKANDICUA, Ileptner
1933. Zeitschr. für Säugeticrk, 8, p. 152.

Kokand, Fergana, Russian Turkestan.
20. MERIONES TAMARICINUS SATSCHOUENSIS, Satunm
1903. Ann. Mus. St. Petersb. VII, p. 555.

Oase Sa-tschou, Gobi, Central Asia.

## libycus Group

21. MERIONES LIBYCUS LIBYCU'S, Lichtenstein 1823. Doubletten des Berliner Museums, p. 5, no. 9 . Egypt, prohahly Alexandria.
Synonym: sellysii, Pomel, Comp. Rend. Acad. Sci. Paris, 42, 654, 856. melanurus, Rüppell, 1842, Mus. Senckenb. 111, p. 95. isis, Thomas, 1919, Ann. Mag. Nat. Hist. 9, III, p. 271. shazui, Rozet, 1833, Voy. Reg. Alger. 1, p. 243. Algeria. (Status fide G. M. Allen.)
richardi, Loche, 1867 , Expl. Alg. Mamm. p. 104. Boghar, Algerian Plateau.
22. MERIONES LIBYCUS CONFALONIERI, de Beaux
23. Ann. Mus. Civ. Stor. Nat. Genova, LV, p. 384.

El Agheila, Libyan Desert, near Oasis of Cufra, Libya.
23. MERIONES LIBYCL'S CALDATLS, Thomas
1919. Ann. Mag. Nat. Hist. 9, H1, p. 267.

Ferdjan, 'Tripoli.
24. MERIONES LIBYCUS LONGICEPS, Lataste
1885. Act. Soc. Linn. Bordeaux, XXX1X, p. 267.

Tunis.
25. MERIONES LIBY'CUS LATICEPS, Lataste
1887. Explor. Sci. de Tunisie, Cat. Critique de Mamm. p. 27.

Constantine, Algeria.
26. MERIONES LIBYCUS ALBIPES, Lataste
1882. Le Naturaliste, Paris, II, p. ion.

Msila, Plateau of Algeria.
27. MERIONES LIBYCUS AUSIENSIS, Lataste
1882. Le Naturaliste, Paris, 11, p. 77.

Borders of Oued Akarit, between Aumale and Oud Okris, Algeria.
28. MERIONES LIBYCUS CRASSIBULLA, Lataste
1885. Act. Soc. Linn. Bordeaux, XXX1X, p. 267.

Tabessa, Tamesmida and Tafferma, Tunis.
29. MERIONES LIBYCUS GUYONI, Loche
1867. Expl. Alg. p. 103.

Ain-el-Atrech, S. Algerian Sahara.
30. MERIONES LIBYCUS SACRAMENTI, Thomas
1922. Ann. Mag. Nat. Hist. 9, X, p. 552.

Beersheba, l'alestine.
31. MERIONES LIHYC'L'S CRASSI's, sundevall
1842. K. Svenska Vetensk. Akad. Handl. Stockholm, p. 233, pl. ri, fig. +

Sinai.
Synonym: pelerinus, Thomas, 1919, Ann. Nag. Nat. Hist. 9, 111, p. 266. 'Tebuk, Hedjaz Railway, N.-WV. Arabia.
32. THERIONES LIBYCLS PALLIDCS, Bonhote
1912. Abstr. Proc. Zool. Soc. London, p. 3 ; Proc. Zool. Soc. London, p. 226. Atbara, Sudan.
33. VFRIONES LIBYCLS TRIP()LIL $九$, Thomas
1919. Ann. Mag. Nat. Hist. 9, III, p. 265.

Gebel Limbersuk, N.-W. Tripoli.
34. NERIONIS SCHOLESBOEI SCHOLESBOEI, Loche
1858. Cat. Mamm. \& Oiseaux de l'Algerie, p. 23.

Ras-Nili, Algernan Sahara.
Synonym: gaetulus, Lataste, 1882, Le Naturaliste, Paris, II, p. S3. renaultii, Loche, I867, Exp. Sci. Alg. Zool. Mamm. 106.
35. THERIONES S(HOLESBOH:1 TLAREG; Thomas 1925. Ann. Mag. Nat. Mist. 9, XVI, p. 193.

Teguida, Asben, Sahara.
36. NIERIONES GRANDIS, Cabrera
1907. Bol. Real. Soc. Esp. Hist. Nat. P. 175

Marrakesh, Central Morocco.
37. MERIONES TROLESSARTI, Latante
1882. Le Naturaliste, Paris, II, p. 69.

Bou-Saada, Algeria (near Msila).
3*. MERIONES ERITHROLRUS ERYTHROLTRL'S, (iray
1842. Ann. Mag. Nat. Hist. X, p. 266.

Sahlabad, about 12 miles S.- Wh. of Khandahar, Arghanistan.
(Probably this species and its races should be listed as races of M. libycus.)
30 MERIONES ERITHROURES SWINHOEI, Scully
188i. Am. 入lag. Nat. Hist. 5, VIII, p. 228.
Gatai, Afghanistan.
40. AIERIONES ERYTHROLRLS AQLILO, Thomas 1912. Ann. Mag. Nat. Hist. 8, IX, p. 395.

Gu-tschen, Dzungaria.
42. MERIONES IERYTHROLRLS MANERATIS, Heptner 1933. Zeitschr. fü Säugetierk. 8, p. 152.

Kurota-Cleft, in neighbourhood of Tschakan-kala, on river Tschandyr, Kopet-Dag, Transcaspia.
42. DIERIONIS ERYTHROLRUS MARGINIAE, Heptner 1933. Zeitschr. für Säugetierk. 8, p. 153

Bairam-Ali, Merv-Oase, Transcaspıa.
43. NHRIONES ERVTHROLRLS OXIANLS, Heptnet
1933. Zeitschr. für Säugetierk. S, p. 153.

Gusar, south from Karschi, Buchara, Russian 'Turkestan.

+ 4 MIERIONIES ERYTHROLRLS SOGDIANLS, Heptner

1933. Zeitschr, für Säugetierk. 8, p. 153.

Mirsa-Aral, on left side of bank of Syr-Darya, 35 kilometres north-north-east of Kiokand, Fergana Valley, Turkestan.
45. NERIONI: IRRY"JHROLRU LEGERI, Aharon
1932. Zeitschr. fü Saugetierk. 7, p. 202.

Wadi Abjad, south-west of Beersheba, Palestine.
46. MERIONES ERYTHROURUS EVERSMANNI, Bogdanov
1875. Trudy St. Petersb. Nat. Ges. 6, p. 266.

Mangyshlak Pcninsula, east coast Caspian Sea.
47. MERIONES ERYTIIROURUS SYRIUS, Thomas
1919. Ann. Mag. Nat. Hist. 9, H11, p. 268.

Karyatein, Syrian Desert.
48. MIERIONES ERY'THROLRL'S EDJTHAL;, Cheesman \& Hinton 1924. Ann. Mag. Nat. IIist. 9, XIV, p. 555.

Hufuf, Central Arabia.
49. MERIONES FRYTHROURL'S EVELYNAE, Cheesman \& Ilinton 1924. Ann. Mag. Nat. Hist. 9, XIV, p. 555.

Hufuf, Central Arabia.
5o. MERIONES ERY'THROURUS CRYPTORHINUS, Blanford 1875. Journ. Asiat. Soc. Bengal, XLIV, 2, p. 108. E. Turkestan.
51. MERIONES ERITHROURUS (?) CAUCASICUS, Brandt 1855. Mél. Biol. Acad. St. Petersb. 11, p. 303.

Transcaucasia.
(Vinogradov suggests this form is a race of erythrourus.)
52. MERIONES KOZLOVI, Satunin
1903. Ann. Mus. St. Petersb. VII, p. 553.

Gobi-Altai, Central Asia.
53. MERIONES LONGIFRONS, Lataste
1884. Proc. Zool. Soc. London, p. 88.

Jedda, Arabia.
54. MERIONES ISMAHELIS, Cheesman \& Hinton
1924. Ann. Mag. Nat. Hist. 9, XIV, p. 553.

Hufuf, Central Arabia.
55. MERIONES ARIMALIUS, Cheesman \& Hinton
1924. Ann. Mag. Nat. Hist. 9, XIV, p. 554.

Jabrin, Central Arabia.
56. MERIONES CHARON, Thomas
1919. Ann. Mag. Nat. Hist. 9, 111, p. 269.

Ahwaz, Persia.

## meridiams Group

57. MERIONES MERIDIANUS MERIDIANUS, Pallas
58. Reise, 11, p. 702.
"Desert of Lake Caspian."
Synonym: longipes, Pallas, 1778, Nov. Sp. Quad. Glir. Ord. p. 88. fulvus, Eversmann, 1848 , BuII. Nat. Moscou, NXI, p. 195. brevicaudatus, Milne-Edwards, 1867, Ann. Sci. Nat. VII, p. 377 .
59. MERIONES MERIDIANUS ROBOROWSKII, Buchner
60. Wiss. Res. Przwalski Central-Asien Reisen: Zool. Th. 1, Säugeth. p. 63.

Zaidam, Central Asia.
59. MERIONES MERIDIANUS AL'CEPS, Thomas
1908. Proc. Zool. Soc. London, p. 6.40.

Tai Yuen Fu, Shansi, China.
60. NIERIONES MERIDIANLS PSANINIOPHILUS, Nilne-Fiwards
1868. Rech. Namm. p. I44.

Suen-hoa-fu, province of Pekin, China; south of K゙algan,
61. NERJONES MERJDIANUS BLCHNERI, Thomas
1909. Ann. Nag. Nat. Hist. 8, JII, p. 262.

Deleun Mountains, Dzungaria.
62. MERIONES MERIDIANLS PENICILLIGER, Heptner
1933. Zeitschr. für Säugetierk. 8, p. 154.

Repetek Station of Middle Asiatic Railway, Kara-Kum Desert, Transcaspia.
63. NERIONES MERIDJANUS SHITKOVI, Heptner
1933. Zeitschr. für Säugetierk. 8, p. 154.
$\mathrm{M}_{\text {irsa-Aral }}$, on left bank of Syr-Darya, 35 kilometres north-north-east of Kokand, Fergana Valley, Turkestan.
64. MIERIONES MERIDLANUS MASsACETES, Heptner
1933. Zeitschr. für Säugetierk, 8, p. 155.
'Town Aralskaje, on north-east coast of Lake Aral, Turkestan.
65. MERJONES MERIDIANLS KARELINI, Kolossow
1935. Bull. Soc. Nat. Moscou, Biol. 44, p. 381.

North-east coast of Caspian Sea.
66. NIERIONIS MERIDIANUA NOGAJORUNI, Heptrer
1927. Wat. contr. faun. L. Volga, I, p. 32.

Between Terek River and Caucasus.
Synonym: meridianus nogaiorum litoralis, Heptner, 1927, Orloy \& Feniuk, Nat. contr. faun. L. Volga, 1, p. 71. Kalmyk Province, S.-E. Russia.
unguiculatus Group
(97. NERJONES UNGU'IC'LLATLS, Mhhe-Edwards 1867. Ann. Sci. Nat. Zool. VJJ, p. 377.

Nongolia.

Subgenus Cheliones, Thomas
s. . IERIONES HLRRIANAE HLRRIANAE, Jerdon
1867. Xlamm. India, p. 186.
llurriana, Punjab.
by. MERIONES HERRIANAE (OLJINES, Thomas
1919. Journ. Bomhay Nat. Hist. Soc. XXVI, p. 726.

Kohat, N.-WV. Irontaer Province, India.
Species not seen amd not allocated to Groups
70. MERIONES MEARIAE, Cahrera
1907. Bol. Real. Soc. Esp. Hist. Nat. p. 177.

Cabo Juby, coast of Moroccan Sahara.
75. MERIONES LEPTURUS, Büchner
1888. Wiss. Res. Przewalski Central-Asien Reisen: Zool. Th. 1, Säugeth. p. 67.

Chotan-darja, near the river, Takla-Makan Desert, Turkestan.
72. MERIONES VINOGRADOVI, Heptner
1931. Zool. Anz. 94, p. 122.

Aserbeidschan, Iran ( Persia).
73. MERIONES KURAUCHII, Mori
1930. Annot. Zool. Jap. 12, p. 417.

Central Manchuria.
74. MERIONES COLLILM, Severtzow
1876. Ann. Mag. Nat. Hist. XVIII, p. 55.

Turkestan.
75. Meriones lrianchaicus, Vinogradov
1927. Small Mammals Minussinsk District \& Urjankhai, p. 41.

Ikiottuk, Uriankhai, Mongolia.
(Described as near meridianus.)
The Meriones lacernatus of Rüppell, 1842 , Mus. Senck. III, p. 96, pl. vi, fig. 1, is probably based on an Arvicanthis. (Lake Tana, Abyssinia.)

Genus 10. PSAMMIOMY'S, Cretzchmar
1828. Psammomys, Cretzchmar, Rüppell Atlas, p. 56.

Type Species.-Psammomys obesus, Cretzchmar.
Range.-Palestine and Northern Africa; Egypt, Tripoli, 'Tunis, Algeria; (?) Sudan; Arabia.
Number of Forms.-Eight.
Characters.-Skull like that of larger species of Meriones, though inclined to be narrower between the orbits, perhaps; supraorbital ridges typically very strong, forming small postorbital notches. Mastoids showing prominently each side at the back of the skull, the meatus and suprameatal triangle large; the bullae well inflated, the mastoids moderately so; the bullae are inflated in front of the meatus. Zygomatic plate normal. Occipital region usually upstanding, well ridged. Anterior palatal foramina narrow, slitlike; posterior pair usually much reduced. Upper incisors plain. Cheekteeth strongly hypsodont, but not evergrowing; their pattern like that of Meriones. Mandible with angular portion usually inflected.

External form heavy; tail fully haired, and tufted; sole moderately haired as a rule; tail relatively shorter than is usual in Meriones; ear rather small.

The tail averages rather less than 80 per cent of the head and body length, in the British Museum series (covering all species). The hindfoot is proportionately rather short (on average about 21 per cent of head and body length).

It appears from British Museum material that there are two species of Psammomys, a larger one and a smaller one. 'Thomas, 1925, states that the form roudairei, which name was formerly used for the smaller one, is a synonym or
race of obesus, and names the smaller one zevillaris. The head and body may be over 180 mm . in obesus.

Forms seen: algiricus, edusa, nicolli, obesus, roudairei, tripolitanus, ternesanctae, rexillaris.

List of Named Forms

1. PSAMMOMIYS OBESU'S OBESL'S, Cretzchmar 1828. Rüppell Atlas, p. 58 , pl. 22.

Near Alexandria, Egypt.
Synonym: elegans, Ileuglin, 1877 , Reise N. Ost. Africa, ii, p. So. Suakin, Anglo-Egyptian Sudan.
2. PSAMMOMIS'S OBESL'S NICOLLI, Thomas
1908. Ann. Mag. Nat. Hist. 8, II, p. 92.

Damietta, N. Egypt.
3. PSAMMOMIS OBESUE TRIPOLITANLS, Thomas 1902. Proc. Zool. Soc. London, p. 9.

Boucheifa, coast of Tripoli.

+ PSAMMOMYS OBESLS TERRAESANCTAE, Thomas

1902. Ann. Mag. Nat. Hist. 7, IX, p. 363.

Dead Sea, Palestine.
5. PAAMMIOMIYS OBESUS ALGERICUS, Thomas
1902. Ann. Mag. Nat. Hist. 7, 1X, p. 363.

Biskra, Algeria.
6. PSAMMOMIYS OBESUS ROLDAIRE1, Lataste
1881. Le Naturaliste, Paris, I, p. 492.

Msila and l'Oued Magra, north of Chott du Hodna; also Tibrent, between Mzale and Laghouat, Algeria.
7. PSAMMOMIYS IENILLARIS VEXILLARIS, Thomas 1925. Ann. Mag. Nat. Hist. 9, XVI, p. 198. Bondjem, Tripoli.
8. PSAMMOMIYS VEXILLARIS EDLSA, Thomas 1925. Ann. Mag. Nat. Hist. 9, XV1, p. 199. Mil Manases, Chegga, just south of Biskra, Algeria.
The genus is not sharply separable from Meriones, but may stand on the character of the plain incisors. It may be noted that the cheekteeth in Psammomys are strongly hypsodont, and that the skull is as a rule more angular than the majority of Meriones.

Genus 11. BRACHIONES, Thomas 1925. Brachiones, Thomas, Ann. Mag. Nat. Hist. 9, XVI, p. 548.

Type Species.-Gerbillus praezalskii, Büchncr.
Ravge.-China: Eastern Turkestan, and Gohi Desert.
Number of Forms.-Three.
Charactars.-Skull with almost triangular appearance owing to immensely. wide frontals, and strongly shortened and recluced rostrum.

Almost no interorbital constriction present; back of skull very wide. Zygomatic plate normal. Mastoids not appearing in superior aspect of skull, but bullae very large. Suprameatal triangle vestigial. Anterior palatal foramina in the three skulls examined shortened, in front of toothrow; posterior pair appearing as very small pits only. Grooving of incisors, and cheekteeth as in Meriones; the upper incisors are inclined to be slightly pro-odont.

Externally small (smaller than any Meriones I have seen); thickset; tail probably shorter than head and body, heavily haired; ear small; foreclaws prominent; sole of hindfoot completely haired.

The extraordinary appearance of the skull is, I think, of sufficient importance to retain this genus distinct from Meriones. The bullae are about 40 per cent of occipitonasal length in two measured.

Forms seen: przewalskii.

## List of Named Forms

1. BRACHIONES PRZEWALSKII PRZEWALSKII, Büchner
${ }_{1} 889$. Wiss. Res. Przewalski Central-Asien Reisen: Zool. Th. 1, Säugeth. p. 51. Lob Nor, Central Asia.
2. BRACHIONES PRZEWALSKII CALLICHROUS, Heptner 1934. Arch. Mus. Zool. Moscou, i, p. 8.

Lower part of valley of River Ezin-Gol, Lake Sogo-nor, W. Gobi Desert.
3. BRACHIONES ARENICOLOR, Miller
1900. Proc. Biol. Soc. Washington, XIII, p. 163.

In jungle on Yarkand River, east of Maralbashi, E. Turkestan.

## Genus 12. RHONBONIS, Wagner

1841. Rhombomys, Wagner, Gel. Anz. K. Bayer. Akad. Wiss. München, XHI, 52, p. 42 I.

Type Species.-Rhombomys pallidus, Wagner.
Range.-Palaearctic: Russian 'Turkestan, west to Ural River and Caspian Sea, east to Semirechyia; south to Fergana; also ranges to Dzungaria, Chinese Turkestan, and Mongolia.

Number of Forms.-Seven.
Characters.-Cheekteeth evergrowing. Rostrum and nasals rather short and broad, as compared with Meriones. Zygomatic plate projected well forwards, though not so extremely as Tatera. Supraorbital ridges well developed, sometimes forming small postorbital-like process. Second pair of palatal foramina obsolete or much reduced; anterior pair slit-like, narrow: Occipital region strong. Upper cheekteeth rootless, like those of Meriones in appearance, but with the folds tending to be much less open, and more filled up, so that the pattern is simpler. M. 3 may retain the posterior heel, or this may. be absent. Lower molars with folds usually more or less closed; M. 3 simple. The bullae are moderately inflated.

Fur very thick and soft; form heavy; tail very hairy, almost bushy, rather
shorter than head and body; ear strongly reduced; claws large; sole heavily haired. Large; head and body up to 200 mm . in those seen. There was some doubt about the validity of this genus, but Heptner's paper showing that it has rootless cheekteeth (which is clear in the few examined in this character in London) removes all doubt. The upper incisors have two grooves, the inner one internal and vestigial.

Forms seen: giganteus, opimus.

## List of Named Forms

1. RHONBONIY OPINIUS OPINILS, Lachtenstem
t823. Eversmann. Reise Buchara, p. 122.
Between Orenburg and Bokhara, U.S.S.R.
Synonym: pallidus, Wagner, 1841, Münch. Gel. Anz. NI1, no. 54, p. 432.
2. RHOMBOMIYS OPIML'S DALVERSINICUS, Kashkaroff
3. Key to Rodents of Turkestan, p. 25 (publ. Usbekistan Exp. Stat. Plant Prot.). Dalversinskaia Steppe, S.-E. Russia.
4. RHOMBOMYS OPIMI'S FLMICOLA, Heptner
5. Zeitschr. für Säugetierk. 8, p. 152.

Kokand, Fergana, Russian Turkestan.
4. RHOMBOMI'S OPINLES TLRFANENSIS, Satum
1903. Ann. Nus. Zool. St. Petersh. VII (1902), p. 557.

Turfan, S.-E. Tian-Shan.
5. RHOMBONYS OPIALS GIGANTELS, Buchner
1888. Wiss. Res. Przewalski Central-Asien Reisen: Zool. Th. 1, Säugeth. p. 73. Ebi Nor, Dzungaria, Central Asia.
6. RHONIBONYS OPIML'S NIGRESCENS, Satumn
1903. Ann. Mus. Zool. St. Petersb. VII (1902), p. 560.

Lake Orok-Nor, Gobi-Altai.
7. RHOMBOMYS OPINILS ALASCHANICLS, Matschie
1911. Säugethiere, in Futterer Durch Asien, Bd. III, p. 12. Alashan, Central Asia.

1 have no notes on the fossil history of the subfamily.

## GERBILILNAE:

## SPECIAL HORKS OF REFERENCE

Lataste, 1882 , Le Naturaliste, Paris, p. 27.
Heptner, Numerous papers in recent years on Siberian genera, Rhombomys, Meriones, etc.
Vinogradov, Rodents of U.S.S.R., 1933. Key to species in U.S.S.R.
Shortridge, Mammals of South-west Africa, Heinemann, 1934.
St. Leger, Key to Families and Genera of African Rodents, Proc. Zool. Soc. London, p. 964, 1931.

Hollister, Bull. U.S. Nat. Mus. 99, p. 25, 1919.
Wrotghton, 1906, Ann. Mag. Nat. Hist. 7, XVII, p. 474; key to forms of Tatera.

## Subfamily MYOSPALACIN゙AE

1896. Thomas: Muridae, Siphneinae ( $=$ Myospalacinae).
1897. Tullberg; Spalacidae, part.
1898. Miller \& Gidley: Spalacidae, part, suhfamily Myospalacinac.
1899. Winge: Muridae, Cricetini, part, Criceti, part.
1900. Weber: Spalacidae, part.

Geographical Distribution.-Palaearctic: Central and Northern China, and Central and Eastern Siberia.
Number of Genera.-One.
Characters.-Cheekteeth evergrowing, prismatic in pattern (parallel-
Microtinae). Skull modified for subfossorial life; occipital region slanting forwards to level of posterior zygomatic root; a weak squamosal crest developed; zygomatic plate moderately broad; infraorbital foramen large, and nearly triangular (thus totally different from the form found in Microtinae). Externally modified for underground life; eyes small but retained (compare Spalacidae); foreclaws enormously developed.

## Genus ı. MIOSPALAX, Laxmann

1769. Myospalax, Laxmann, Sibirische Briefe, p. 75.
1770. Myotalpa, Kerr, Anim. Kingd. I, Mamm. Syst. Cat. Nos. 5 16, $517,520$. (Mus aspalax, Pallas.)
1771. Siphneus, Brants, Het geslacht d. Muizen, pp. 19-23. (Mus aspalax, Pallas.)

Zokor, new (below). (Type: Siphneus fontanieri, Milne-Edwards.) Valid as a subgenus.

Type Species.-Mus myospalax, Laxmann.
Range.-As in the subfamily. In U.S.S.R., occurring in Transbaikal area (M. dybowskii), Altai, and steppe adjoining the Altai Mountains (11. myospalax), and South-eastern Transbaikalia, Amur, and Southern Ussuri area (M. psilurus). In China, known from Manchuria, Chihli, Shensi, Shansi, Kansu, Lake Kukunor, West Szechuan, and MIongolia.

Number of Formis.-About nineteen.
Characters.-Skull with moderately constricted frontals; a weak squamosal crest present in adult; supraorbital ridges well marked in adult, but parallel, showing no signs of joining except in the only two skulls seen of $\mathbf{M}$. smithi. A very strong ridge at right angles to supraorbital ridges forming forepart of occipital region runs across the back of the skull, about on a level with posterior zygomatic root. The occipital region is narrow and stands somewhat behind these ridges in many Chinese species (fontanieri and smithi groups), but in myospalax, armandi, and psilurus, this region of the skull is higher, broader, and flatter, more like that of Spalax. Rostrum thick and prominent. Bullae large. Palate narrow, terminating at level of front part of M.3, often with spinous process. Pterygoid fossae deep. Incisive foramina small, but less reduced than is usual in underground forms. Jugal relatively long. Zygomatic plate strong, moderately broad, though little tilted upwards


Fig. 36. Myospalax fontanieri fontanes, Thomas.
B.M. No. 9.i.f.203, Shansi; small figure natural size.
owing to general forward and downward slope of the skull. Infraorbital foramen large, wider above than below, more or less triangular.

The infraorbital foramen is very different from that of Spalax. Upper incisors broad. Cheekteeth evergrowing (other than the Microtinae, this genus is, as far as known, the only member of the Muridae with this specialization except


Fig. 37. Myospalax fontanieri fontanus, Thomas, B.M. No. 9.1.1.203; $\times$ I $\frac{1}{2}$.


Fig. 38. Myospalax fontanieri fontanus, Thomas.
B.M. No. 9.1.1.203; $\times$ I $\frac{1}{2}$.
(Figs. $3^{6-3} 8$ from Hinton, Monograph of the Voles and Lemmings, vol. 1, pp. 27-29.)

Rhombomys (Cerbillinac)). The outer side of each upper molar with two wide long folds cutting the tooth into three external projections; the inner side with one shallow fold; also in M1.1 there is often a small extra anterior inner fold.


Fig. 39. Posterior views of skull of $a$. Myospalax psilutus, Milne-Edwards (subgenus Myospalax) and $b$. Myospalax fontanieri fontanus, Thomas (subgenus Zukor). $\mathbf{I}$ 를.


Fig. foar. Myospalax psilitrus, Milne-Edwards; $b$. Myospalax fontanieri fontanus, Thomas.
Cheekteeth: B.M. Nos. 28.6.19.56, ot, and 9.1.1.202; > 7.
M.i little larger than MI.2. N. 3 may have a small extra posterointernal fold; or a small posteroexternal one. In the myospalax group, the inner folds are obsolete. M. armandi and, as figured by Vinogradow, M. dybowski, has a small
reduced simplified M.3. Lower cheekteeth: with a posterior loop, two alternating closed triangles, and an anterior loop which often has an extra inner fold in M.1, in more complex-toothed species (i.e. other than myospalax group) (I have not seen the lower molars of armandi); in myospalax, there are no closed triangles, these mecting to form a transverse loop. M. psilurus has M. 3 lower reduccd (more so than in other species), and simplified; consisting of an anterior loop, a small closed triangle, and a posterior loop with a small inner re-entrant fold. Mandible with no process formed by lower incisor root. The angular portion is broad, and the coronoid high.

Fur soft. Eyes and ears minute. Tail short, but longer than hindfoot as a rule; moderately or poorly haired. Foreclaws of three central digits of manus extremely enlarged; D. 3 slightly longer than D. 2 and D.4; D. 5 with a short claw; pollex very short, but with small claw. The claw of D. 2 often is thinner than that of D. 3 and D.4. Hindfoot with large claws, but not comparable in size to those of forefoot; D. 3 and D. 4 longer than D.2, which is longer than hallux; hallux longer than D.5, which is extremely reduced.

Remarks.-Though sometimes placed in the family Spalacidae, I think there is no reasonable doubt that this genus represents a highly specialized member of the Muridae. Its relationships appears to be more with the Cricetinae and Microtinae than elsewhere. The teeth present a number of resemblances to the members of the latter subfamily; Hinton (Monograph of Voles and Lemmings) states: "In the remarkable Asiatic genus Myospalax, the cheekteeth are rootless and closely resemble in pattern those of the typical Lemmings among the Microtinae. But although the skull is highly specialized for fossorial habits, it and the jaw muscles resemble those of the Cricetinae in retaining essential features similar to those found in the more primitive of the non-Microtine Muridae generally and differing widely from those characteristic of the Microtinae." Among these may be at once mentioned the formation of the infraorbital foramen. Partly on the shape of this, the genus was transferred to the Spalacidae by Miller \& Gidley. But the infraorbital foramen and zygomatic plate of this genus seem to me to be widely different from those of Spalax; while the teeth of Myospalax are not unlike those found within the Muridae, hut are totally different from those of Spalax. The relationship between Myospalax and Spalax might indeed be compared to that existing between Cavia and Dasyprocta; both with many similar external specializations no doubt brought about by mode of life; but both with widely different dental pattern, and considerably different zygomasseteric structure.

Various allied fossil forms have been described from Eastern Asia.
Forms secn: aspalax, armandi, baileyi, cansus, epsilanus, fontanus, myospalax, psilurus, rothschildi, smithi, shanseius.
live quite distinct specific groups appear to me to be contained in the material examined. Their characters are as follow:

Firstly, the species may be divided into two sections which are of subgeneric rank, based on the structure of the occipital region of the skull. In the more primitive species, which have a lower occipital region, and usually more complex,
less reduced teeth, the oceipital region has the outer sides bent forwards, and the lambdoid crest does not extend right across the back of the skull.

The fontanieri group, containing fontanieri (of which fontanus seems to be not more than a subspecies), haileyi (also not very clearly distinct from fontanieri), cansus, and rothschildi, is confined to the Western and Central Chinese parts of the range of the genus, and is typical of this section of the genus. The molars show no signs of reduction or simplification.
'The smithi group contains only smithi from Kansu, differing from all other members of the genus (examined) in the fusion of the supraorbital ridges. Dentally it is like rothschildi.
In the other groups, the occipital region is flatter, broader, and higher; the outer sides are not lent forward; the lambdoid crest extends right across the back of the skull. Usually there is some dental reduction taking place.

The psilurus group, containing only psilurus, with epsilanus as a race, from Manchuria, Chihli, and Transbaikalia, is the most complex-toothed of this section of the genus. The inner folds of the upper molars are well marked. But the third lower molar is more strongly reduced than in other species of the genus, as described above.
The myospalax group, containing myospalax and, if the London material is correctly identified, aspalax which seems to be a subspecies only, differs from the last in the rather larger third lower molar, and in having the inner folds of the upper molars for the most part obsolete; also apparently there are no closed triangles in the lower molars. (Altai region, Siheria.)
The armandi group (of which I have seen only one skull) differs from the above in the strong reduction and simplification of NI .3 (upper). It contains armandi from Mongolia, and according to Vinogradoy's figure, dybowski from Irkutsk.
'The cranial distinctions between the fontaineri-smithi division and the myospalax-psilurus-armandi division of the genus are in my opinion of subgeneric value. 'The two types show no sign, in B.X. material, of any intermediate forms; and the geographical range of each division is apparently quite separate, the myospalas division heing restricted to Siberian Altai, Mongolia, Manchuria, and Lastern Siberia, and the fontanieri division being more southern in range, Kansu, Shansi, Shensi, Kukunor, and West Szechuan.

Unfortunately neither the names Myotalpa nor Sipleneus are available, both being based on aspalax, which is a race or synonym of the type species, myospalax; therefore I propose the name Zokor as a subgenus for the fontanicrismithi division of the genus, type-Siphneus jontanieri, Nilne-lidwards. 'The two groups are just as distinct as are the sulgenera Spalax and Mesospalax of the genus ispalax, on cranial characters. Of the forms not represented in London, and not allocated to groups, minor (Kansu), kukunoriensis (Lake Kukunor), and mesesens (Shensi), are de'scribed as nearest rothschildi, baileyi, and cansus respectively, and therefore would, as might be expected, belong to Zokor; while komurai, from Manchuria, is described as near armandi, and would therefore be Myospalde s.s.

Excellent figures of the main species of this genus will be found in MilneEdwards, 1874 , Rech. Mamm.

## List of Named Forms

(References and type localities the work of Mr. R. W. Hayman.)

## Subgenus Zokor, Ellerman fontanieri Group

1. MYOSPALAX FONTANIERI FONTANIERI, Milne-Edwards
2. Ann. Sc. Nat. VII, p. 376.

Kansu, China.
2. MYOSPALAX FONTANIERI FONTANUS, Thomas
1912. Ann. Mag. Nat. Hist. 8, IX, p. 93.

Ning-wu-fu, Central Shansi, China.
3. MYOSPALAX BAILEYY, Thomas
1911. Ann. Mag. Nat. Hist. 8, VIII, p. 727.

Rama Song, between Nag-chu-ka and Ta-tsien-lu, W. Szechuan.
+. MYOSPALAX CANSUS CANSUS, Lyon
1907. Smiths. Misc. Coll. L, p. 134.

Taocheo, Kansu.
5. MYOSPALAX CANSUS SHANESEIUS, Thomas
1911. Abstr. Proc. Zool. Soc. London, 90, p. 5; Proc. Zool. Soc. London, 1911, p. r78. Yu-lin-fu, Shensi, China.
6. MYOSPALAX ROTHSCHILDI, Thomas 1911. Ann. Mag. Nat. Hist. 8, VIII, p. 722.

40 miles south-east of 'Tao-chou, Kansu, China.

## smithi Group

7. MYOSPALAX SMITHI, Thomas
8. Ann. Mag. Nat. Hist. 8, VIII, p. 720.

30 miles south-east of 'Tao-chou, Ǩansu, China.

## Subgenus Myospalax, Laxmann <br> psilurus Group

8. MYOSPALAX PSILURUS PSILURUS, Milne-Edwards

1874 . Rech. Mamm. p. 126.
South of Peking, China.
9. MYOSPALAN PSILLRUS EPSILANLTS, Thomas
1912. Ann. Mag. Nat. Hist. 8, IX, p. 94.

Khingan Mountains, Manchuria.

## armandi Group

10. MYOSPALAX ARMANDI, Milne-Edwards
11. Ann. Sc. Nat. VII, p. 376.

Mongolia.
11. NIGOSPALAX DIBOWSKI, therskey
1873. Bull. Nat. Moscou, p. 430 .
lrkutsk, E. Siberia.
mvospalax Group
12. NYOSPALAX MYOSPALAX MYOSPALAX, Laxmann
1773. K. Svenska Vetensk. Akad. Ilandl. Stockholm, XXXXIV, p. I $3+4$

Sommaren, near Paniufcheva, near Alei River, 100 km . from Barnaul, Siberia.
13. MYOSPALAX MIYOSPALAX ASPALAX, Pallas
1778. Nov. Sp. Quad, Glir. Ord. P. 165, pl, 10.

Dauuria, Siberia.
Synonym: zokor, Desmarest, I822, Mamm. p. 288.
14. MYOSPALAX MYOAPALAX INCERTCS, Ognev
1936. Abstr. Works. Zool. 1nst. Moscou tiate Univ. 3, p. 8z. Katon-Karagaı (Staton Allaiskaja), S. Altai.
15. MYOOAPALAX MYOSPALAX TARBAGATAICLS, Ognev
1936. Abstr. Works. Zool. Inst. Moscou State Univ. 3, p. Si.

Znamenka, Sergiopolsk region, E. of Lake Balkash, Siberia.
Vot seen, and not allocated to Gromp
16. MOSPALAX MINOR, Lonnberg
1926. Arkiv for Zoologi, Bd. isa, ns, 21, p. 6. Near Ashuen, Minshan, W. Kansu. (Described as near rothschildi.)
17. MYOSPALAX KLKUNORIENSIs, Lonnberg 1926. Arkiv for Zoologi, Bd. 18.4, no. 21, P. 9. Lake Kukunor, N.-E. Tibet. (Described as nearest baileyi.)
18. MYOSPALAX RLFESCENi*, Allen 1909. Bull. Amer. Mus. Nat, I list. XXVI, p: 428. Foot of Tai-pa-shiang, Shensi, China. (Described as nearest to cansus.)
19. MYOSPALAS KONJRAI, Mor
1927. Annot. Zool. Japan, XI, Ň, 2, p. 108. Shiheigai, S. Manchuria. (Deserihed as near armandi.)

## MYOSPALACINAE:

SPECIAL HORKS OF REFERENCE
Milne-Edwards, 1 § 74 , Rech. Mamm.
Lönnberg, 1926, Arkiv for Zoulogi, Bd. 1SA, no. 21. Remarks on Mole-Rats of the genus . IYospalax from China.

## Subfamily MICROTINAE

1896. Thomas: Muridae, Arvicolinae.

I K99. Tullherg: Family Arvicoltada.
1918. Niller \& Gidlcy: Cricutadae, Microtinae.
1024. Winge: Muridat: Cricetmi, part, Arvicolac.
1928. Weber: Nuridae, Nicrotinae.

Geographical Distribltion.-Holarctic region, from Arctic south to Guatemala, Yunnan, Burma, the Himalayas, Persia, Syria, Libya, and Mediterranean coast of Europe. Madagascar.

Number of Genera.-'Twenty-nine. The subfamily is in the course of being monographed by Mr. M. A. C. Hinton. The classification here used is based on the classification of this author.

Characters.- Cheekteeth $\frac{3}{3}$, complex in structure, prismatic, and frequently evergrowing; a tendency present for the third upper molar to be longer than the second ; this tooth is usually the most complex, and certainly the most variable tooth in the upper jaw. Lower jaw with the first molar the dominant and most variable tooth.

Skull always extremely modified in general appearance, the ridges for jawmuscle attachment more prominent than is normal in Muridae; zygomatic plate broad and strongly tilted upwards; infraorbital foramen small and narrowed. Squamosal usually developing a postorbital crest ; a tendency present for the supraorbital ridges to fuse and form a median interorbital crest; deep pits usually present for muscle attachment in the mandible between the molars and the outer side of the jaw (for full details concerning the arrangement of the jaw-muscles of Microtinae see Hinton, Monograph of Voles and Lemmings, 1,1926, p. 22). Palate as a rule terminating in front of level of hinder part of third molars, its posterior portion frequently becoming specialized.

The zygomatic plate is never cut back anteriorly as it is in so many genera and species of Murinae and Cricetinae. The zygoma is robust. The orbit is situated more anteriorly than in less specialized Muridae, as a rule; and the rostrum is relatively short. The auditory bullae are large as a rule, and in specialized genera contain spongy bone.

The external form is usually slightly specialized for fossorial habits, and nearly always for life in cold or temperate climates (i.e. form not essentially Ratlike). Tail, excepting Brachytarsomys, shorter than head and body, usually well haired. One genus, Ondatra, is very highly modified for aquatic life (at least as regards the peculiar formation of its tail); two are much modified for underground existence (Ellobius, Prometheomys); some, as Dicrostonyx and Lentmus, are specialized for life in Arctic climates.

This is the dominant group of Muridae in the Holarctic region, easily outnumbering any of the other subfamilies, in both number of genera and named forms, in the Palaearctic region, and in North America, and in this respect taking the place, broadly speaking, of the tropical Murinae in the Old World, and the Cricetinae in the New.

Some authors regard the group as being very closely allied to the Cricetinae (for instance, Miller \& Gidley, Winge, etc.). Hinton (p. 121) is of the opinion that the group is just as closely allied to the Murinae as to the Cricetinae.

In the opinion of the present author, the present subfamily is so highly specialized, that it appears to be very distinct from both, more so indeed than are Murinae and Cricetinae from each other, if cranial characters and specialization have any value in systematic classification.
'The members of this group tary extremely in general aspect of skull from youth to age. One species, Clethrionomys rufocanus, has collected at least two generic names based evidently on young, middle-aged, and old specimens of the same species.

The cheekteeth are evergrowing, so far as known, except in the genera Ellobiws, Prometheomys, Ondatra, Dolomys, Phenacomys, Clethronomys, and Brachytarsomys. (Also Veoaschizomys, not represented in the British Museum, which may be a subgenus of Cleihrionomys.)

Three generic groups are here recognized. Hinton and most authors divide the subfamily into two, the Lemmi and the Mieroti; but the difficulty of classifying the Muridae from Madagascar makes it imperative to include Brachytarsomps in the present group, for the present, which represents a third generic group. The systematic position of this genus, and the probability that it would have to be transferred here is noted by Ilinton (p. 120).

The earliest important paper on the classification of the group was by Miller, North American Fauna, no. 12, isyo. In addition to this, and Hinton's monograph, the work of Russian authors, Vinogradov, Argyropulo, etc., has been studied. There is still difference of opinion as to the exact limits of the genera centred round Microtus. 'The genera here admitted have been fully described by Ilinton.

The present classification differs from this author's results in three points: the inclusion of Brachytarsomys to form a third generic group (as noted above); the suppression of Chilotus to subgeneric rank (as maintained hy American authors), owing to intermediate forms between it and Microtus; and full generje rank heing accorded to the remarkable species separated by Argyropulo as Blanfordimys (B. ufghanus and bucharicns).

I have changed the order in which the genera are taken from that of Hinton chicfly hecause in a work of this description, it is convenient to discuss Microtus, the dominant genus round which a large part of the subfamily is collected, is carly as is possihle.

Eey to the (ifnera of Microtinae
(not including Neoaschizomys, which is not represented in the British Museum)
(heektecth bracliyodont. Third lower molar not reaching down to level of lower incisor.

Brachytarsomys Group (Brachytarsomyes). Brachytarsomys
(heektecth st rongly hypsodont. 'Third lower molar always reaching down to level of lower incisor.
Lower incisor short, wholly lingual to molars, terminating posteriorly in the horizontal ramus opposite or in front of alveolus of M.3. (Cheektectl cergrowing.) Lemmus Group (Lemmi)
Cheekteeth longitudinally complex; inner and outer salient angles approximately equal in size. First lower molar with seven closed triangles between the termination loons. Supraorbital
ridges strong, but not fusing in the interorbital region. External form extremely modified for life in Arctic climate; foreclaws of D. 2 and D. 3 much specialized, with periodic seasonal extra basal outgrowths developing. Squamosal crests more prominent.
Cheekteeth longitudinally simplified; inner salient angles of upper and outer angles of lower molars smaller than those of opposite sides. First lower molar with three closed triangles between termination loops (or with two transverse loops, if closed triangles absent). Supraorbital ridges fusing to form median orbital crest in adult. Foreclaws not developing periodic seasonal basal outgrowths. Squamosal crests less prominent.
Posterior palate not terminating as simple transverse shelf. U'pper incisors strongly grooved. 'Toothrows not or less widely divergent posteriorly. (External form not much specialized.)

## Synaptomys

Posterior palate terminating as a simple transverse shelf. Upper incisors not strongly grooved. Toothrows widely divergent posteriorly.
External form much modified for life in Arctic regions; foreclaws often abnormally thickened; soles haired, the pads vestigial; ungual phalanges of manus lengthened. Lemats
External form not much specialized; foreclaws not thickened; soles not heavily haired, the plantar pads normal; ungual phalanges of manus not lengthened.

Myopus
Lower incisor long, passing from lingual to labial side of the molars between the bases or roots of M. 2 and M.3, and ascending for a greater or lesser distance behind the molars to terminate within or near the condylar process. Microtus Group (Microti)
Cheekteeth rooted in adult.
External form extremely modified for underground life. M. ${ }^{3}$ strongly reduced.
Skull much specialized for fossorial life; incisors lengthened, pro-odont; infraorbital foramen large; palate terminating posteriorly with median spinous process converted into sloping septum between posterolateral pits; foreclaws not specially enlarged. Lower incisor root forming prominent process on mandible.

Ellobits
Skull little modified; incisors moderate; infraorbital foramen normal; palate terminating posteriorly as a simple shelf; foreclaws extremely enlarged. Lower incisor root forms no process on mandible. Prometheomy:
External form not modified for underground life. M. ${ }^{3}$ not strongly reduced.

External form much specialized for aquatic life; tail higher than wide, laterally compressed. Swimming-fringes of feet conspicuous. Skull extremely massive and angular. Ondatra
External form not specialized for aquatic life.
Posterior nalate terminating as a simple transverse shelf.
Clethrionomys
Posterior palate not terminating as a simple transverse shelf, the median spinous process present, converted into sloping septum between posterolateral pits.
Supraorbital ridges fusing to form a median interorbital crest, in adult. Bullae much enlarged. Inner folds of lower molars not conspicuously larger than outer folds.

Dolomys
Supraorhital ridges not fusing in adult to form median interorbital crest. Bullae not much enlarged. lnner folds of lowet molars very deep, the outer folds obsolete.
Cheekteeth evergrowing.
External form considerably modified for aquatic life. (M.i lower with five closed triangles.) Nefofiber
External form not or rarely showing modifications towards aquatic life. If so (some forms of Arricola), M.I lower with three closed triangles.
Posterior palate terminating as a simple transverse shelf, the median spinous process, when present, never with its tip connected with the inner borders of the posterolateral pits.
Cheekteeth without long-drawn-out appearance, less angular, the re-entrant folds not widely open. So far as known, supraorbital ridges not fusing to form median interorhital crest.
External form considerably modified for life in Arctic climate. First and second lower molars with closed triangles.

Aschizomys
External form generalized. (Pectoral mammat suppressed.) First and second lower molars normally without closed triangles.
Skulf less angular, with temporal ridges widely separated. A. 3 (upper) relatively simple. A tendency present (not constant) for M.I and M. 2 (upper) to be more complex than is normal. Eothenoshys
Skull more angular, with temporal ridges less widely separated. M. 3 (upper) lengthened and complex. (\$1.1 and 31.2 normal.)

Cheekteeth more angular, with long-drawn-out appearance caused by widely open folds. (Pectoral mammae present.)
Supraorbital ridges not fusing to form an interorbital crest. Lower cheekteeth usually with closed triangles. Bullae large; external form not specialized for underground life.

Alticola
Supraorbital ridges fusing to form an interorbital crest. Lower cheekteeth usually without closed triangles. Bullae small, reduced. External form considerably specialized for fossorial life.

Hyperacrius
Posterior palate terminating with the median spinous process converted into a sloping septum between the posterolateral pits, the inner borders of these pits always continuous with the tip or sides of the median process.
External form highly modified, Lemming-like, with much reduced ears (which are concealed in the fur), and much reduced tail. Cheekteeth with re-entrant folds more widely open than is usual. Bullae and mastoids much enlarged, the latter tending to show in superior aspect of skull. Supraorbital ridges strong, but not fused in the interorbital region. M.i and M. 2 with traces of extra complexities between the main inner folds. (M.1 lower with five closed triangles.) Lagurus
External form not or less specialized; ear less reduced. Cheekteeth normally with the folds less widely open. Bullae and mastoids usually not extremely enlarged, the mastoids not conspicuous in superior aspect of skull, excepting Blanfordimys (supraorbital ridges absent, M.1 lower with three closed triangles, form generalized, compare Lagurus). MI.1 and 1.2 without traces of extra complexities between the main inner folds, normally.
Auditory bullae and mastoids abnormally enlarged, the latter showing prominently in superior aspect of skull. Supraorbital ridges (apparently) untraceable. (M.r lower with three closed triangles.) Blayfordimys
Auditory bullae and mastoids not extremely enlarged, the latter never showing prominently in superior aspect of skull. Supraorbital ridges present.
Third lower molar with closed triangles. (First lower molar with number of closed triangles said to vary individually; inguinal mammae absent or functionless; supraorbital ridges fused in adult.)
Bullae smaller; tail longer; M. 3 simpler. Orthrionys

Bullae larger; tail shorter; M. 3 more complex.
1Ierpetomys
Third lower molar normally without closed triangles.
First lower molar with three closed triangles.
Supraorbital ridges widely separated in interorbital region in the adult. Esternal form considerably modified for fassorial life. Fourth and fifth triangles confluent with each other in first lower molar, and more or less closed off from anterior loup.

Pitymys
Supraorbital ridges fusing in adult to form median interorbital crest.

Skull in adult massive and angular, with powerful median interorbital crest, squamosal crests, and occipital region. Anterior loop of first lower molar much reduced. Externally slightly modified for fossorial life, sometimes also showing aquatic specialization. Arvicola
Skull lighter, not massive, less angular, with moderate squamosal crests, weaker occipital region, and median interorbital crest usually less strongly developed.

External form more modified for fossorial life. Anterior loop of first lower molar strongly reduced.

Pilatoniys
External form not specially modified. Anterior loop of first lower molar usually less reduced, the fourth and fifth triangles typically confluent, and closed off from anterior loop to a greater or lesser degree (there appears to be some variation in this character).
Bullae larger, and mastoids less inflated;
braincase less deep.
Neodon
Bullae smaller, and mastoids larger; braincase deeper.

Pedomis
First lower molar with four or five closed triangles.
Upper incisors clearly grooved; lower incisor relatively short; M .3 with only one inner fold.

Proedromys
Upper incisors normally plain; lower incisor not short; M .3 with two or three inner folds.

Externally considerahly modified for fossorial life; foreclaws larger; sole usually fully haired. Lasiopodoms
Externally not specially modified for fossorial life; foreclaws normally smaller (if not, as sometimes in mandarinus group, sole naked).

Microtus

## The Brachytarsomys Group (Brachytarsomyes)

Cheekteeth brachyodont, rooted; third lower molar not reaching down to level of lower incisor.

Genus 1. BRACHYTARSOMYS, Günther
1875. Brachytarsomys, Günther, Proc. Zool. Soc. London, p. 79.

Type Species.-Brachytarsomys albicauda, Günther.
Range.-Madagascar.
Number of Forms.-One.
Characters.-This genus, as already indicated, is provisionally included in the Microtinae. Hinton (Monograph of Voles and Lemmings, p. 120) states, "The Vole-like Brachytarsomy's is generally regarded as a fossorial modification of the Nesomyinae in which the cheekteeth have acquired a strikingly Microtine general appearance, although they are far more brachyodont than in any known Vole; . . . the skull under the influence of fossorial habits and of jaw-muscles, which have developed exactly as in some of the higher Voles, has become almost the counterpart of that of Arzicola or Microtus in the advanced position of the orbit, the structure of the infraorbital canal, the zygomatic arch, the form and course of the temporal ridges (which fuse in front to form an interorbital crest), and the flattening of the braincase. Although
modified in much the same manner as the higher Voles, the cheekteeth are already too reduced and the skull is too highly specialized for the genus to be considered as representing the ancestor common to all Microtinae; but that it has descended from that ancestor there can be little doubt, and it may perhaps be necessary later on to transfer Brachytarsomy's from the Nesomyinae to the Nicrotinae."

Most of the essential features of the skull are described in this quotation. Specially to be mentioned is the fact that the interorbital ridges fuse to form a weak median crest. The squamosal crests are scarcely marked. The infraorbital foramen is as in normal Microtinae, but the zygomatic plate, though strongly tilted upwards, appears less broadened than is usual in the group. Jugal thick and long. Palate posteriorly not raised, and differing from normal Microtinae; it is quite unmodified, and more as in Murinae or Cricetinae. Pterygoid fossae shallow. Bullae small. Palatal foramina of medium length. well open.

入.I with two outer folds, the second deep, and with two inner folds, the posterior of which nearly meets the front outer one. M. 2 with two outer, two inner folds originally; the second outer one tends to cut right across the tooth and divide it into two parts. N1,3 the smallest tooth (another difference from normal Microtinae); with two outer, one inner folds. Lower teeth: M. s with three inner, two outer folds; M. 2 with wo folds each side; M. 3 with two outer, one inner folds. Usually there is an isolated island present in the front part of M.I.

Size relatively large; head and loody 250 mm . or perhaps more. Hindfoot with long fifth digit; the three central digits subequal and longer; claws quite prominent. Ear small. Tail not reduced, subequal in length to head and body, or perhaps slightly longer than this measurement, moderately or well haired; fur soft.

Forms seen: albicauda.

## List of Named Formis

(References and type localities for all forms of Microtinae are the work of Mr. (; W. C. Holt.)

1. BRACHYMARSOMY ALBICALDA, (iunther
2. Proc. Zool. Soc. London, p. So.

Madagascar, between '「amantave and Murundava.
The Lemmus Group (Lemmi)
"Lower incisor short, its alveolus not extending backwards to M.3, lingual to molars throughout." (Cheekteeth evergrowing.)

## Genus 2. DICROSTONYX, Gloger

1841. Dicrostonyx, Gloger, Hand. u. Hilfsbuch. Naturgesch. i, pp. xxxi, 97.
1842. Misothermus, Hensel, Zeitschr. deutsch. Genl. Gesellsch. 7, p. 492. (Myodes torquatus, Pallas.)

Type Spectes.-"An American species, probably Mus hudsonius, Pallas."
Range.-Arctic regions of Russia, Siberia, and Canada, from the east coast of the White Sea eastwards to Anadyr region, and Novaya Zemlya, New Siberian Islands and other islands to the north of Siberia; Spitzbergen(?). In America, from Alaska to Labrador, and (ireenland; also certain islands off Alaska.

Number of Forms.-Ten.
Characters.-Skull with extremely prominent peglike squamosal crests which jut out each side to an abnormal degree; supraorbital ridges powerful but apparently not fusing in interorbital region; zygomatic plate extremely hroadened, and infraorhital foramen small, as is normal in the subfamily. Palate "differing from that of Microtus chiefly in the extension further forwards of the mesopterygoid fossa and in the shortness and free
termination of the postpalatal median septum, which is here represented merely by a short median spine." Jalatal foramina long, well developed. Bullae of medium size, spongy within. Cheekteeth evergrowing and complex. M.i with anterior loop, five alternating triangles, and usually an extra vestigial posteroexternal one also. M. 2 with anterior loop, two outer, two inner triangles, and usually the vestigial posteroexternal one, as in M. i. Ninute posterointernal angles or their remnants may also be present in M.ı and M.2. M. 3 with anterior loop, four alternating closed triangles, and a long or moderate posterior loop; the folds in this tooth are three each side.

In I). hudsonius, the posterointernal vestigial angles in M. 1 and M. 2 are absent; the remaining species have on this account been subgenerically separated as Misothermus by G. M. Allen; this division is not considered valid by Hinton ( p .147 ), and the character appears to be too slight on which to base subgeneric names. Lower molars: M. 1 with posterior loop, seven alternating closed triangles (four inner, three outer), and a relatively complex anterior loop. M. 2 with posterior loop and four alternating triangles; M. 3 like M. 2 ; these teeth may also have vestigial anterior triangles present, each side.

External form much modified for life in Arctic climates. Plantar pads vestigial. Ear almost suppressed. Fur extremely thick. Tail shorter than hindfoot, fully haired; feet much broadened, heavily haired; limbs short. Nammae $2-2=8$. Forefoot with the centre two digits bearing enormously thick heavy almost antler-like claws, which are doubled in winter. Hinton, quoting Coues, states, "in spring and early summer these claws (3 and 4) do not appear very different from those of Myodes $(=$ Lemmus $)$, though averaging larger, more bulbous at base underneath, with the terminal portion slenderer, straighter and sharper. This bulbous portion underneath grows out simultaneously with increase in length and amount of the curvature of the main portion of the claw, until it equals or even exceeds the length of the latter, and is quite as stout, or even stouter, being somewhat broad and padlike. . . . The claw then looks like nearly two claws, one underneath the other. The pad would then seem to gradually sever its connection with the main claw by progressive increase of the constriction marked by the lateral groove and terminal notch, as well as by loosening at the base, . . . it is finally lost." I have seen nothing like this structure elsewhere in the entire Order. Hindclaws relatively long, but not abnormal. The members of this genus turn white in winter.

Forms seen: groenlandicus, hudsonius, richardsoni, rubricatus, torquatus.
All Palacarctic forms are regarded as of one species only by Vinogradov.

## List of Named Formis

1. DICROSTONYX TORQUATL'S TORQLATLS, Pallas
2. Nov. Sp. Quad. Glir. Ord. p. 77.

Region of mouth of River Obi, N゙.-W. Siberia.
Synonym: lenensis, Pallas, 1779, Nov. Sp. Quad. Glir. Ord. p. 195. Siberia.
2. DICROSTONYX TORQUATLS UNGLLATL'S, von Baer
1841. Von Baer \& Helmersen, Beiträge, 4, p. 283 .

Novaya Zemlya.
3. DICROSTONYX TORQUATLS CHIONOPAES, G. M. Allen
1914. Jroc. New England Zool. Club. 5, p. 62.

Nijni Kolymsk, Jolyma River, N.-E. Siberia.
4. DICROSTONYY RUBRICATLA RLBRICATLS, Richardson

IS39. Zool. Capt Beecheys Voyare, p. 7.
Shore of Behring Strait, Alaska.
Synonym: nelsoni, Merriam, ryoo, Proc. Washington Acad. Scı. 2, p. 25 . Norton Sound, Alaska.
alascensis, Stone, 1900, Proc. Aead. Sicı. Philadelpha, p. 37. Point Jarrow, Alaska.
5. DICROSTONYX RLBRICATUS RICHARDSONI, Merriam 1900. Proc. Washington Acad. Sci. 2, p. 26.

Fort Churchill, west shore Hudson Bay, Ieewatin, Canada.
6. DICROSTONYX RUBRLCATLS LNALASCENSIS, Merriam
1900. Proc. Washington Acad. Sci. 2, p. 25.

Unalaska, Alaska.
7. DICROSTONYX RLBRICATLS STEVENSONI, Nelson
1929. Proc. Biol Soc. Washington, XLII, p. 145.

Umnak Island, Alaska.
8. DICROSTONYX EXSLL, G. M. Allen
1919. Bull. Nus. Comp. Zool. Harvard Coll. JXIJ, p. 532.

St. Lawrence Island, Behring Sea, Alaska.
9. DICROSTONYX GROENLANDICLS, Trall
1823. Scoresby's Journ. Voy. Northern Whale-fishery, p. 416.

Jameson's Land, Greenland.
10. DICROSTONVX HITDSONIUS, Pallas
1779. Nov. Sp. Quad. Glir. Ord. p. 208.

Labrador, probably the east coast, Canada.

## Genus 3. SYNAPTOMISS, Baird

1857. Synaptomys, Baird, Namm. North. Amer. p. 558.
1858. N1ctomys, 'True, Jroc. U.S. Nat. Nus. XV11, p. 242. (Mictomy's innuitus, True.) Valid as a subgenus.

Type Species. - Synaptomys cooperi, Baird.
Range. - North America: "from the northern edge of the Lower Austral zone in Virginia (Dismal Swamp), and Sansas northwards to Alaska, Mackenzie, and Labrador" (Hinton). Typical Synaptomys appears to range mostly in the Eastern U.S.A., from Minnesota and Arkansas eastward to New Sork, and North Carolina; subgenus Mictomy from Alaska, Mackenzie, British Columbia, Alberta, and also Quebee, Labrador, Ungava, New Brunswick, and North-east IT.S.A.

Number of Forms.-Twelve.
Characters. - The supraorbital ridges fuse to form a median interorbital crest in the adult. Squamosal crests well developed; rostrum
wery thick; infraorbital foramen normal. Upper incisors extremely broad, prominently grooved. Bullae very large. Posterior palate nearly as in Microtus. Palatal foramina relatively large. Upper cheekteeth with wide folds, these partly filled with cement; the outer folds much deeper than the inner ones. M.i with two folds each side, the triangles more or less closed; M. 2 with two outer, one inner folds; M. 3 composed of four transverse loops, these separated by two outer folds, and one inner one, which is placed posteriorly, separating the third and fourth loops. Lower first molar with posterior loop, three closed triangles (one outer, two inner), and anterior loop; M. 2 with posterior loop, two closed triangles, and anterior loop; M. 3 more or less like M.2. 'The inner folds are deeper than the outer ones. Lower part of mandible broad, well ridged. External form not highly specialized. Plantar pads 6. Ear reduced. Sole not heavily haired; tail longer than hindfoot. Mammae (Subgenus Synaptomy's), $1-2=6$.

In subgenus Mictomys, there are no closed triangles in the lower molars, M. 1 being formed of four transverse loops, M. 2 and M. 3 being formed of three; the palate has a well-developed spinous process behind (this less developed in Synaptomys s.s.), and the mammary formula is $2-2=8$. The rostrum is less thickened; the incisors are more slender, and with the groove less well defined.

Synaptomys differs from Lemmus in the less specialized external form and the more specialized posterior palate; from Myopus in the more specialized palate and the grooved incisors; and from Dicrostonyx by the much more simplified molars, and lack of abnormal external specializations.

Forms seen: borealis, cooperi, fatuus, gossei, zerangeli.
The genus has been revised by Howell, North American Fauna, no. 50, 1927. Only two species are now regarded as valid.

## List of Named Forms

## Subgenus Synaptomys, Baird

1. SYNAPTOMIS COOPERI COOPERI, Baird
2. Mamm. N. America, p. 558.

Locality unknown; probably northern New Jersey.
Synonym: fatuus, Bangs, 1896 , Proc Biol. Soc. Washington, X, p. 47. Lake Edward, Quebec.
2. SYNAPTOMYS COOPERI STONEI, Rhoads
1893. Amer. Naturalist, 27, p. 53.

May's Landing, Atlantic County, New Jersey.
3. SY゙NAPTOMI'S COOPERI HELALETES, Nerriam
1896. Proc. Biol. Soc. Washington, X, p. 59.

Dismal Swamp, Norfolk County, Virginia.
4. SY゙NAPTONIS COOPERI GOSSII, Coues
1877. Monogr. N. Amer. Rodentia, Muridae, p. 235.

Neosho Falls, Woodson County, Kiansas.

Subgenus Mictomys, True
5. SVNAPTONIS BOREALIS BGRLALJS, Richardson
1828. Zool. Journ. 3, p. 517.

Fort Franklin, Great Bear Lake, Mackenzie, Canada.
Synonym: bullatus, Preble, 1902, Proc. Biol. Soc. Washington XV, p. i81. Mackenzie.
6. SYNAPTOMIS BOREALIS ARTFAIISIAE, Anderson
1933. Bull. Nat. Hist. Mus. Canada, no. 70, p. 104.

Stevenson Creek, south-west of Prınceton, British Columbia.
7. SYNAPTONJY BOREALIS DALIJ, Nerriam
1896. Proc. Biol. Soc. Washington, X, p. 62.

Vulato, Alaska.
Synonym: andersoni, Allen, 1903, Bull. Amer. Mus. Nat. Hist. XIX, p. 554. Level Mountain, N. British Columbia.
s. SINAPTOMY BOREALIS WRANGELJ, Nerram

IS96. Proc. Biol. Soc. Washington, X, p. 63.
Wrangel, Alaska.
Synonym: truei, Merriam, is96, Proc. Biol. Soc. Washıngton, X, p. 62. Skagit Valley, Washington.
9. SYNAPTOXIS BOREALIS CIJAPMANI, Allen
1903. Bull. Amer. Nus. Nat. Hist. XIX, p. 555.

Glacier, Selkirk Range, British Columbia.
10. SYNAPTOMIS BOREALIS INNLITLS, True
1894. Proc. U.S. Nat. Mus. XVII, 2.4.3.

Fort Chimo, Ungava, Canada.
11. SYNAPTOMI'S BOREAIIS MEDIOXINUS' Bangs
1900. Proc. New Engl. Zool. Club, 2, p. 40

L'Anse de Loup, Strait of Belle Isle, Labrador.
12. SYNAPTONIS BOREALIS SPIIAGNJCOLA, Preble
1899. Proc. Biol. Soc. Washington, SIII, p. 43.

Fabyans, Coos County, New Ilampshire.

## Genus 4. MYOPUS, Miller

1910. Mropts, Miller, Smiths. Misc. Coll. LII, p. 497.

Type Species.-Myodes schisticulor, Lilljeborg.
Ravge.-Palacarctic: fir forests of Northern Eurasia, from Norway and Sweden across Russia and Siberia to the Sea of Okhotsk; and recorded from Northern Mongolia. Known from Finland, North-west European Russia (Karelia); Siberian Altai, Sayansk Mlountains, area surrounding Lake Baikal, Ussuri district, Aian on Okhotsk Sea, River Kolyma (North-east Siberia), etc.

Number of Forms.-Five.
Characters.-Like Lemmus (below), but external form little specialized; plantar pads not reduced; sole not heavily haired. "Ungual
phalanges of manus normal, much shorter than first and second phalanges combined; metacarpals of third and fourth digits slightly longer than the phalanges" (Miller). The differences in the skeleton of the manus between this genus and Lemmus are figured by Miller, Catalogue Mammals Western Europe, 1912, p. 611.

External form not highly specialized; size small; ear reduced, but not abnormally so; fur thick. Mammae 2-2 $2=8$. Plantar pads 6 . Palmar pads reduced to 4. Tail very short, well haired.

Skull massive, with widely spreading zygomata, great interorbital constriction, heavy squamosal crests, and fused interorbital ridges. Bullae very large. Toothrows widely divergent posteriorly. Posterior palate as in Lemmus. Dentition as in Lemmus.

Forms seen: schisticolor, saianicus.
All named forms are regarded as subspecies of the type by Vinogradov.

## List of Named Forms

1. MYOPUS SCHISTICOLOR SCHISTICOLOR, Lilljeborg
2. Ofversigt. Kongl. Vets. Akad. Forh. Stockholm (1843), p. 65.

Near Lillehammer, Mjosen, Gudbrandsdal, Norway.
2. MYOPUS SCHISTICOLOR MORULLS, Hollister
1912. Smiths. Misc. Coll. LX, no. 14, p. I.

Tapucha, Altai Mountains, Siberia, 125 miles south-east of Bijsk.
3. MYOPUS SCHISTICOLOR SAIANICUS, Hinton
1912. Ann. Mag. Nat. Hist. 8, XIII, p. 343.

Syansk Mountains, 100 miles west of Lake Baikal, Central Asia.
4. MYOPCS SCHISTICOLOR MIDDENDORFF1, Vinogradov
1922. Ann. Mus. Zool. Acad. Sci. Russ. 23, pp. 374, 512.

Aldoma River, near Ayan, Sea of Okhotsk.
5. MYOPUS SCHISTICOLOR THAYERI, G. M. Allen 1914. Proc. New. Eng. Zool. Club, 5, p. 58.

Nijni Kolymsk, Kolyma River, N.-E. Siberia.

## Genus 5. LEMMUS, Link

1795. Lemmus, Link, Zool. Beytr. I, pt. 2, p. 75.
1796. Ayodes, Pallas, Zoogr. Rosso-Asiat. 1, p. 172.
r811. Hypudaeus, Illiger, Prod. Syst. Mlamm. et Avium, $87-88$.
Type Species.-Mus lemmus, Linnaeus.
Ravge.-Northern part of Holarctic region: from Scandinavia, Northern Russia and Siberia to Kamtchatka, and from Pribilof Islands and Alaska across North America to the western side of the Hudson Bay, and Baffin Land. Occurs in Novaya Zemlya, and New Siberian 1slands. The lemmus group occurs in Norway ("during seasons of abnormal increase the animals wander to the extreme south of Norway" (Miller)), Sweden, Finland, and Kola Peninsula, Russia. The other species occur from the White Sea across Northern Russia and Siberia to Kolyma, Anadyr region, Kamtchatka, etc., south to upper
reaches of River Sicia, a tributary of the Amur, and to Verhoiansk Mountains (Vinogradov); also Alaska, Mackenzie, Alberta, British Columbia, Baffin Land.

Number of Forns.-Fifteen.
Charactrrs.-Skull exceptionally massive, with extreme interorhital constriction, the ridges fused into a sharp median interorbital crest. Zygomata widely divergent. Squamosal crests and lambdoid crest prominent; interparietal large. Infraorbital foramen as usual in the group; zygomatic plate extremely broad and strong. Palate terminating posteriorly as a transverse shelf, usually with a small median spinous process. 'Toothrows widely divergent posteriorly. Bullae large. Incisive foramina long, very narrow. Upper checkteeth: M. 1 with anterior loop, four alternating closed triangles, the outer folds deeper than the inner ones; M. 2 with anterior loop, three closed triangles, two external, one internal; M. 3 with two folds each side, the anterointernal one level with the posteroexternal one, and nearly meeting it; the tooth compused more or less of four transverse loops. Upper incisors sometimes with traces of a groove.

Lower molars: M.I with a posterior loop, three closed triangles, and anterior loop which has a small fold in it each side; M. 2 with posterior loop and four alternating triangles; M. 3 with posterior loop, two alternating closed triangles, and an anterior loop. Nandible broad, powerfully ridged.

External form considerahly specialized for life in Arctic climates; form heavy, thickset; plantar pads vestigial; sole heavily haired. Limbs short; tail shorter than hindfoot; car much reduced. Nammae $2-2-8$. Fur thick. Foreclaws prominent, sometimes extrumely thick and reminiseent of those of Dicrostonyw when in single condition. One form, L. c. notosibiricus, turns white in winter.
"Metacarpals of third and fourth fingers much shorter than phalanges; ungual phalanges of manus greatly enlarged, slightly longer than the first and second phalanges combined" (Miller) (compare Myopus). The remarkable migratory habits of the type species are well known.

Forms seen: helzolus, lcmmus, migripes, ohensis, trimucronatus.
'Two groups are recognizable, as indicated by Hinton: the lemmus group, containing only the type species, which has a highly specialized black and yellow coloured pattern, and the obensis group, containing the remainder, with a less attractive more sober coloration, though usually more brightly coloured than most Microtinae. I have followed the classification of Vinogradov regarding the species recognizable in the U.S.S.R. IInton suggests that all forms of this group may later be regarded as races of the carliest named form.

List of Named Forms<br>lemmus Group

1. LEMMLC LFMMIES, Linnaeus
${ }^{175}$ K. Syst. Nat, foth ed. i, p. 59.
Nutuntams of Lappmark, Sireden.
Sivonym: horealis, Nilssun, i\$20, Skand. laun. I, IS5.



Fig. 4i. Lemmes lemmus, Linnaeus.
Abore-Skull, three views • 2 (small figure $\times 1$ ) from Hinton, Monograph of Voles and
Beloz-Cheekteeth $\times 9$.

## obensis－trimucronatus Group

2．LEMAIL＇S（OBENSIS OBENSIS，Brants
1827．Ifet．geslacht d．Nuizen，p． 55.
Nouth of River（）b，isberia．
Synonym：migratortus，Lichtenstein，iS23，Eversmanns Reise，p．123． bungei，Vinogradow，192＋，Ann．Mag．Nat．Hist．9，XIV， P． 18 g ．Nouth of Lena Rwer． minor，l＇allas， 181 r, Zoogr．Rosso－Asiat．1， 173.
3．LEMAMES OBENsis NovosilBIRICLS，Vmogradov
1924．Ann．Nag．Nat．Ifist．9，XIV，p． 187.
Kotelny and Liakhov Istands，N．－E．Siberia．
＋．LEAIMLS CHRIA゚OGANTER CHIRYSOGASTER，Allen
1903．Bull．Amer．Mus．Nat．Hist．XIX，p． 153.
Gichiga，west coast of Okhotsk Sea，Siberia．
5．LEMIALS CHRISOGASTER JIADESCENS，Vinogradov
1925．Ann．Mus．Zool．Acad．Sci．U．S．S．R．p． 62.
Kantchatka．
6．LEMIMIS CHRVSOGASTER PALLLS，G．M．Allen 19If．Proc．New Eng，Zool．Cluh，5，p． 60.

Kalaschowo，Kolyma River，N．－E．Siberia．
7．LEALILS AMLRENSIL AMLOREXSLS，Vmogradov
1924．Ann．Mag，Nat．Hist．9，XIV，p． 186.
Pikan，on the Zeya River，a tributary of the Amur River，E．Siberia．
8．LEMAIL＇今 AMILRENSIS U（iNEVI，Vinoertadov
1933．＇TabI．Analyt．Faun．L．R．S．S．10，Mamm．Rongeurs，p． 58.
Verhoiansk Nountans，E．Siberia．
9．LENAMC
1894．Proc．U．s．Nat．Nus．SVII，p． 242 ．
st．George Island，Pribilof IsIands，Alaska．
10．LENINLS ALASCENSIN，Merriam
1900．Proc．Washington Acad．Sci．2，p． 26.
Point Barrow，Alaska．
Synonym：（？）albigularis，Wagner，i\＄+3 ，Schreber＇s．Säug．Suppl．III， 602.

11．LEM1MLS XLKONENSIS，Nerram
1900．Proc．Washington Acad．Sci．2，p． 27.
Charlic Creek，Yukon River，Ataska．
12．LEMNMLS JINLSCLLLs，Osgood
1904．N．Amer．Fauna，no．24，p． 36.
Kakhtul River，near its junction with Malchatna River，Alaska．
13．LEAINIUS TRIMLCRONATL゙s，Richardson
1825．Journ．Parry＇s Second Voy．App．p． 309.
Shores of Point Lake，Mackenzie，Canada．
1＋JEMIMLS HLLVOLUS，Richardson
1828．Zool．Journ．3，p． 517.
Rocky MIountains，Alberta，Canada；near the headwaters of one of the southern tributaries of Peace River，or between there and the Jasper House region．
15. LEMMUS HARROLDI, Swarth
1931. Proc. Biol. Soc. Washington XLIV, p. 101.

Nunivak Island, Alaska.

## The Microtus Group (Microti)

Lower incisor long; its alveolus extending backwards at least to base of condylar process, lingual to M.1 and M.2, labial to M.3.

## Genus 6. CLETHRIONOMIYS, Tilesius

1850. Clethrionomys, Tilesius, Isis, II, p, 28.
1851. Evotomys, Coues, Proc. Acad. Nat. Sci. Philadelphia, p. 186. (Mus rutilus, Pallas.)
1852. Craseomys, Miller, Proc. Washington Acad. Sci. 2, p. 87. (Hypudaeus rufocanus, Sundevall.)
1853. Caryomys, Thomas, Abstr. Proc. Zool. Soc. London, No. 90, p. 4. (Microtus (Eothenomys) inez, Thomas =Clethrionomys rufocamus shanseius, Thomas.)
1854. Phaclonrys, Thomas, Ann. Mag. Nat. Hist. 7, XV, p. 493. (Erotomy's smithii, Thomas ( $=$ Clethrionomys rufocanus smithii).)

Type Species.-Mus rutilus, Pallas.
Range.- Holarctic region. Europe including England, but not Ireland, Spain nor Greece. Asia, including Asia Minor, much of China, Siberia, and Japan. North America, across Canada and United States, south to Colorado and North Carolina. Occurs in Arctic regions of both hemispheres. In Europe known from England, Scotland, some of the Hebrides, Denmark, Holland, Belgium, France, Germany, Sweden, Finland, Norway, Hungary, Roumania, Switzerland, Italy, Croatia, and European Russia "southwards approximately to the line Herson-Dnepropetrovsk-Saratov-Orenburg" (Vinogradov). In Siberia, occurs throughout the northern portion, south to Altai, Dzungarja, Semirechyia. In China, known from Mongolia, Shansi, Korea, Hupeh, Manchuria, Chihli, Kansu, and Szechuan. In America, forms named from Alaska, Yukon, Mackenzie, U'ngava, Labrador, Ontario, British Columbia, Washington, Oregon, Idaho, the Dakotas, California, Colorado, New Mexico, North Carolina, New Hampshire, New Jersey.

Number of Forms.-Seventy-two or perhaps a few more are named. The American species are revised by Bailey, Proc. Biol. Soc. Washington, MI, p. 113,1897 ; the Palaearctic forms by Hinton, Monograph of Voles and Lemmings, I, p. 210, 1926; also European forms by Miller, Cat. Mamm. Western Europe, 1912, p. 623, and Russian and Siberian forms by Vinogradov, Rodents of U.S.S.R., 1933.

Characters.-Typically as in rutilus and glareolus groups, the skull is weak, with poorly developed squamosal crests; the supraorbital ridges are weak and widely separated in the adult; the interorbital constriction is medium, the braincase broad. In some members of the nageri group, particularly caesarius, and in the rufocanus group, the ridges are more developed, and tend to approach each other in the interorbital region, the squamosal crests are better developed. The ridges never fuse to form a median interorbital crest.


Fig. 42. Clethrionomis glareolis glareoles, schreber. B.MI. No. 8.II.2.46, 3 ; 3.


Fig. 43. Clethrionomys glareolus glareolus, Schreber.

$$
\text { B.M1. No. 8.11.2.45, zi; } 3 \text {. }
$$

Palatal foramina well developed, long. Bullae relatively large, lacking spongy tissue within in living species. Zygomatic plate and infraorbital foramen normal. Palatc ending posteriorly as a straight transverse shelf, with no median septum; posterolateral pits present but wholly free from the median spinous process of the palate when the latter is present. Cheekteeth rooted in adult. Upper molars with M.I and M. 2 normal (i.e. in elements agreeing with Microtus araalis); M. 3 with anterior loop, three triangles following it (sometimes or often not fully closed), and a posterior loop with the inner re-entrant fold in this either absent, faint, or well developed according to the species or sometimes the


Fig. 14. Clethrionomys glareolus glareolus, Schreber. B.M. No. S.ir.2.46, of; $\times 14$.
individual. M. 3 seems most constantly complex, of those seen, in C. mikado. Compared with Microtus, the molars appear remarkable for their general lack of angularity in appearance. In C. rufocanus, roots are developed in the molars at a later stage in life, and the teeth at a certain stage of wear appear more angular than is normal. Owing to intermediate forms, as C. caesarius, it is not possible to separate the rufocanus group subgenerically; the group is, as indicated in the above synonymy, remarkable for the number of generic or subgeneric names it has collccted, in some cases based on the younger or older specimens, as the case may be, of the same species. According to Hinton, C. rufocanus further differs from the other species in the fact that the third lower molar is "noticeably displaced by the shaft of the incisor, and encapsuled on the lingual side of the jaw." Lower molars: M. 2 and M. 3 normal in elements; the triangles in M. 2
may be closed or open, in N.3 they are not closed; M. i has a posterior loop, four alternating triangles, and an anterior loop with an inner fold; the triangles may be open or closed.

External form not much modified; mammae 2-2 $=8$; plantar pads 6; tail usually relatively short, but sometimes exceeding half head and body length; moderately haired, or heavily so in rutilus group, and apparently centralis. Ear medium; digits normal; back usually red in colour. Hinton arranges the Palaearctic species in four groups, typified by glareolus, nageri, rutilus, and rufocanus.

The rufocanus group, as indicated above, is clearly distinct from the remainder. The rutilus group is described as modified for life in Arctic climates, with ears, limbs, and tail shortened; the skull appears to be near the glareolus type. The nageri group is described as being rather larger than the glareolus species, with more hypsodont teeth, and more angular skull; C. caesarius, referred to this group by llinton, appears a very distinct form. The glareolus group is considered the most primitive by Hinton, characters mentioned being brachyodonty, greater complexity of cheekteeth, weakness of jaw muscles, small size and delicacy of skull, small bodily size, etc. For further notes on these groups see Hinton, Nonograph of Voles and Lemmings, p. 213 . This author's views on the relationships of the American forms are noted below.

Forms seen: "alcinous," alstoni, amurensis, "andersoni," "aquilus," "bedfordiae," britannicus, carolinensis, caesarius, centralis, dawsoni, erica, "eva," frater, gapperi, glareolus, gorkha, hallucalis, helzeticus, "inez," istericus, italicus, jacutensis, loningi, "latastei," mikado, "nux," "niigitae," norzegicus, nageri, nivarius, ochraceus, ognezi, ponticus, proteus, regulus, reinzaldti, rufocanus, rutilus, russatus, saianicus, shanseius, skomerensis, smithi, sobrus, suecicus, vastoniae, resanus, zoosnessenskii.

> List of Nanfed Forais
> Palaearctic Forms glareolus Group

1. CLETHRIONONIS GLAREOLL'S GLAREGLLS, schreber

1-80. Schreber, Saugethiere, is', p. 680.
Island of Lolland, Denmark.
Synonym: minor, Kerr, 1792, Anim. Kingd. 237.
fulzus, Millet, $1 \$_{2} \mathrm{~S}$, Faune de Maine-et-Loire, $1,40$. France.
hercynicus, Dehlis, Isis, $\$ 76$, I \$31. Germany.
rufiscens, de. Sclys-Longchamps, 1836. Essai. Monogr. sur Camparn. Environs Liege, p. 13. Belgium.
rubidus, Baillon, i 834, Mem. Roy. Soc. D’Emul. d'Abbeville, 1833, p. 54.
pratensis, Cusier, Ilist. Nat. Namm. vii, 1834. France.
2. (LETHRIONONİ GLAREOLUS BRITANNICLS, MIller
1900. Proc. Washington, Acad. Sci. 2, p. 103.

Basingstoke, Hampshire, England.
Synonym: riparia, larrell, 183z, Proc. Zool. Soc. London, p. Io9, Essex, England. Not of Ord.
pratensis, Bell, Hist. Brit. Quad. 330, 1837.
3. CLETITRIONOMYS GLAREOLUS REINWALDTI, Hinton
1921. Ann, Mag. Nat. 1 Iist. 9, VIII, p. 128.

Hapsal, Estonia.
4. CLETHRIONOMYS GLAREOLU'S SUECICUS, Miller 1900. Proc. Washington Acad. Sci. 2, p. 101.

Upsala, Sweden.
5. CLETHR1ONOMIY'S GLAREOLUS ISTERICUS, Miller r909. Ann. Mag. Nat. Hist. 8, III, p. 419. Bustenari, Prahova, Roumania (Carpathians).
6. CLETHRIONOMIS GLAREOLUS HELVETICL'S, Miller 1900. Proc. Washington Acad. Sci. 2, p. 98. Montauban, Haute-Savoie, France.
7. CLETHRIONOMY'S GLAREOLUS SOBRLS, Montagu 1923. Proc. Zool. Soc. London, p. 867. Rescetari, Nova Gradisca, Croatia.
8. CLETHRIONOMY'S GLAREOLUS SAIANICLS, Thomas 1911. Ann. Mag. Nat. Hist. 8, VIII, p. 759. Syansk Mountains, 100 miles west of Lake Baikal, Siberia.
9. CLETIIRIONOMIS GLAREOLU'S RUTTNERI, Wettstein 1926. Anz. Akad. Wiss. Wien. 63, no. 13, p. 19. Seetal, near Lunz, Lower Austria.
10. CLETHRIONOMI'S GLAREOLUS OGNEVI, Serebrennkov 1927. Ann. Mus. Zool. Leningrad, 27, p. $3+2$.

Samara, Russia.
i1. CLETHRIONOMYS CENTRALIS, Miller 1906. Ann. Mag. Nat. Hist. 7, XVII, p. 373.

Koksu Valley, Tian-Shan Mountains.

## nageri Group

12. CLETHRIONOMYS NAGERI NAGERI, Schinz
13. Synops. Mamm. 2, p. 237.

Oberalpsee, near Andermatt, Uri, Switzerland.
Synonym: bicolor, Fatio, Rev. Mag. Zool. 2nd ser. XIV, 257, 1862, Switzerland.
13. CLETHRIONOMI'S NAGERI ITALICLS, Dal Piaz
1924. Studi Trentini, 5, no. 4, p. 3.

Brennero, Alto Adige, N. Italy.
14. CLETHRIONOMY'S NAGERI VESANLS, Hinton 1926. Monogr. Voles \& Lemmings, vol. 1, p. 228.

Mittelberg, near Kaufbeuern, Bavaria.
15. CLETHRIONOMY'S NAGERI HALJ.UCALIS, Thomas 1906. Ann. Mag. Nat. Hist. 7, XV1II, p. 221.

Santa Eufemia d'Aspromonte, Calabria, Italy.
16. CLETHRIONOMI'S NAGFRI VASCONIAE, Miller 1900. Proc. Washington Acad. Sci. 2, p. 96.

Montrćjeau, Haute-Garonne, France.

17．CLET11R1ONONLIS NAGERI NORVEGICL＇s，MAler
1900．Proc．Washington Acad．Sci．2，p． 93.
Bergen，Norway．
1S．CLE＇THRJONOMYS（；ORKA，MIontagu
1923．Proc．Zool．Soc．London，p． 867.
Zalesina，the Gorski Kotar，Croatia．
 1903．Proc，R．lrish Acad．p． 316. Skomer Island，off coast of Pembrokeshire，Wales．
20．CLETIIRIONU．MY＇S AL心TON1，Barrett－1Hamiton \＆Hinton
1913．Abstr．Proc．Zool．Soc，London，No．i19，p．18；Proc．Zool．Soc．1，mion，1913． p． 827 ．
Island of Nlull，Inner Ilebrides，Scotland．
21．CLEYHRIONOMISS IKRICA，Barrett－Hamilton \＆Henton 1913．Ann．Mar．Nat．Hist．8，X1I，p． 301.

Island of Raasay，near Skye，Seotland，
22．CLETHRIONONIY PONTICLS．Thomas
1906．Ann．Nag．Nat．Hist．7，XVII，p．+17.
Sumela，south of Trebizond，Asia Mmor．
23．CLETHRIONOXIY＇FRATER，Thonmas 1908．Ann．Mag．Nat．Mist．8，I，p． 448.

Tian－Shan，probably near Przewalsk，Central Asia．
24．CLETHR1ONONLY C＇AESARILS，NEiller 1908．Ann．Mag．Nat．Hist．8，1，p． 194.

St．Helier，Jersey，Channel Islands．
sutilus Group
25．CLETHRIONOMIS RLTHLLS RLTILLS，Pallas
1779．Nov，Sp．Quad．Glires．Ord．p． 246.
East of the Obi，Siberia．

1862．Reise in den Süden ton Ost－Siberien，i，p．i $\$ 6$.
Eastern Syansk Mountains，Siberia．
2\％．（＇1FTHRIONOMIS RUTHLS JACLTENSis，Vmogrados 1927．Nat．Comm．Etude Jakoute，no．I 8.

Yakutsk，E．Siberia．
 1403．Bull．Amer．Mus．Nat．Hist．X゙1X゙，p．r4s．

Verkhne Kiolimsk，Kolyma River，N．－I．Siberia．
 1024．C＇ompt．Rend．de l＇Acad．Sci．Russie，p．ilo．

North－east shore of Lake Baikal，Siberra．
 1910．Ann Mus．Zool．Ac．Sei．St．letersb．15．p．29．t．

Transbakalua．
 ［y24．Bull．Sioc．Nat．Moscow，n．s．3I，p． 73.

East of Lake Baikal，Suberia．
32. CLETIIRIONOMY'S RUTILL'S AMLRENSIS, Schrenck 1859. Säugeth. Amur-Land, p. 129.

Mouth of Amur River, Siberia, near Nicolaieff.
33. CLETHRIONOMY'S RUTILUS (?) LATICEPS, Ognev 1924. Bull. Soc. Nat. Moscow, n.s. 31, p. 75.

Province of Irkutsk, Siberia.
34. CLETHRIONOMY'S RUTILU'S (?) PARVIDENS, Ognev
1924. Bull. Soc. Nat. Moscow; n.s. 31, p. 77.

Province of Irkutsk, Siberia.
35. CLETHRIONOMIYS RUTILUS LENAFNSIS, Klojuschew 1936. Trav. Inst. Sci. Biol. Tomsk, 2, p. 292.

Mouth of River Lena, Siberia.
36. CLETHRIONOMY'S RLTILU'S SALAIRICUS, Egorin 1936. Animadv. Syst. Mus. Tomsk, 3, p. 2.

Salair Mountain range between Ob and Kusnezk Steppe, Siberia.
37. CLETHRIONOMY'S MIKADO, Thomas 1905. Ahstr. Proc. Zool. Soc. London, p. 19 ; Proc. Zool. Soc. London, 1905, p. 352. Aoyama, Hokkaido, Japan.

## rufocants group

38. CLETHRIONOMY'S RLFOCANUS RUFOCANUS, Sundevall 1846. Ofv. K. Svenska Vetensk. Akad. Förh. p. 122.

Lappmark, Sweden.
Synonym: kamtschaticus, Lataste \& Poliakoff, 1884, Ann. Mus. Civ. St. Nat. Genoa, 20, p. 284.
sibirica, Poljakov, Mém. Imp. Ac. Sci. St. Petersb. 39, app. p. 56, 1881.
latastei, Allen, 1903, Bull. Amer. Mus. Nat. Hist. XlX, p. 145. Northern Kamtchatka.
bargusinensis, Turov, 1924, C. R. Acad. Sci. Leningrad, 110. Lake Baikal.
39. CLETHRIONOMIS RLFOCANUS IRKLTENSIS, Ognev 1924. Bull. Soc. Nat. Mloscou, p. 69.

Irkutsk Province, Siberia.
40. CLETHRIONOMIS RLFOCANL'S SHANSEIL'S, Thomas 1908. Proc. Zool. Soc. London, p. $6+3$.

100 miles north-west of Tai-Yuen-Fu, Shan-Si, N. China.
Synonym: inez, Thomas, 1908, Abstr. Proc. Zool. Soc. London, p. 45; Proc. Zool. Soc. London, p. 976. Shansi.
alcinus, Thomas, 19 Ir, Abstr. Proc. Zool. Soc. London; p. 50 ; Proc. Zool. Soc. London, p. 140. West Szechuan.
aquilus, G. M. Allen, 1912, Mem. Mus. Comp. Zool.Harvard, 40, p. 216. Hupeh.
eqa, Thomas, 1911 , Abstr. l'roc. Zool. Soc. London, p. 4; Proc. Zool. Soc. London, p. 175. Kansu.
nия, Thomas, 1910, Abstr. Proc. Zool. Soc. London, p. 26; Proc. Zool. Soc. London, p. 636. Shensi.
+1. CLETHIRIONOMIS RLFOCANU'S REGULL'S, Thomas 190\%. Proc, Zool. Soc. London, p. 863.

Min-gyong, 110 miles south-cast of Scoul, Korea.
42. CLETHRIONOMYS RLFOCANL'S SMITHHI, Thomas 1905. Amn. Mag. Nat. Hist. 7, XV, p. 493.

Kobe. Hondo, Japan.
Synonym: bedfordiae, Thomas, 1905, Abstr. Proc. Zool. Soc. London, p. I8; Proc. Zool. Soc. London, p. 353. Hokkaido.
andersmi, Thomas, 1905 , Abstr. Proc. Zool. Soc. London, p. IS; Proc. Zool. Soc. London, p. 354. Hondo.
migatae, Anderson, 1909, Ann. Mag. Nat. Hist. 8, IV, p. 317. Hondo.
43. CLETHRIONOMIS RCFOCANUS KURILENSIS, Tukuda
1932. Trans. Nat. Hist. Soc. Sapporo, t2, p. 206.

Paramashir Island, Kurile Island, Japan.
44. CLETHRIONOMIY'S RLFOCANUS OKIENSIS, Tokuda
1933. Armot. Zool. Jap. 13, p. 578.

Oki lslands, Japan.
45. CLETHRIONOMHS RLFOCANLSARSENJEVI, Dukelsky 1928. Zool. Anz 77, p. 40.

Ussuri Region, E. Siberia.
4\% (LLETHRIONOMIS RLFOCANLS KOLJMIENSIS, Ognev 1922. Biol. Isvestia, 1, p. IoS.

Village Beresorka, near town Sredne-Kolymsk, Russia.
47. CLFTHRJONOMIS RLFOXANC'S WOANESSEXSKII, Poljakov
1881. Nem. Imp. Ac. Sci. St. Petersb. 39, app. p. 56.

Kamtchatka.

## Nearctic Forms

According to Hinton, "among the American forms, E. gapperi (and its numerous subspecies), E. breticoudus, E. carolinensis, and E. idahoensis appear to represent the Old World glareolus group; E. caurinus, E. daztsoni, E. orca, E. ungaza, E. mazama, E. obscurus, E. occidentalis, and E. nivarius are, judging from the descriptions, possibly more or less modified members of the rutilus group; while E. phaeus and E. zerangeli appear to represent the nageri group. E. rufocamus does not seem to have any American equivalent unless indeed E. mazama and E. califormicus can be regarded as dwarfed representatives; possibly too E. protcus may betong to the same group."
4. CLETHRIONOMIS CALRINES, Bulle
i8gS. Proc. Biol. Soc. Washington, XII, p. 21.
Lund, Malaspina Inlet, British Columbia, Canada
+\% CLETHRIONOMIS PHAEl's, swarth
1011. U'niv. Calif, Puh, Zool. VII, p. 127.

Narten Arm, Beca de Quadra, Alaska.
5o. (LETHRIONOMI'S WRANGELI. Baley
ISy7. Proc. Biol. Soc. Washington, XI, p. 120.
Wrangel, Alaska.
52. (IETHRIONOAIS DAWSONI DAWGONI, Merram
tsss. Amer Nat. XXII, p. 650.
Finlayson River, a northern smare of the l, iard Raver, Iukon. Canada Synonym: alascensis, Niller, 1898 , Proc dcad Nat Sol. Philadelphia. p. 364 . St. Nichael, Nortom Sound, Alaska.
52. CLETHRIONOMYS DAWSONI INSULARIS, Heller
1910. Univ. Calif. Pub. Zool. V, p. 339.

Canoe Passage, Hawkins Island, Prince William Sound, Alaska.
53. CLETHRIONOMIYS ORCA, Merriam
1900. Proc. Washington Acad. Sci. 2, p. 24 .

Orca, Prince William Sound, Alaska.
54. CLETHRIONOMYS GAPPERI GAPPERI, Vigors
1830. Zool. Journ. V, p. 204.

Between York and Lake Simcoe, Ontario, Canada.
Synonym: fuscodorsalis, Allen, 1894 , Bull. Amer. Mus. Nat. Hist. VI, p. 103. Trousers Lake, New Brunswick.
55. CLETHRIONOMIY'S GAPPERI OCHRACEL'S, Miller
1894. Proc. Boston Soc. Nat. Hist. XXVI, p. 193.

Mount Washington, Coos County, New Hampshire.
56. CLETHRIONOMY'S GAPPERI RHOADSII, Stone
1893. Amer. Nat. XXVII, p. 55.

May's Landing, Atlantic County, New Jersey.
57. CLETHRIONOMIS GAPPERI LORINGI, Bailey
1897. Proc. Biol. Soc. Washington, XI, p. 125.

Portland, Traill County, N. Dakota.
58. CLETHRIONOMYS GAPPERI ATHABASCAE, Preble
1908. North Amer. Fauna, no. 27, p. 178.

Fort Smith, Slave River, Mackenzie, Canada.
59. CLETHRIONOMY'S GAPPERI GALEI, Merriam
1890. North Amer. Fauna, no. 4, p. 23.

Ward, Boulder County, Colorado.
60. CLETHRIONOMIS GAPPERI SATURATES, Rhoads
1894. Proc. Acad. Nat. Sci. Philadelphia, p. 28.

Nelson, British Columbia, Canada, on Kootenai River, 30 miles north of northern boundary of Washington.
61. CLETHRIONOMY'S BREVICAUDL'S, Merriam
1891. North Amer. Fauna, no. 5, p. 119.

3 miles north of Custer, Black Hills, Custer County, S. Dakota.
62. CLETHRIONOMIS CAROLINENSIS, Merriam
1888. Amer. Journ. Sci. 3, XXXVI, p. 460 .

Roan Mountain, Mitchell County, N. Carolina.
63. CLETHRIONOMY'S LINIITIS, Bailey
1913. Proc. Biol. Soc. Washington, XXVI, p. 133.

Willow Creek, Mogollon Mountains, Socorro County, New Mexico.
64. CLETHRIONOMYS LNGAVA, Bailey
1897. Proc. Biol. Soc. Washington, XI, p. 130.

Fort Chimo, Ungava, Canada.
65. CLETHRLONOMYS IDAHOENSIS, Merriam
1891. North Amer. Fauna, no. 5, p. 66.

Sawtooth Lake, Blaine County, Idaho.
66. CLETHRIONOMYS MAZAMIA, Merriam
1897. Proc. Biol. Soc. Washington, II, p. 7 s.

Crater Lake, Mount Mazama, Klamath County, Oregon.

6－CLETHRDONOMIS OBSCLRL心，Merriam
1897．Proc．Biol．Soc．Washington，II．p． 72.
Prospect，Upper Rogue River Valley，Jackson County，Oregon．
68．CLETHRIONOAIYS（AIIFORNICUS，Merriam
1．Sgo．North Amer．Fauna，no．4．p． 26.
Eureka，Humboldt County；California．
（\％）（LETHRIONOAIYS OCOIDENTALIS，Nerriam
IS90．North Amer．Fauna，No．4，p． 25.
Aberdeen，Chehalis County，Washington．
Synonym：pygmacus，Rhorads，1894．Proc．Acad．Nat．Sci．Philadelphia， p．28f．Pierce County，Washington．
70．LLETHRIONONIS＇NIVARITS，Barley 1897．Proc．Biol．Soc．Washington，11，p． 136.

Nount Ellinor，Olympic Mountams，Nason County，Washington．
71．CLETHRIONOXIY＇゙ PROTELさ，Bane
IS97．Proc．Brol．Soc．Washington，11，p． 137.
Hamilton Inlet，Labrador，Canada．
72．（LETHRIONOMIY ALBIVENTER，Hall \＆Gimore 1933．Univ．Calif．Pub．Zool．38，p． 398.

St．Lawrence Island，Behring Sica．
We have been unable to trace the references of the following forms，quoted by Vinogradov in his Rodents of U．S．S．R．：

A．Clethrionomy＇s rutihus uralensis，from Northern L＇ral Mlountains．
B．Clethrionomys rutilus rossicus，from Niddle Ural Mountains．
（C．Clethrionomys rutilus tusarinozi，from the Lower Yenesei River．
D．Clethrionomys rutilus dorogostaiskii，from Northern Amur district．
E．Clethrionomys rutilus hintoni，from South Ussuri．
The genus ．Veoaschizomys，not represented in the British Mluseum，which may be not more than a subgenus of Clethrionomys，will be noticed at the end of the subfamily．

## Genus 7．ASClIIZONIS：Miller

1． g 8．Aschzomss，Miller，Proc．Acad．Nat．Sci．Philadelphia，p． 369.
Type Species－Aschiomys lemmumus，Niller．
Raxge．－Described from Plover Bay，Behring Strait，North－east Siberia． Also known from mouth of River Lena，Xerhoiansk Mountains， and other localities in North－east Siberia．

Nlaber of Forms．－Onc．
（＇haractrrs．－Skull without special peculiarties，bullac relatively large； supraorhital ridges weak in the one skull examined．Palate posteriorly as in Clethrionomys．Cpper cheekteeth with narrow folds（as in （Yethrionomys，quite different from Alticola），M．1，M．2 normal；M． 3 complex， with anterior loop，three closed alternating triangles，and a posterior loop with a deep inner fold（in the one examined）．Lower teeth：M． 1 with posterior loop，
five closed triangles, and anterior loop; M. 2 normal; M. 3 more or less normal. Checkteeth, so far as known, rootless. External form considerably modified for life in cold climate; relatively thickset, with tail fully haired, and scarcely longer than hindfoot; fur thick; sole haired. Ear moderate.

Remarks.-Some doubt has existed as to the validity of this genus, which
for many years was known by one specimen only. Vinogradov refers it to Alticola, as a subgenus; but the very different general appearance of the cheekteeth seems to warrant the retention of the genus.

Forms seen: lemminus.

List of Named Foras

1. ASCHHZOMY'S LFMIMINNUS, Miller 18yS. Proc. Acad. Nat. Sci. Philadelphia, p. 369.

Kelsey Station, Plover Bay, Behring Strait, N.-E. Siberia.
Genus 8. EOTHENOMYS, Miller
1896. Eothenomys, Miller, North Amer. Fauna, no. 12, p. 45.

Type Species,-Arzicola melanogaster, Milne-Edwards.
Range.-Asia: Assam, Burma, Yunnan, Szechuan, Hupeh, Fokien, North Tongking, and Formosa.
Nubiber of Forms.-Twelve.
Characters.-Skull weak, with interorbital region relatively wide, supraorbital ridges not approaching each other. Squamosal crests quite well developed. Bullae lacking spongy tissue, as in Clethrionomys and allies. Infraorbital foramen normal. Posterior palate as in Clethrionomys. Cheekteeth evergrowing; in the type species, M.I is complex and abnormal, having an anterior loop, three alternating closed triangles, and a posterior loop consisting of two confluent triangles, so that the folds are three on the inner side, two on the outer side. $\mathbf{M . 2}$ has three more or less transverse loops, with two folds each side. M. 3 with three transverse loops, the posterior one the largest, sometimes with an extra posterior inner fold. In this tooth there may be three folds each side, or two each side, or two inner, three outer. Lower teeth M. 2 and M. 3 with three transverse loops; M.I with posterior loop, two transverse loops closed from each other, and finally a transverse loop which is confluent with the anterior loop. E. proditor has, for the genus, an aberrant dentition, with M.r upper and 31.2 more or less normal (reduced as compared with melanogaster), and $\mathrm{MI}_{.3}$ with a straight anterior loop, three triangles, and a long straight posterior loop, only two well-marked inner folds in this tooth; general appearance of M .3 Alticola-like. E, olitor has M.r apparently in three transverse loops, with only two folds each side, as in proditor; and M. 3 nearer to that of proditor than the type species, but with thrce folds each side. The lower molars of the last two species are not highly abnormal.

External form generalized; tail from a quarter to a half head and body length; ear not reduced; mammae o-2-4; plantar pads 6 .

## EOTHENOMIS

The species may be arranged in two groups typified by melanogaster and olitor based on the dental differences indicated above, of which the most important seems to be the pattern on M.i.

Forms seen: cachinus, colurmus, confinii, sleusis, fidelis, libonotus, melanogaster, miletus, mucronatus, olitor, proditor.

## List of Named Formis <br> melanogaster (Group

```
1. L:OTHENOMIS MELANOGASTER MELANOGASTER, Minne-Edwards 1872. Rech. Mamm. p. 284.
Moupin, W. Szechuan, China.
2. EOTHENOMIS NELANOGASTER CACHINLS, Thomas 1921. Journ. Bombay Nat. Hist. Soc. NXVII, p. 504.
Imaw Bum, Kachin Province, ג. Burma.
3. EOTHENOMIS MIELANOGASTER ELELSIS, Thomas
1911. Abstr. Proc. Zool. Soc. London, p. 50; Proc. Zool. Soc. London, p. 139. East of Chao-tung-fu, N. Yunnan.
4. EOTHENOMIS MELAへOGASTER ALRORA, G. M. Allen 1912. Mem. Mus. Comp. Zool. Harvard. Coll. 40. p. 211.
Changyangsheen, Hupeh, China.
5. FOTHENOAIS MELANOGAsTRR MILETLA, Thomas
1914. Ann. Mag. Nat. Hist. S, XIV, p. \(47+\).
so miles west of Yang-pi, W: Yuman.
6. EOTHEXOMIS MELANO(GASTER CONFINII, Hinton 1923. Ann. Mag, Nat. Hist. 9, XI, p. 151.
Kiu-chiang, Salween divide in latitude 28 N ., Yunnan.
7. EOTHENOXIYS MELANOGASTER COLLRNLS, Thomas 191r. Ann. Mag. Nat. Hist. 8, VHI, p. 209.
Kuatun, N.-TV. Fo-Kien, S. China.
Synonym: (?) bonzo, Cabrera, 1922, Bol. Aoc. Esp. Hist. Nat. 22, p. 168. Foochom.
8. EOTHENOMIS MELANOGASTER MLCRONATLS, G. M. AIfen
1912. Nem. Mus. Comp. Zool. Harvard Coll. 4o, p. 214.
Tachiao, W. Szechuan.
4. EOTHI NOMIS MFLANOGASTER i.IBONOTLS, Hinton
1923. Ann. May. Nat. Hist. 9, XI, p. 15 r.
Dreyi, Mıshmi Hills, Assam.
10. EOTHENOMIS FIDELIS, Hinton
1923. Ann. Mag. Nat. Hist. 9, Xl, p. 150.
West flank of Lichiang Range, Yuman.
```


## olitor Group

11. L.OTHENOMIYS PRODITOR, Henton
12. Ann. Mag. Nat. Hıst. D. XI. p. 152.

Lichiang Range N- WV: Yunnan. Lat. $2730^{\circ}$ N.
12. EOTHENOMYS OLITOR, Thomas

191 1. Abstr. Proc. Zool. Soc. London, p. 50; Proc. Zool. Soc. London, p. 139. Chao-tung-fu, Yunnan.

Genus 9. ANTELIOMYS, Miller

1896. Anteliomys, Miller, North Amer. Fauna, no. 12, p. 47.

Type Species,-Microtus chinensis, Thomas.
Range.-China: Szechuan and Yunnan.
Number of Forms.-Six.
Characters.-Like Eothenomys, but skull stronger, with supraorbital ridges tending to come together (though none examined have these ridges fused); M. 3 very complex, but M.I and M. 2 normal. Sometimes in M.i and M. 2 the alternating triangles are not fully closed. M. 3 very long, with four inner folds, and three or four outer ones (in one form the inner folds reduced to three). Lower cheekteeth: M1.2, M1.3 as Eothenomys; M.r with posterior loop, in front of which are two transverse loops, then an inner triangle opening into the rounded anterior loop. The palate is as in Clethrionomys, posteriorly.

Essential external characters as in Eothenomys, including the mammary formula; in custos the tail is rather less than half head and body length; in the other species it may be up to two-thirds this length.

Forms seen: chinensis, custos, tarquinius, zvardi.

```
                    List of Named Forms
    8. ANTELIOMYS CHINENSIS CHINENSIS, Thomas
1891. Ann. Mag. Nat. Hist. 6, VIII, p. 117.
    Kia-ting-fu, W. Szechuan, China.
    2. ANTELIOMY'S CHINENSIS TARQUINIUS, Thomas
1912. Ann. Mag. Nat. Hist. 8, IX, p. }517
    2 3 \text { miles south-east of Ta-tsien-lu, W. Szechuan.}
    3. AN'TELIONIYS WARDI, Thomas
1912. Ann. Mag. Nat. Hist. 8, IN, p. 516.
    Chamutong, N.-W. Yunnan, west of A-tun-tsi.
    4. ANTELIOMIS CLSTOS CUSTOS, Thomas
1912. Ann. Mag. Nat. Hist. 8, IN, p. 517.
    A-tun-si, N.-IV. Yunnan.
    5. ANTTELIOMYYS CLSTOS RLBELIUS, G. MI. Allen
1924. Amer. Mus. Nov. no. 133, p. }5
    Shu-shan, Li-chiang Range, Vunnan.
    6. ANTlLIOMYS CLSTOS HINTONI, Osgood
1932. Field. Mus. Nat. Hist. Pub. Zool. ser. XVIII, p. 321.
    Wushi, south-west of Ta-tsien-lu, Szechuan, China.
    19-Living Rodents-II
```

Genus 1o. AL'TlCOLA, Blanford
18S1. Alticola, Blanford, Journ. Asiat. Soc. Bengal, L, pt. 2, p. 96.
1901. Platycranius, Kascenko, Ann, Mus, Zool. Acad. Imp, Sci. St. Petersb. 6, p. Ig9. (. Microtus strelzorti, K゙ascenko.) Valid as a subgenus.
'Type Species.-Araicola stolicakanus, Blanford.
Rangf.--High mountains of Central Asia; Russian Turkestan (Hissar Mlountains), kashmir, south in India to Kumaon; 'Tibet, Chinese 'Turkestan, Southern Siberia, to Lake Baikal, Semipalatinsk, Sayan Mountains, Altai Mlountains, Tianshan, Djarkent; Mlongolia.

Number of Forms.-Twenty-five approximately.
Characters.-Skull relatively weak, with supraorbital ridges wide apart in the adult, and squamosal crests usually poorly developed. 1 nfraorbital foramen and zygomatic plate normal for subfamily. Palate posteriorly essentially as in Clctlvionomys. Palatal foramina usually long and relatively well open, particularly in the subgenus Platycranius. Bullae large, well inflated, lacking spongy tissue. Upper checkteeth: M.i, 11.2 normal; in the majority of the species, $\mathrm{M}_{3} 3$ has a straight anterior loop followed by three triangles, which are often not fully closed, and a long straight posterior loop with a faint or moderate indentation in its inner side. The folds of the cheekteeth are always noticeably wide in this genus, and contain little cement. In the type species and allies (stolicakames group) the third molar is more reduced, with only two clear triangles behind the anterior loop, the usual posteroexternal one vestigial, and the posterior loop short and straight; in these species there are only two elear inner folds. 'There are several slight variations in the pattern of this tooth, in the different species. In Platycranius, so far as seen, M1. 3 has two inner folds, and the posterior loop is much shortened, but the second outer triangle is not reduced. Lower cheekteeth: 11.3 with three transverse loops; M. 2 with posterior loop, four alternating closed triangles; M. 1 with posterior loop, five alternating triangles, the first four after the posterior loop closed, the fifth (anterointernal) merged into the anterior loop.

Nlammat 2-2-8. Plantar pads 6 . External form not modified for fossorial life. Fur often extremely thick. Sole usually partly haired posteriorly. 'Tail well haired, in all but argurus, blanfordi, roylei, montosa of those seen the seales are concealed; ear not reduced. The tail varies from about half head and hody length to little longer than hindfoot.

Platycranits is proposed as a subgenus for those species in which the braincase and frontals are abnormally flattened. The infraorbital foramen appears in these forms rather larger than normal. This formation appears to be a modification for life under rocks, and as already noted, parallels the subgenus Gilisiscus of the African genus of Dormice, Graphiurus.

The species of subgenus. Alticola may be arranged in two groups characterized by the formation of M.3, as already indicated; these species have been keyed by Hinton, Mlonograph of Toles and Lemmings, p. 30h. A few species not ineluded in this key, and not represented in the British Museum, appear according to

Vinogradov's figures to be distinct from either the roylei or stoliczkanus groups; macrotis, with an unusually short tail according to descriptions, and with a simpler M. 3 than is known in the species represented in London (this lacking closed triangles); and altaica, in which the first triangle of M. 3 is not merged in the anterior loop. These types are figured by Vinogrador, Rodents of U.S.S.R.

Forms seen: argurns, blanfordi, "cricetulus," "imitator," lahulius, lama, montosa, phasma, roylei, semicamus, stracheyi, strelzowi, subluteus, worthingtoni.

List of Named Forms<br>Subgenus Alticola, Blanford<br>roylei Group

1. ALTICOLA ARGENTATA, Severtzow
2. Sapiski Turkest. Otdela Obsochvestva Lubitelei Estestvosnania, Antropologii, Ethnograp. vol. I, pp. 63-64.

Alichur, Pamir Mountains.
Synonym: argurus, Thomas, Ann. Nag. Nat. Hist. 8, 111, p. 264. 1909. Hissar Mountains, 100 miles east of Samarkand.
2. ALTICOLA BLANFORDI BLANFORDI, Scully 1880. Ann. Mag. Nat. Hist. 5, V1, p. 399.

Gilgit, N. India, at altitudes between 9,000 and 10,000 feet.
3. ALTICOLA BLANFORDI LAHLLIUS, Hinton
1926. Monogr. Voles and Lemmings, I, p. 309.

Kyelang, Lahul.
4. Alticola roylei roylei, Gray
1842. Ann. Mag. Nat. Hist. X, p. 265.

Kumaon, N. India.
5. ALTiCOLA ROYLEI CAUTUS, Hinton
1926. Monogr. Voles and Lemmings, 1, p. 313.

Rahla, Kulu Valley, Lahul.
6. ALTiCOLA ALbiCaUdA, True
1894. Proc. U.S. Nat. Mus. XVII, p. 12.

Braldu Valley, Baltistan.
7. AL'TICOLA MONTOSA, True
1894. Proc. U.S. Nat. Mus. XVII, p. if.

Central Kashmir.
Synonym: imitator, Bonhote, 1905, Ann. Mag. Nat. Hist. 7, XiV, p. 197. Kashmir.
8. ALTiCOLA GLACIALIS, Miller
1913. Proc. Biol. Soc. Washington, XXVI, p. 197.

Chogo Lungma Glacier, Baltistan.
(). Alticola phasma, Miller
1912. Proc. Biol. Soc. Washington, XXVV, p. 59.

East side of Karakorum Mountains, Chinese Turkestan.

## ALTICOLA

10. AI.TICOLA WORTHINGTONI WORTIIINGTONI, Miller
11. Ann. Mag. Nat. Hist. 7, XVII, p. 372.

Tian-Shan Mountains (Koksu).
Synonym: gracilis, Kashkarov, 1923, Trans, Sci. Soc. Turkest. p. 203. Tianshan.
longicauda, K'ashkarov, 1923, Trans. Sci. Soc. 'Turkest. p. 203.
zillosa, Kashkarov, 1923, Trans. Sci. Soc. Turkest. p. 203.
11. ALTHCOLA WORTHINGTONI ALBLLTELS, Thomas
1914. Ann. Mag. Nat. Hist. 8, XIll, p. 570.

Djarkent, Semiretchensk, Central Asia.
12. ALTICOLA WORTHINGTONI SEMICANL'S, G. M. Allen 1924. Amer. Nus. Nov, 133, p. 6.

Sain Noin Khan, Nongolia.
13. ALTICOLA WORTHINGTONI ALLENI, Argyropulo
1933. Zeitschr. für Säugetierk. S, p. 180.
N. Mongolia: Kentej, fo km. Östlich Urga (Ulan-Bator-Choto).
stolicakanus Group
4. ALTICOLA STOLICZKANLS, Blanford
1875. Journ. Asiat. Soc. Bengal, 44, pt. 2, p. 107.

Kuenlun Mountams, in N. Ladak.
15. ALTICOLA STRACHEYI, Thomas
1880. Ann. Mag. Nat. Hist. 5, VI, p. 332.
"Kumaon" = Ladak.
Synonym: cricetulus, Miller, iS99, Proc. Acad. Nat. Sci. Philadelphia, p. 294. 'Tso-Kyun, Ladak.
16. ALTICOLA LAAIA, Barrett-Hamilton
1900. Proc. Zool. Soc. London, p. 196.

25 miles south-east of Lake Arucho, W. Tibet.
17. ALTICOLA ACROPHILLS, Willer
i899. Proc. Acad. Nat. Sci. Philadelphia, p. 296.
Ladak side of Karakorum Pass.

## Not allocated to Group

1א. ALTICOLA ALTAICA, Vmogradov
1933. Trav. L'Inst. Zool. Acad. Sci. p. 63.

Siberian Altai, Ivanorskie Belj, near Village Riddersk, of U'st-Kamenogorsk subdistrict.
19. ALTICOLA MACROTIS, Radde
1862. Reise in den Süden von Ost-hiberien, I, p. 196. Eastern Sayan Mountains, Siberia.
20. AITICOI.A VINOGRADOUI. Rasorenosa
1933. Bull. Soc. Nat. Moscou. Sect. Biol. 42, F. 79. Siberia; Altai Mountains.
21. ALTICOLA (る) NANACHANICUS, Satumm
1903. Ann. Mus. St. Petersb. VII, p. 575.

Scharogol-dschm (Nan-shan), Central Asıa.
Described as near blanfordi.)
22. ALTICOLA (?) KAZNAKOVI, Satunin
1903. Ann. Mus. St. Petersb. VII, p. 58 r.

Central Asia, River Chi-tschju (Oberlauf des Blauen Flusses).
(According to Vinogradov, Rodents of U.S.S.R., belongs to the genus Pitymys).

Subgenus Platycranius, Kastschenko
23. ALTICOLA ALLIARIUS, Pallas
1779. Nov. Sp. Quad. Glir. Ord. p. 252.

Neighbourhood of Jenisseisk, Jenisseisk Province, Siberia.
24. ALTICOLA STRELZOWI STRELZOW], Kastschenko
1900. Bull. Imp. Tomsk. Univ. 16, p. 50.

Altai Mountains, Siberia.
25. ALTICOLA STRELZOWI DESERTORUM, Kastschenko 1901. Ann. Mus. Zool. Acad. Sci. Petersb. 6, p. 206.

Neighbourhood of Jenisseisk, Jenisseisk Province, Siberia.

## Genus 11. HYPERACRIUS, Miller

1896. Hyperacrius, Miller, North Amer. Fauna, no. 12, p. 54.

Type Species.-Arzicola fertilis, True.
Range.-North India: Kashmir and Punjab.
Number of Formis.-Four.
Characters.-Externally rather highly modified for underground life; fur thick; ears reduced; sole hairy posteriorly; foreclaws considerably though not excessively lengthened; tail short, well haired. Mammae $\mathrm{J}-2=6$. Plantar pads 5 .

Cheekteeth in general appearance essentially as in Alticola; M. 3 reduced, with two folds each side, the posteroexternal one very wide; the posterior loop very short. Lower molars: M.2 and M. 3 each in three transverse loops, without closed triangles; M.i with posterior loop, three triangles, not fully closed, in front of which are two more confluent triangles opening into the anterior loop. Skull differing from Alticola and allies in the bullae, which are small and reduced (but lacking spongy tissue internally), and the temporal ridges which fuse in the adult to form a median interorbital crest. Palatal foramina narrowed, slitlike; rostrum relatively long, and incisors slightly pro-odont; squamosal crests strong; skull more angular than in Alticola.

Forms seen: aitchisoni, brachelix, fertilis, woynnei.
List of Named Formis

1. HYPERACRIC'S FERTILIS FERTILIS, True
2. Proc. U.S. Nat. Mus. NVII, p. 10.

Pir Panjal Mountains, Kashmir.
2. HYPERACRILS FERTILIS BRACHELIX, Miller
1899. Proc. Acad. Nat. Sci. Philadelphia, p. 290.

Nagmarg, Ка ashmir.
3. HYPERACRILTS AITCHINONI, Niller
1897. Proc. Biol. Soc. Washington, XI, p. IfI. Gulmerg, Kashmir.
4. HYPERACRILS WYNNEI, Blanford

18So. Journ. Asiat. Soc. Bengal, 49, pt. 2, p. 244. Nurree, Punjab.

Genus 12. PIIENACOMYS, Nerriam
1889. Phenacomys, Merriam, North Amer. Fauna, no. 2, p. 28.
1915. Arborinius, 'Taylor, Proc. Cal. Acad. Sci. 4, V, p. i19. (Phenacomys longicandus, Truc.)

Type Species.-Phenacomys intermedius, Merriam.
Range.-"In scattered localities through practically the whole of Upper Canadian and Hudsonian zones of Canada . . . apparently absent from Alaska; in United States . . . in Rocky Mountain system as far south as Northern New Nexico, on boreal summits of isolated mountain ranges of the Great Basin, and south in Sierra Nevada at least to the Yosemite Park, California; also in the coastal belt of Oregon and North California" (Howell). Good range maps published by Howell, and in Anthony, Field Book North American Nammals, 1928, p. 407. In Canada, extending east to Labrador; in U.S.A., to Montana, Wyoming, and Colorado.

Number of Forns.-Ten. The genus is revised by Howell, North Amer. Fauna, no. 48, 1926.
Characters.-An isolated genus, with rooted cheekteeth, the pattern of which in some respects appears unique in Microti; agreeing with Microtus rather than Clethrionomy's in the formation of the posterior palate.
"Skull with the ridges widely separated in the adult" (Hinton); as figured by Ilowell this character seems constant, though one skull figured of $P$. mackenziei appears to have these ridges approaching each other. Bullae medium, without internal spongy tissue (Hinton). Palate of Microtus type posteriorly, but "posterolateral bridges usually ahsent, the posterior median septum short and horizontal, and the posterolateral pits very shallow."

Cheekteeth rooted, M.i, M. 2 apparently normal; M. 3 with only two inner folds (and two outer ones). Lower cheekteeth Synaptomys-like in general appearance owing to the fact that the inner folds are extremely deep, and the outer ones very shallow. M. 3 almost in three transverse loops. N1.2 is similar, with the outer triangles very reduced. M.I with three inner, two outer triangles, a posterior loop, and an anterior loop, the latter variable in structure. "M.I (lower) is a complex tooth with four or five outer, and six inner salient angles, consisting of a posterior loop followed by from three to seven substantially closed triangles, and terminated by an anterior loop . . . the interest of this tooth in Phenacomys lies in the unusual variability which it displays, from species to species, in the number of closed triangles; in some species only the three posterior are closed . . . in other species, four, five, six or even seven triangles
may be closed, the tooth resembling that of genera like Microtus. Among other voles (Mimomys (fossil), Arzicola, Pitymys, Microtus, etc.) with the exception of Orthriomys and Herpetomys, the possession by M.I of three closed triangles on the one hand, or of four or more on the other, has been a distinction of generic importance since Pliocene times at least; but in Phenacomys both types of M. 1 are associated, and the distinction between them, if it be of systematic value at all, is of no more than specific importance" (Hinton).

Mammae $2-2=8$ (Howell), but evidently may vary.
Plantar pads 6. External form in all examined not specially modified, relatively short-tailed; but in some species, as $P$. longicaudus and albipes, the tail is long. The habits are said in these species to be arboreal.

I have been able to examine only very few specimens of this genus.
Forms secn: "latimanus," ungaza.
The forms are arranged by Howell in four groups:
internedius group, characterized by short tail, and face without distinct yellow wash; Western: British Columbia to Montana and California;
ungaza group, characterized by distinct yellow coloration of face; Canada east of Rocky Mountains, to Labrador;
albipes group, characterized by long tail and sooty nose, and long weak skull, found in "humid coastal forests of Northern California and Oregon"; and
longicaudus group, characterized by long tail and arboreal habits; Northern California and Oregon.

The tail is more hairy than in other species, according to Howell; and the incisors are decurved.

## List of Named Forms <br> intermedius Group

1. PHENACOMYS INTERMEDIUS INTERMEDIUS, Merriam
2. North Amer. Fauna, no. 2, p. 32.

Basaltic plateau about 20 miles north-north-west of Kamloops, British Columbia, Canada.
Synonym: orophilus, Merriam, 1891 , North Amer. Fauna, no. 5, p. 65.
Timber Creek, Lemhi Mountains, Lemhi County, Idaho. truei, Allen, 1894, Bull. Amer. Mus, Nat. Hist. VI, p. 33 r.

Laramie County, Wyoming.
oramontis, Rhoads, 1895 , Amer. Nat. vol. XXIX. p. 94r.
Mount Baker Range, British Columbia.
preblei, Merriam, 1897 , Proc. Biol. Soc. Washington, $\mathbb{N I}$,
p. 45. Twin Peak, Boulder County, Colorado.
constablei, Allen, 1899 , Bull. Amer. Mus. Nat. Hist. XII,
p. 4. Telegraph Creek, British Columbia.
2. PHENACOMFY INTI:RMIEDIU'S CELSC'S, Howell
1923. Proc. Biol. Soc. Washington, XXXVI, p. 158.

Muir Meadow, Tuolumne Meadows, Yosemite National Park, California.
3. PIENACOMY'S INTERMEDIL'S LEFIS, Howell
1923. Proc. Biol. Soc. Washington, XXXVI, p. 157.

Saint Mary's Lake, Teton County, Montana.
4. PHENACOMIS INTERMEDIUS OLYMPICLS, Ellint
1899. Field. Columb, Mus. publ. 30, zool. ser. vol. 1, p. 225.

Happy Lake, Olympic Mountains, Challam County, W'ashington.
synonym: pumilus, Elliot, 1899 , Field Col. Nus. publ. 30, zool. ser. i, 226. Same locality.
ungata Group
5. PHENACOMIS LNGAVA LNGAVA, Merriam
1889. North Amer. Fauna, no. 2, p. 35.

Fort Chimo, Ungava, Canada.
Synonym: celatus, Merriam, 1889, North Amer. Fauna, no. 2, p. 33. Godbout, Quebec.
latimanus, Merrian?, 889 , North Amer. Fauna, no. 2, p. 34. Fort Chimo, Ungava.
6. PHENACOMIY LNGAVA CRASSLS, Bangs
1900. Proc. New Eng. Zool. Club, 2, p. 39.

Rigolet, Hamiton Inlet, Labrador, Canada.
7. PHENACONIS MACKENZII, Preble
1902. Proc. Biol. Soc. Washington, NVT, p. 18z.

Fort Smith, Slave River, Mackenzie, Canada,
albipes Group
8. PHENACONIS ALBIPES, Mertam

Igor. Proc. Biol. Soc. Washington, XIV, p. 125.
Redwoods, near Arcata, Humboldt Bay, Humboldt County, Calıfornia. longicaudus Group
9. PHENACOMY'S LONGICALDL'S, True
1890. Proc. U.S. Nat. Mus. XIII, p. 303.

Marshfield, Coos County, Oregon,
10. PHENACOMIS SILVICOLA, Howell
1921. Journ. Namm. Baltimore, 2, p. 98.

5 miles south-east of Tillamook, Tillamook County, Oregon.

Genus 13. DOLOMIYS, Nehring
i898. Dolomys, Nehring, Zool. Anz. 21, p. 13. (First recognized as a living genus by Hinton, 1925, Proc. Linn. Soc. London, $1924-25$, p. 36.)

Type Specife.-Dolomys milleri, Nehring (a fossil species).
Range.-South-eastern Europe; known from Montenegro, Greece, Yugoslavia.
Nember of Forms.-Three are deseribed up to 193 6.
Characters.-Skull with the interorbital ridges fusing in adult; squamosal crests moderate; jugal rather broad in the few seen. Bullae very large and inflated; mastoids not much inflated. Palate approaching that of Microtus in structure, but the median septum is short and broad. Upper incisors broad, faintly grooved. Cheektecth rooted in adult. M.i, M. 2 normal; $\mathrm{Ml}_{3}$; with anterior loop, three triangles of which the anteroexternal is confluent with
the anterior loop, and very small, and a large closed off posterior loop. M.I lower with five closed triangles between the terminal loops; M. 2, M. 3 normal.

Plantar pads 6 . Tail long, more than half length head and body, not well haired; ear relatively large ; digits normal; sole mostly naked.

Forms seen: bogdanozi, marakozici, korabensis (D. grabenscikovi korabensis, Martino, 1937, from Y'ugoslavia), preniensis (D. bogdanozi preniensis, Martino, 1939).

## List of Named Formis

1. DOLOMYS BOGDANOVI BOGDANOVI, Martino
2. Ann. Nag. Nat. Hist. 9, IX, p. 413 .

Cetinje, Montenegro.
2. DOLOMYS BOGDANOVI MARAKOVICI, Bolkay
1924. Biol. Hung. 1, fasc. 2, p. 4.

Bjelasnica Mountains, Bosnia.
3. DOLOMYS GRABENSCIKOVI, Martino
1935. Zap. Russk. Inst. Belgrad, 10, p. 84.

Bistra Mountains, Maccdonia.

## Genus 14. OR'THRIOMYS, Merriam

1898. Orthrioxrys, Merriam, Proc. Biol. Soc. Washington, XII, p. io6.
'Type Species.-Microtus umbrosus, Merriam.
Range.-Mount Zempoaltepec, Oaxaca, Mexico.
Number of Forms.-One.
Characters.-Skull with supraorbital ridges fused to form median crest in adult. Bullae relatively small. Palate posteriorly as in Microtus. Cheekteeth evergrowing; M.1, M. 2 normal in elements; M. 3 with the inner folds reduced to two, the posterior loop moderate. Lower cheekteeth: in both skulls examined M.r has three closed triangles in front of the posterior loop; in front of these the fourth and fifth triangles are nearly confluent; the anterior loop is reduced. According to Hinton, the number of closed triangles in N.i lower varies individually in this genus, between three and five (the same peculiarity applying to the related Herpetomys). M. 2 with posterior loop, two closed triangles, and an anterior loop composed of two confluent triangles. M. 3 with posterior loop, two closed triangles, and anterior loop.

Tail about half head and body length. Ear relatively large. Fur soft. Plantar pads 5 (a rudimentary sixth may be present). Nammae $2-0=4$.

Forms seen: umbrosus.
List of Named Forms

1. ORTHRIOMIS UMBROSUS, Merriam
${ }^{1} 898$. Proc. Biol. Soc. Washington, XIII, p. 107.
Mount Zempoaltepec, Oaxaca, Mexico.

## Genus 15. HERPETOMIS, Merriam

rikg'. Herpetonys, Merriam, Proc. Biol. Soc. Washington, XII, p. 107.
Type Species-Microtus guatemalensis, Merriam.
Range.- \Iountains of Guatemala.
Number of Forms.- One.
Characters.-Like Orthriomys, but bullae larger, not reduced; M. 3 as in normal Microtus, in the one skull seen, with three inner folds; $\lambda 1.2$ lower evidently normal (posterior loop, four alternating triangles) and the tail shortened, about a third head and body length. Nammae $2-1=6$, the inguinal pair functionless.

Forms seen: guatemalensis.
List of Named Formis

1. HFRPETOMIS GUATEMALENSIS, Merriam

1 Sos. Proc. Biol. Soc. Washington, XII, p. 108.
Todos Santos, Huehuetenango, Guatemala.
Genus i6. MHCROTUS, Schrank
1798. Microte's, Schrank, Fauna Boica, vol. 1, abth. i, p. 72.

1S94. Tetramerodon, Rhoads, Proc. Acad. Nat. Sci. Philadelphea, p. 282. (Arvicola tetramerus, Rhoads.)
1914. Alexandromys, Oqnev, Moskva Dnev. Zool. otd. obsc. liub. jest. T. ii, p. Iog. (. Hicrotus pelliceus, Thomas.)
1933. Somerionsc, Argyropulo, Zeitschr. für Süugetierk, S, p. ISo. (Wicrotus socialis, Pallas.)
1908. Chonomys, Miller, Ann. Mag. Nat. Ilist. 8, 1, p. 97. (Arricola mizalis, Martins.) 1894. AvLacomys, Rhoads, Amer. Nat. XXVIII, p. 18z. (Aulacomys arziculoides, Rhoads.) Valid as a subgenus.
1901. Stevocravits, Kastschenko, Ann. Mus. St. Petersb, vi, p. 167. (Microtus slozzozci, Poljak.) Valid as a subgenus.
1557. Chilotis, Baird, Namm. North Amer. p. 5r6. (Arvicola oregoni, Bachman.) Valid as a subgenus.

Type Species.-Microtus terrestris, Schrank=Mus arvalis, Pallas.
Range.-Holarctic region, from England, Spain, and Norway to Japan and the Pacific coast, and from Alaska and Lower California to the Atlantic coast of North America. North into the Arctic region of both hemispheres. South to Spain, Northern Italy, Greece, Asia Minor, Syria, Palestine; Libya; Transcaucasia, Persia, Russian Turkestan, Chinese 'Turkestan, Szechuan, Yunnan, Eastern China north of the Yangtsekiang; and in America to Southern Mexico.

In Western Lurope, the agrestis group ranges in England, Scotland, the Ilebrides, Norway, Sweden, Denmark, Germany, France, Spain, North Italy, Fintand, Estonia, Iugoslavia; the arralis group in Ireland (fossil), ${ }^{1}$ the Orkneys, Channel Islands, Spain, France, Belgium, Switzerland, North Italy, Germany,
${ }^{1}$ 1', rt of one skull only has been found fossil in an lrish cave; but remains of Lemmings are abundant there.

Hungary, Serbia, Roumania, Bulgaria, Greece, but not Scandinavia; the oeconomus group in Norway, Sweden, Finland, Holland, Germany, and Hungary; and the nivalis group from Spain, Switzerland, France, North Italy, South Germany, Transylvania, Yugoslavia; also the guentheri group is represented in Greece and perhaps Spain. In South-west Asia, arvalis is known from Asia Minor; socialis from Persia; roberti from Asia Minor; the nivalis group from Asia Minor, Syria, and Palestine; and the guentheri group from Asia Minor, Palestine, and North Africa (Libya). In the U.S.S.R., the oeconomus group ranges through North and Central European part, south to Kiev and Voronej, the Ural Mountains, and the whole of Siberia (northern and central) to the Pacific coast; also in Semirechyia and the Amur district; the agrestis group has a similar range to the last in European Russia, and also occurs in the Yenesei Valley, and east to Lake Baikal; the arzalis group ranges through the European part, except extreme north, and south to Crimea, Caucasus; Ural; Kazakstan, and Southern Turkestan; the Altai; also represented in Transbaikalia; the calamorum-michnoi group is from Transbaikalia, Amur, Ussuri, etc.; middendorffi is from North and Mid-Ural, Ob and Yenesei regions; the gregalis group ranges from the Ural more or less throughout Northern Siberia; also North Kazakstan, Semirechyia, the Altai, Transbaikalia, and Amur region; socialis is known from Crimea, Ukraine, Caucasus, Lower Ural, North Caspian region, Kopet-Dag, Aral region, Fergana, Semirechyia; roberti group, and nizalis group, Caucasus (details compiled from Vinogradov). In China, agrestis is known from Mongolia, the arzalis group, from Mongolia, Kansu, Korea, Japan and the Kuriles; gregalis group from Mongolia and Chinese Turkestan; calamorum group from Manchuria, Kiangsu, Shensi, and Yunnan; millicens from Szechuan; and mandarimus group from Shansi, Mongolia, and Chihli. In America, the pennsylvanicus group ranges from Labrador and North Carolina westwards more or less continuously apparently to Alberta, Montana, Colorado, and New Mexico; a form is described from Admiralty Island, Alaska; the montanus group is western, from Arizona and Wyoming to California and Southern British Columbia; califormicus group is Californian; operarius group, from Alaska and Mackenzie; abbreviatus group-Alaska; tozonsendi group, from coastal Oregon, California, British Columbia; longicaudus group, from Washington to South Dakota, and south to California and Arizona; forms also named from islands off Alaska; mexicamus group from Arizona, Texas, and Mexico; wanthognathus group from Central Alberta north to Arctic coast, west to Central Alaska; chrotorrhinus group from New llampshire, New Brunswick, Quebec, Labrador; richardsoni group from Washington, British Columbia, Idaho, Oregon, Alberta, Wyoming; and oregoni group from Oregon, California, Washington, British Columbia.

> Nuaber of Forms. - I have listed two hundred and thirty-eight. A few of these are doubtful, or may belong to other genera.

One is named from Formosa.
Characters.-Compared with more normal Auridae, the skull is much more angular, and more specialized by ridges for jaw-muscle

## MICROTUS

attachment. 'The rostrum is rather short; the frontals considerably constricted. The supraorbital ridges fuse in the adult to form a median interorbital crest, "sooner or later" (llinton). Some forms, as noted below, appear to have this


Fig. 45. Microtus agrestis agrestis, Linnaeus.
B.M. No. 98.5.2.9, कै; $2 \frac{1}{2}$.


Fig. $\ddagger$ 6. Micrutu's agrestis agrestis, Linnacus. B.M. No. 98.5.2.9, of; 21 .
specialization taking place very late in life, or perhaps even not at all. The squamosals have more or less well-developed crests. The interparictal is not reduced, and may be large. 'the braincase is broad.

I have seen no skulls of members of the guentheri group with the median crest developed. Hinton, writing of M. mustersi, states that they probably do so, and that the allicd species philistinus and lydius are based on sub-adult material. In socialis, according to Vinogradov, they do not do so, "even in old specimens." In roberti and nizalis, the supraorbital ridges are weak; very few skulls have been examined in which a median crest is present; but ultimately the ridges in these forms do fuse, as I have seen specimens of both with them actually fused. It is important to note this, as Argyropulo in his key to Palaearctic subgenera of Microtus states that the ridges in these forms do not fuse (referring to subgenus "Chionomys").


Fig. 47. Microtus agrestis agrestis, Linnaeus. B.M. No. 98.5.2.9, of; $\times 12$.

The zygoma is robust. The zygomatic plate is very broad, with the superior border strongly ridged, and is strongly tilted upwards. The infraorbital foramen is much narrowed. The bullae are never reduced. They are usually relatively large, and there is a tendency towards considerable inflation in the guentheri group, and in socialis. These two groups have been referred to a special subgenus Sumeriomys by Argyropulo, based largely on this, and on the fact that the median interorbital crest is not developed (see remarks above); but the guentheri group seem to be sufficiently near the arzalis group for this division not to be maintained. According to Argyropulo, also the plantar pads are reduced to five in his Sumeriomy; but this character is not unknown elsewhere within the genus.

The palatal foramina are medium in length as a rule, and often narrowed. The palate terminates posterjorly in a sloping median ridge and two lateral pits, the "median spinous process always present, converted into a sloping septum between the posterolateral pits, the inner borders of these pits always continuous with the tip or sides of the median process" (Hinton). 'This arrangement is least typical in the highly aberrant Chinese species, millicens, the peculiarities of which will be dealt with below. The incisors are broad and relatively heavy; they are plain except in rare individual cases; l once picked up a dead M. agrestis in my garden which had grooved upper incisors, which is I believe very rare.

Cheekteeth evergrowing. The normal dentition, as typified by arvalis, is as follows. M. has an anterior loop, and four alternating closed triangles. N. 2 has an anterior loop, and three closed triangles, two external, one internal. N. 3 has an anterior loop, three alternating triangles, as in N .2 , and then a posterior loop, the inner side of which is cut by a deep re-entrant fold; this tooth is longer than M.2, and has three clear inner re-entrant folds. The teeth are always subject to slight individual variations, but this pattern is common to most normal members of the genus both in the Old World and, as far as l can see from Bailey's figures, the American species, except those noted below.

In M. agrestis, and the penmsylvanicus group, M. 2 has a clear but small posterointernal extra closed triangle. (There may be traces of this formation in M...) While this character clifferentiates between the agrestis and arvalis groups clearly in the northem Palaearctic, some species, such as the southern socialis, may have the character in $\mathrm{N}, 2$ present or absent.
\1. 3 is normal, as a rule, in most of the species, but in two Old World species it is very complex; and in three groups it is simplified. The complex types are middendorffi (of which I have seen few), which has an extra pair of closed triangles hehind the normal ones, and four imner folds; and roberti, which has in this tooth a straight anterior fold, five closed triangles, and a long posterior loop with a slight re-entrant fold in it. M. gud also, judging by B.M. material (few), has a complex M.3.

In the American chrotorrhinus, M. 3 is also said to have five closed triangles.
'This tooth is reduced in the miralis group, having only two inner folds. Similar reduction has taken place in the Chinese mandarinus group, the posterior loop heing very short in these forms (johumnes and pullus).

In millicens, a little-known species from Szechuan which differs from all other Microtus examined in its unusually flat skull (suggestive of Platycranins), N .3 is apparently variable in form, three specimens having a reduced posterior loop, and only two re-entrant folds, and two from the same locality evidently taken at the same time having quite a normal $\mathrm{M}_{3}$, with three inner folds.

I few seen of the American mexicamus have this tooth rather reduced posteriorly; and the tooth is said to he not quite normal in the American abbreziatus group.
lower teeth. 'The typical pattern is: M. 1 with posterior loop, five alternating triangles, and an anterior loop, with a fold in it each side. In some forms, these
folds may be obsoletc. In a few specimens seen of M. transcaspicus ilaeus, the above-mentioned folds meet, so that there are seven closed triangles in this tooth. N1.2 with posterior loop and four alternating closed triangles. N. 3 with three transverse loops (normally no closed triangles); the inner folds deep, the outer ones usually weak. This pattern is normally very constant through the genus, as far as seen, with the following exceptions: in the oeconomus group, and the American operarius, there are only four closed triangles to M. I lower, the fifth (anterointernal) triangle is confluent with the anterior loop, which is reduccd. While this character differentiates the oeconomus Voles from other northern species, it is not a constant character in those forms referred by Russian authors to Chionomys; the anterointernal triangle in roberti and in nizalis may be either confluent with the anterior loop, or closed off from it. In millicens, there are only four closed triangles in M. i lower.

External characters: mammae (so far as known), $2-2=8$ except in the mexicanus group, in which they are reduced to $1-1=4$. The plantar tubercles are normally six, but may be reduced to five in subgenus Aulacomys, subgenus Chilotus, and the socialis group, also according to Argyropulo in the guentheri group. Bailey states that in the American species there are glands present on the hips or flanks. Ears not specially reduced, except as noted below. Tail usually short, considerably less than head and body length, usually less than half this measurement, but not excessively reduced; well haired. Sole not heavily haired as a rule. Digits not abnormal. Claws in the majority not tending to become enlarged. W. michnoi may be noted as a large species, with a long tail (about half head and body length). M. nivalis and allies also have a long tail (about half head and body length), and rather large ears. In 11. roberti, the tail may approach three-quarters head and body length, and is sometimes poorly haired for a member of this group. M. mordax (longicaudatus) group, and $M$. tozinsendi group have a long tail, among the American species. The claws tend to become rather prominent in the subgenus Stenocranius; and they may be considerably enlarged in the mandarimus group, which combined with its reduced third molar seems to blend into the genus Lasiopodomys, and make it not easy to retain the latter. In this group (mandarimus), the ear is rather strongly reduced. In $M$. philistinus the ear is more reduced than usual. M. middendorff has a shorter tail than is normal, as have the abbreviatus group from America, according to Bailey. Other long-tailed types are members of the subgenus Aulacomys (rather large forms), and M. millicens.

Groups and Subgenera: Hinton has not yet given his views as to which subgenera should be retained in this genus.

Stenocravius is currently accepted for the gregalis group, which have a normal dentition, but an unusually narrowed skull; there is a sharp median crest formed; the whole skull appears excessively narrowed throughout.

Chilotus, originally proposed for the American oregonigroup, is given gencric rank by Hinton, who quotes species from Asia (socialis group?) and North America. It is given subgeneric rank only by American authors. Its characters appear to me to be duplicated by one or other of the species of the genus, and I do not see at the moment how it is to be retained as a full genus. The ears
are said to be rather small (though not smaller than those of Microtus philistinus), the plantar pads are reduced to five. But this character is present in members of the Microtus guentheri group, according to Argyropulo, which species Mr. Hinton tells me he regards as closely allied to arvalis. The mastoids tend to be inflated, another character shared by the guentheri group. The fur is described as "short and dense, without any admixture of stiff hairs," but I can detect no difference between the fur of these species and Microtus that could be of generic rank; in fact quality of fur (compare the genus Rattus) appears to be a highly changeable character in members of this Order.

The skull is described as being flattened; but is certainly less so than in Microtus millicens. The median crest is, according to Hinton, developed in the adult, in which character the American species stands nearer typical Mierotus than do socialis and perhaps the guentheri group. The claws are not enlarged. Another member of Microtus which shares the characters of five plantar pads is M. richardsoni (subgenus Aulacomys); this character cannot, I think, be regarded as generic; for instance, within Neolon five or six may be present in different species.

The group was defined by Bailey as follows: "Plantar tubercles 5; mammat 8 ( 2 pectoral, 2 inguinal), side glands obscure or wanting; ears rather small; fur dense, without stiff hairs; skull short, low, and with elliptical braincase; molars small. . . ."

The dentition is normal.
Aclacomys is regarded as a valid suhgenus by American authors; Bailey described it as follows: "Plantar tubercles five. Side glands in flanks of males conspicuous; a musk-bearing anal gland. Nammae $2-2=8$. Feet large; tail long, fur full and long; bullae very small. Incisors projecting far beyond premaxillac. Nolars with constricted and tightly closed sections." Bailey used the name Arricola for this group, but Arzicola being restricted now to the Palaearctic Water-Toles, the name Aulacomys has been revised.

The subgenus Chionomys of Miller is disregarded at the moment in the present classification, at any rate until the whole of the Palacarctic.Microtus has heen revised. It was based on the following characters: "In gencral like the subgenus Wifrotus, but third upper molar with only two re-entrant angles on each side, as in Araicola and some forms of Pitymys; skull with broad rather flat smooth braincase, and wide interorbital region, the temporal ridges low and inconspicuous; posterior termination of palate essentially as in true . Wicrotus, but with elements usually less well defined."

This group was based on mizalis. Russian authors combine M. roberti with mizalis in this subgenus. But roberti, though like mizalis in external characters (long tail, large cars, etc.), is precisely at the other end of the genus as regards the formation of its $\mathbf{1 1 . 3}$, which is very complex, more so than in other Palaearctic Voles except perhaps middendorff. 'The skull (relatively weak temporal ridges, etc.) is mizalis-like. But if (hionomys is based primarily on a form in which $\mathrm{NI}_{1} 3$ is simplified, it seems to me to stand to reason that it cannot also include a form with a most complex M1.3. Chionomy's could be restricted to the nizalis group, but in at least two other Pafaearetic groups there is tendency to
reduction of M. 3 (in mandarinus group it is more reduced than in the nivalis group; in millicens, as already noted, it is not a constant character, some specimens having M. 3 like nizalis, others like arvalis); while both millicens and the mandarinus group seem to me to be more aberrant than nizalis, either in cranial characters (millicens), or external characters (mandarimus group). In these circumstances, it seems that unless these two groups receive new subgeneric names, Chionomys must be dropped. It must be added also that whereas the temporal ridges in nizalis group are certainly weak, they appear even weaker in socialis and the guentheri group. Vinogradov evidently attaches no importance to the differences in M .3 between nizalis and roberti; the form gud , with a complex M.3, is listed as a race of nizalis by that author. Other races of nizalis of Russian authors, under the circumstances, must be accepted provisionally; some of these might have a complex M.3, in which case they could probably be regarded as races of gud. (I have seen very few specimens from the Caucasus, and area.)

American forms: Apart from the subgenera Chilotus and Aulacomys, Bailey divides the Microtus of North America into the following ten groups (North American Fauna, no. 17, 1900; revision of the genus Microtus):
pennsylzanicus group, characterized by "a posterior fifth loop to the middle upper molar" (evidently representing the Palaearctic agrestis group).
montanus group, characterized by "moderately short tail and constricted incisive foramina."
townsendi group, characterized by "large size, long tail, and dark brown colour."
californicus group, characterized by "large size, and wide open incisive foramina."
longicaudus group, characterized by "long tail and grey colour."
mexicanus group, characterized by "short tail, brown colour, and only four mammae."
operarius group, characterized by "short tail, and only four closed triangles on anterior lower molar"; evidently representing the Palaearctic occonomus group.
abbreziatus group, characterized by "robust form, very short tail, five closed triangles on M. 1 (lower), and two closed, one open on posterior upper molar."
chrotorrhinus group, characterized by "yellow nose, and five closed triangles to posterior upper molar."
xanthognathus group, characterized by "yellow nose, glands on flanks, and three closed triangles to posterior upper molar." (In the other species, according to Bailey, the glands are on the hips.)

According to Nelson, 1931, the species innuitus (referred by Bailey to the operarius group), abbreriatus and miurus, together with the new Alaskan species muriei, belong to the subgenus Stenocranius. No members of these Alaskan species have been examined.

Palaearctic groups. From the material examined, there appear to be about
twelve groups in the Palaearetic region. This arrangement nust be accepted as provisional.

1. gregalis group (subgenus Stenocramius); with the cranial characters afready indicated, and normal dentition. Vinogradov recognizes two species only in U.S.S.R., gregalis and major, the other forms being regarded by this author as races of gregalis. The claws, in specimens examined, often tund to be rather prominent; the ear may be rather small. The other forms must provisionally be regarded as belonging to subgenus Microtus s.s.; though it seems to me that very possibly the Stenocranius forms are more closely related to the other northern "strong-skulled" Microtus (agrestis, arzalis, occonomus, etc.), than these are to the "weak-skulled" types like mizalis, guentheri, roberti, and socialis.
2. millicens group. 'This is a highly aberrant species. 'The four closed triangles on M.i lower prove it to belong here rather than with Ncodon (to which its external characters show some likeness), according to Hinton's classification. The tail is rather long. 'There are six plantar pads. The skuil is very weakly ridged, and extremely depressed and flattened, suggesting a type which lives under rocks. M. 2 is more or less with the peculiarity of Microtus agrestis (i.e. an extra posterointernal triangle), or strong traces of it. M. 3 is, as indicated, either like nizalis, or like arvalis, varying evidently in different specimens from the same locality. The fifth triangle in M.I lower is confluent with the anterior loop, as in occonomus, and sometimes mizalis, roberfi. The species is from Szechuan. It will probably have to receive a subgeneric name later. The posterior palate does not seem quite normal.
3. mandarinus group, based chiefly on johammes and pullus. 'This group stands near Lasiopodomy's, making it difficult to retain that genus. The third molar is strongly reduced in all scen, with only two inner folds. The skull is quite angular, and normal. Sometimes the foreclaws tend to be nearly as enlarged as in Lasiopodomys, though this is not a constant character. The sole is much less hairy than normal in Lasiopodomys, and the general external appearance very different. The ear is strongly shortened.

This is an isolated Chinese group, which does not seem very typical in Microtus.
The remaining species have three inner folds in M.3, execpt in mizalis, and are less aberrant than those above.
4. socialis group. With five plantar pads; relatively large bullae; normal arrelis dentition; the skull is weak, and the median ridges according to Vinogradov do not fuse to form a median erest. The ear is not specially shortened, though this has been regarded as a more or less fossorial species; the claws are not enlarged. In some forms, as the type of irani from Persia, and the race paradoxus, M. 2 is as in agrestis; in other forms, the dentition is of normal arzalis type. A southern group; from South Russia, 'Turkestan, and Persia.
5. guentheri group. According to Argyropulo, five plantar pads may be present in this group. 'This author states that these Voles are more or less fossorial; some specimens of guentheri in the London Zoological Gardens at present do not give this impression, being very active, alert and diurnal, and behaving in a very different manner from captivity Rodents which may be regarded as fossorial (at least so far as my experience goes). Thus they show no desire for darkness; the eyes are not reduced; and they are cxceedingly fast-moving. The median interorbital crest in this group develops late according to Hinton, though, as already mentioned, no material has been seen with this specialization present. The dentition is normal, of arvalis type. The bullae tend to be enlarged. Apparently philistimus has a more reduced ear than is normal in the genus. Apart from this, and the African species, all named forms appear to me to belong to one species. M. cabrerae, from Spain, a little-known form, may also perhaps be referred here, as suggested by Argyropulo. This is also a southern group, from Greece, Asia Minor, Syria, Palestine, Libya. 'The size is often rather larger than arzalis, to which the group is probably not distantly allied.
6. roberti group. Another species with weak skull, the median interorbital crest developing very late. Tail long, about half head and body length or more. M. 3 very complex. M.i lower may have four or five closed triangles. Asia Minor, Caucasus.
7. nivalis group. Agreeing with roberti in the relatively weak skull, and the long tail; but M. 3 simpler than other species, with only two inner folds; M.i lower as in roberti. This is also more or less southern in range: from Syria and the Caucasus; as well as mountains of Central and Southern Europe.
The following are generally with the median interorbital crest fully developed comparatively early, and the skull more or less angular; for the most part they are northern in range.
S. middendorffi group. With very short tail (about a quarter head and body length). M. 3 is more complex in middendorffi than is normal. Perhaps hypoboreus of Vinogradov belongs here, though as figured, M. 3 is normal. It differs from middendorffi in cranial characters.
The remaining species have a less strongly shortened tail.
9. oeconomus group. M.r lower with only four closed triangles. All forms occurring in U.S.S.R., including ratticeps, are regarded as races of occonomus by Vinogradov.
10. agrestis group. M.I lower normal. M. 2 with extra posterointernal triangle. (As noted elsewhere, this character may occur individually in other species, such as socialis; but it scems a constant character on which to divide the more normal Voles of Northern Europe and Asia.)
11. arzalis group. M. 2 normal. Dentition normal.

In this group may be included arzalis, transcaspicus, orcadensis and
other species admitted by Miller from Western Europe in the group as understood by this author, except probably hartingi and cabrerac (which are referred to gucntheri group), the Chinese mongolicus, and the Japanese montebelloi.
12. calamorim group. An East Asiatic group with the dentition of the last, tending to become larger. P'rovisionally including clarkei from Yunnan (in which M.2 in the type specimen is of agrestis type), calamorum, ungurensis, michoi, a long-tailed species (including pelliceus, type of Ognev's genus "Alexandromy"), and possibly fortis, not seen. There seems to be a tendency in this group for the lateral pits at the back of the palate to be larger than is usual. The head and body length is typically about 125, or more (up to 170 in michnoi, according to Vinogradov). Plantar pads 5 (calemorwm, clarkei, pellicens). This character suggests that the group should be referred to the Nearctic Subgenus Aulacomys.

The present classification is based largely on the work of Bailey, Miller, and Vinogradov, whose work has been carefully studied, and has lessened my labours considerably: Mr. Chaworth-Musters has also kindly given me his views on some of the Chinese species.

There is considerable difference of opinion among authors as to the limits of this genus. American authors class Pedomvs, Orthriamys, and Herpetomys as subgenera of Microtus, as well as those forms here retained in the genus. As already stated, Hinton gives generic rank to Chilotus, which is currently regarded as a subgenus of Microtus only, and is here retained as such, as intermediate forms leading apparently from one to the other into the arcalis group exist between typical Microtus and Chilotus.

Vinogradov includes Pitymys in Microtus, as a subgenus; while several Russian forms he refers to Phaiomys (also as a subgenus), these corresponding to the genera Lasiopodomys, Ncodon, and Blamfordimys of the present classification. Phaiomys has been restricted by Hinton to the fossorjal Chinese and Indian species, and full generic rank is given by this author to Lasiopodomys and Ncodon. 'The genera Neodon, Phaiomys, Pedomy's and Blanfordimys all differ from Microtus in having only three closed triangles to the first lower molar (in which they agree with Arvicoler and Pitymys); this character appears to be constant in the forms examined of these genera. Vinogradov also recognizes Stenocranius and Chionomys as subgenera (the latter as indicated above including roberti as well as its type, nizalis). 1 have already given reasons for the opinion that this classification is incorrect.

Forms scen: agrestis, angularis, angustus, uquitanius, arcturus, arzalis, arziculoides, asturiamus, bailloni, bratneri, breweri, cabrcree, calamorum, calypsus, clarke $i$, drammondi, duplicatus, dutchori, edax, enivas, eqersmamni, cxsul, fontisemus, fulzizenter, gud, sutentheri, hartingi, hirtus, ilueus, incertus, irami, johunnes, lencums, Lebrwii, lezernedii, lezis, Iuch, Iydius, macrucranius, macrurns, macgithr'raï, malcolmi, mandarimes, meridiams, mexicamus, mial, michnoi, middendorffi, millicens, modestus, memgol, mongolicus, montebelloi, mordax, mustersi, mystacinus, namus, meglectus, mizalis, obscurus, uconomus, orcadensis, oregoni, partus, pelliceus,
pennsylvanicus, philistinus, pontius, pullus, raddei, ratticeps, ravidulus, riparius, roberti, rossiaemeridionalis, rozianus, sandayensis, sarnius, serpens, slowzowi, superus, socialis, terraenorae, tianschanicus, townsendi, transcaucasicus, ulpius, ungurensis, xanthognathus, westrae, wagneri (11. nivalis wagneri, Martino, 1939).

## list of Named Forms <br> Nearctic Forms <br> Subgenus Chilotus, Baird

1. MIICROTUS OREGONI OREGONI, Bachman
2. Journ. Acad. Nat. Sci. Philadelphia, VIII, p. 60.

Astoria, Clatsop County, Oregon.
Synonym: morosus, Elliot, 1899 , Field Col. Mus. Zool. i, if, p. 227.
Olympic Mountains, Washington.
2. MICROTL'S OREGONI ADOCETUS, Merriam
1908. Proc. Biol. Soc. Washington, XXI, p. 145.
S. Volla Bolly Mountain, Tehama County, California.
3. MICROTUS OREGONI CANTWELLI, Taylor 1920. Journ. Mamm. Baltimore, 1, p. 1 So.

Glacier Basin, Mlount. Rainier, Pierce County, Washington,
4. MICROTUS SERPENS, Merriam
1897. Proc. Biol. Soc. Washington, XI, p. 75.

Agassiz, British Columbia, Canada.
5. Milcrotus bairdi, Merriam
1897. Proc. Biol. Soc. Washington, XI, p. 74.

Glacier Peak, Crater Lake, Klamath County, Oregon.
Subgenus Aulacomys, Rhoads
6. MIICROTL'S RICHARDSONI RICHARDSONi, de Kay 1842. Zool. New York Mamm. p. 91.

Near the foot of the Rocky Mountains.
7. MICROTC'S RICHARDSONI ARVICULOIDES, Rhoads
1894. Amer. Nat. XXVIII, p. 182.

Lake Keechelus, K゙ittitas County, Washington.
Synonym : principatis, Rhoads, 1895 , Amer. Nat. XXIX, p. 940. Mount Baker Range, British Columbia.
8. MICROTU'S RICHARDSONI MACROPC'S, Merriam 1891. North Amer. Fauna, no. 5, p. 60.

Pahsimeroi Mountains, Custer County, Idaho.
Subgenus Microtus, Schrank
pennsylzanicus Group
(corresponding to the Old World agrestis Group)
9. MICROTUS PENNSYLVANICUS PENNSYLVANICLS, Ord
1815. Guthries Geogr. 2d. Amer. ed. vol. 2, p. 292.

Mleadows below Philadelphia, Pennsylvania.
Synonym: pratensis, Rafinesque, 1817, Amer. Monthly May. II, 45. noveboracensis, Rafinesque, Ann. Nat. 3, 1820.

## MICROTUS

（Microtis pennsylaanicus pennsylvanicus）
riparius，Ord，J．Acad．Nat．Hici．Philadelphia，IV，II， 305 I825．
palustris，Harlan，Fauna Amer．136， 1825.
hirsutus，Emmons，Rept．Quadr．Mass．60， 1840.
alborufescens，Emmons，same reference．
fulza，Audubon \＆Bachmann，Proc．Acad，Nat，Nci，Phala－ delphia，I，96， 1841 ．
nasura，Audubon \＆Bachman，same reference．
rufescens，de Kay，Zool．N．Y．Mamm，I， $\mathrm{S}_{5}, 1 \mathrm{~S}_{4} 2$ ．
oneida，de K＇ay，same reference．
dekayn，Audubon \＆Bachman，Quadr．N．Amer．Ill，287， 1854.
longipilis，Baird，Mamm．North Amer．524， 1857.
rufidorsum，Baird，same reference，p． 526 ．

10．NICROTES PENNSJLVAN゙ICL゙S NIGRANS，Rhoads 1897．Proc．Acad．Nat．Sci．Philadelphia，p． 307.

Currituck，Currituck County，N．Carolna．
11．MICROTLS PENNSYLVANICLR ACADICUS，Bangs 1897．Amer．Nat．XXX1，p． 239.

Digby，Nova Scotia，Canada．
12．NICROTUS PENN゙SYLTANICUS SHATTLCKI，How＊ 1901．Proc．Portland Soc．Nat．Mist．2，p． 201.

Tumble Down Dick 1sland，Long Island，Penobscot Bay，Maine．
53．NIICROTCS PENNSILNANICTS MODESTES，Bard
185\％．Mamm．North Amer．p． 535.
Cochetopa Pass，Saguache County，Colorado．
Synonym：iusperatus，Allen，I894，Bull．Amer．Mus．Nat．Hist．VI．347．
Custer，Black IItlls，S．Dakota．
14．MICROTUS PENNSYLVANICLS W．AHFMA，Barle 1920．Joum．Namm．Baltimore，1，p． 72.

Glendive，Dawson City，Montana．
15．MICROTUS PENNSVLVANICLS FONTIGIENLS，Bangs 1896．Proc．Biol．Soc．Washington，X，p． 48.

I ake Edward，Quebec，Canada．
16．NILCROTUS PENNSiLVVANICES LABRADORIUS，Bailey
1898．Proc．Biol．Soc．Washington，XII，p． 88.
Fort Chimo，Ungava，Canada．
17．MLLROTL゙S PROVEC＇TLS，Banes 1908．1＇roc，New Eng．Zool．Club，4，p，20．

Block Island，Newport County，Rhode 1sland．
18．MICROTLS DRUNIMIONDI，Auduben \＆Bachman
1854．Quadr．North Amer．vol．3，p． 166.
Valleys of the Rocky Mountains；probably in vicinity of Jasper IIouse， Alberta，Canada．
Synonym：microcephalus，Rhoads， 1894 ，Proc．Acad．Nit，Sci．Phila－ delphia，286．British Columbia．
stonei，Allen，is99．Bull．Amer．Mus．Nat．IIst．XII．p． 5. Liard River，British Columbia．
19. Microtus admiraltial:, Heller 1909. U'niv. Calif. Publ. Zool. V, p. 256.

Windfall Harbour, Admiralty Island, Alaska.
20. MICROTUS APHORODEMUS, Preble
1902. North Amer. Fauna, no. 22, p. 52.

Ahout 50 miles south of Cape Eskimo, Thlewiaza River, Keewatin, Canada.
21. MICROTUS AZTECUS, Allen
1893. Bull. Amcr. Mus. Nat. I Iist. V, p. 73.

Aztec, San Juan County, New Mexico.
22. MICROTUS EN1XUS, Bangs
1896. Amer. Nat. XXX, p. 1051.

Hamilton Inlet, Labrador, Canada.
23. MICROTUS TERRAENOVAE, Bangs
1894. Proc. Biol. Soc. Washington, IX, p. 129.

Codroy, Newfoundland.
24. MllCROTUS BREWERI, Baird
1857. Mamm. North Amer. p. 525.

Muskeget Island, Nantucket, Massachusetts.
25. MICROTUS NESOPHILUS, Bailey
1898. Science, N.S. 8, p. 782.

Great Gull Island, Long Island, Suffolk County, New York. Synonym: insularis, Bailey, 1898 , Proc. Biol. Soc. IVashington, XII, p. 86.
montanus Group
(corresponding to the Old World arvalis Group?)
26. MICROTUS MONTANU'S MONTANUS, Peale
1848. U.S. Explor. Exp. vol. 8, mamm. S ornith. p. 44.

Sacramento River, Mount Shasta, Siskiyou County, California.
Synonym: longirostris, Baird, 1857, Namm. North Amer. p. 530. California.
27. MICROTUS MONTANUS YOSEMITEE, Grinnell 1914 . Proc. Biol. Soc. Washington, XXVII, p. 207.

Yosemite Valley, Mariposa County, California.

```
    28. MIICROTLS MONTANL'S CARYI, Bailey
1917. Proc. Biol. Soc. Washington, XXX, p. 29.
Milford, Fremont County, Wyoming.
29. MICROTU'S MONTANUS ARIZONENSIS, Bailey 1898. Proc. Biol. Soc. Washington, XII, p. 88
Springcrville, Apache County, Arizona.
30. MHCROTUS MONTANU'S RIVLLLARIS, Bailey 1898. Proc. Biol. Soc. Washington, XII, p. 87.
St. Gcorge, Washington County, Utah.
3ヶ. MHCROTUS MONTANUS FLCOSUS, Hall
1935. Univ. Cal. Pub. Zool. 40, p. 421.
Hiko, Pahranagat Valley, Lincoln County, Nevada.
```

32. MICROTLS MONTANUS MILROPUS, Hall
33. Univ. Cal. Pub. Zool. 40, p. 417.

Cleveland Ranch, Spring Valley, White Pine County, Nevada.
33. MIfCROTLS MONTANL'S LNDOSLE, Hall
1935. Univ. Cal. Pub. Zool. 4o, p. 420.

Lovelock, Pershing County, Nevada.
34. MICROTES NANU'S NANUS, Merriam
1891. North Amer. Fauna, no. 5, p. 63. Pahsimeroi Mountains, Custer County, Idaho.
35. MICROTLS NANL'S CANESCENS, Bailey
1898. Proc. Biol. Soc. Washington, XII, p. 87.

Conconully, Okanogan County, Washington.
36. MICROTLS CANICALDES, Miller
1897. Proc. Biol. Soc. Washington, XI, p. 67.

McCoy, Willamette Valley, Polk County, Oregon.
37. MICROTL'S DLTTCHERI, Baley

1898 . Proc. Biol. Soc. Washington, XII, p. 85.
Big Cottonwood Meadows, Tulare County, California.
38. MILCROTUS NEVADENSIS, Baley
${ }_{189} 8$. Proc. Biol. Soc. Washington, XII, p. 86.
Ash Meadows, Nye County, Nevada.

## califormicus Group

39. MICROTLS CALIFORNICUS CALIFORNICLS, Peale 1848. U.S. Explor. Exp. vol. 8, mamm. \& ornith. p. 46.

San Francisco Bay, California.
Synonym: edax, Le Conte, 1 S53. Proc. Acad. Nat. Sci. Philadelphia, VI,
p. 405. South of San Francisco Bay, Calıforma. trozebridgei, Bard, Mamm. North America, $520,1857$.
40. MICROTL'S CALIFORNICLS CONSTRICTLS. Baley 1900. North Amer. Fauna, no. 17, p. 36.

Cape Mendocino, Humboldt County, California.
41. MICROTUS CALIFORNICLS ENIMILSA, Keflogy 1918. Univ. Calif. Publ Zool. XXI, p. 12.

Lierly's Ranch, Mount Sanhedrin, Nendocino County, Calhforma.
t2. MICROTES CALIFORNICL'S AESTCARINLS, Kelloge 1918. Univ. Calif. Pub. Zool. XXI, p. 15.

Grizzly 1sland, Solano County, Calıforna.
+3. MICROTUS (ALIFORNICUS MARIPOAE, Kelloge 1918. Univ. Calif. Pub. Zool. NXi, p. Ig.
$1 \downarrow$ miles west of El Portal, Maripusa County, California.
4* MIKROTLS (ALIFORNICT\& VALIICOLA, Baley
isg8. Proc, Biol. Soc. Washington, XII, p. Sig.
Lone Pine. Inyo County, Calıfornia.
45. MHCROTLS CALIFORNICTS SCTRPENSIS, Bule 1900. North Amer. Fauna, no, 17, p. $3^{8}$.

Near Sheshone, Amargosa River, Inyo County, Calıforma.

## MICROTUS

46. MICROTLS CALIFORNICLS KERNENSIS, Kelloge
47. Univ. Calif. Pub. Zool. XXI. p. 26.

Fay Creek, Kern County, California.
47. MICROTUS CALIFORNICU'S MOHAVENSIS, Kellogg
1918. Univ. Calif. Pub. Zool. NXI, p. 29.

Victorville, San Bernardino County, California.
48. MICROTUS CALIFORNICL'S SAN゙CTIDIFGI, Kellogg 1922. Proc. Biol. Soc. Washington, XXXV, p. 78.

Escondido, San Diego County, California.
Synonym: neglectus, Kellogg, 1918, Univ. Cal. Pub. Zool. XX1, p. 31.
49. MICROTUS CALIFORNICLS IIYPERYTHRL'S, Elliot
1903. Field Columb. Mus. Pub. 74, Zool. ser, vol. 3, p. 161.

La Grulla, San Pedro Martir Mountains, Lower California, Mexico.
50. MICROTLS CALIFORNICL'S PERPLEXABILIS, Grinnell 1926. Journ. Mamm. Baltimore, 7, p. 223.

La Grulla, Sierra San Pedro Martir, Lower California.
51. MICROTL'S CALIFORNICU'S AEQUIV゚OCATUS, Osgood 1928. Journ. Mamm. Baltimore, 9, p. 56.

San Quintin, Lower California,
52. MICROTLS CALIFORNICUS STEPHENSI, Blocker
1932. Proc. Biol. Soc. Washington, XLV, p. 134.

Playa del Rey, Los Angeles, California.
53. MICROTLS CALIFORNICL'S GRINNELLI, Huey
1932. Trans. S. Diego Nat. Hist. Soc. 7, p. 47.

Sangre de Cristo in Valle San Rafael on western base of Sierra Juarez, Lower California.
54. Miscrotus Californices palldicola, Hatfield 1935. Journ. Mamm. Baltimore, 16, p. 316.

Melrose Marsh, Almeda County, California.

## operarius Group

(corresponding to the Old World oeconomus Group)
55. MICROTUS OPERARILS OPERARIL'S, Nelson
1893. Proc. Biol. Soc. Washington, VIII, p. 139.

St. Michael, Norton Sound, Alaska.
56. MICROTLS OPERARILS ENDOECLS, Osgood
1909. North Amer. Fauna, no. 30, p. 23.

Bouth of Charlie Creek, Yukon River, Alaska, about 50 miles above Circle.
57. MICROTUS MACFARLANI, Merriam
1900. Proc. Washington Acad. Sci. II, p. 24.

Fort Anderson, Anderson River, Mackenzie, Canada.
58. MICROTL's Yakutatensis, Merriam
1900. Proc. Washington Acad. Sci. II, p. 22.

Yakutat Bay, Alaska, north shore.
59. MICROTUS KADIACENSIS, Merriam
1897. Proc. Biol. Soc. Washington, XI, p. 222.

Kodiak Island, Alaska.
bo. NILROTUS UNALASCENSIS UNALASCENSIS, Merriam
5897. Proc. Biol. Soc. Washington, Xl, p. 222.

Unalaska, Alaska.
61. NICROTLS LNALASCENLIS DOI'OFENSIS, Mertiam
5900. Proc. Washington Acad. Sci. 11, p. 22.

Popof 1sland, Shumagin Islands, Alaska.
62. MICROTUS AMAKENSLS, Aurie
1930. Journ. Mamm. Baltimore, if, p. 74.

Amak Island, Behring Sea, Alaska.
63. M1CROTLS SlTKIENSに, Mertiam
1897. Proc. Biol. Soc. Washington, XI, p. 221.

Sitka, Alaska.
64. MICROTUS 1NNUITLS INNUlTES, Merrman
1900. Proc. Washington Acad. Sci. ]I, p. 21.

St. Lawrence 1sland, Behring Sea, Alaska.
(According to Nelson, this is a member of suhgenus. Stonorranius see no. 67, abbreriatus and allies.)
65. NICROTUS 1NNUITU' PLNUKNNSIS, Hall \& Gilmore
1932. Univ. Calif. Pub. Zool. XXXVIII, p. 390.

Big Punuk 1sland, Behring Sea.
66. NILROTLS ELYMo(*ETES, Osgond
1906. Proc. Biol. Soc. Washington, XIX, p. 71.

Montague Island, Irince William Sound, Alaska.

## abbrcaiatus Group

(Nelson, 1931, states that all members of this group are members of sulgenus Stenocranius, as well as immitus, and muriei, numbers $\sigma_{4}$ and 232 respectively of the present list.)
67. MHCROTUS ABBREVIATUS ABBREVLATLA\&, Miller.
s899. Proc. Biol. Soc. Washington X1II, p. 13.
Hall Island, Behring Sea, Alaska.
68. M1lCRO'TL'S ABBREV1ATLS F1SHERI, Mermam
1900. Proc. Washington Acad. Sci. 11, p. 23.

St. Matthew Island, Behring Sea, Alaska.
6g. MICROTUS MIIURUS MIL'RUS, Osgood
mor. North Amer. Fauna, no. 21, p. 64.
Near Hope City, Bear Creek, Turnagain Arm, Cook Inlet, Dlaska,
7o. MIICROTTS MIILRL'S OREAS. Osgood
1907. Proc. Biol. Soc. Washington, XX, p. 61 .
'I'oklat River, Alaskan Range, Alaska.

## townsendii Group

71. NIICROTL'S 'I'OIVNNENDII TOWNSENDII, Bachman
72. Journ. Acad. Nat. Sci. Philadelphia, VIl1, p. 60.

Columbia River, near mouth of Willamette, on or near Wappatoo (or Sauvie) Island.
Synonym: occilentalis, Peale, 18,8, Mamm. U.S. Expl. Exp. p. it.
72. MHCRGTUS TOWNSENDII CLMINGi, Hall 1936. Murrelet. Seattle, 17, p. 15.

Bowen Island, Ilowe Sound, British Columbia.
73. MllCROTUS TETRAMERUS, Rhoads
1894. Proc. Acad. Nat. Sci. Philadelphia, p. 283.

Beacon Hill Park, Victoria, Vancouver Island, British Columbia.

## longicaudus Group

74. NIICROTUS LONGICAUDUS, Merriam 1888. Amer. Nat. XXII, p. 935.

Custer, Black Hills, Custer Co., S. Dakota.
75. MICROTUS MORDAX MORDAXX, Merriam 1891. North Amer. Fauna, no. 5, p. 6 r.

Sawtooth Lake, Blaine County, Idaho.
Synonym: vellerosus, Allen, 1899, Bull. Amer. Mus. Nat. Hist. XII, p. 7. Upper Liard River, British Columbia.
cautus, Allen, 1899 , Bull. Amer. Mus. Nat. Hist. XIl, p. 7. Hell's Gate, Liard R., British Columbia.
76. MllCROTU'S MORDAX SIERRAE, Kellogg
1922. Univ. Calif. Pub. Zool. XXI, p. 288.

Toulumne Meadows, Yosemite National Park, California.
77. MICROTUS MORDAX BERNARDINUS, Merriam
1908. Proc. Biol. Soc. Washington, XXI, p. 145.

Dry Lake, San Bernardino Mountains, San Bernardino County, California.
78. MICROTUS MORDAX ABDITUS, Howell
1923. Journ. Mamm. Baltimore, 4, p. 36.

Walker's Ranch, 8 miles south of Tillamook, Tillamook County, Oregon.
79. MilCROTUS MORDAX HaLlj, New Name

New name for angustus, Hall. 1931, Univ. Cal. Pub. Zool. XXXVIl, p. 13. Not of Thomas, 1908.
Godman Spring, Blue Mountains, Columbia County, Washington.
8o. MICROTUS MORDAX LITTORALIS, Swarth
1933. Proc. Biol, Soc. Washington, XLV1, p. 209.

Shakan, Prince of Wales Island, Alaska.
$\mathrm{s}_{1}$. MilCROTUS MORDAX LATUS, Hall
1931. Univ: Calif, Pub. Zool. NXXVII, p. 12.

Wisconsin Creek, Toyabe Mountains, Nye County, Nevada.
82. MICROTUS MaCRURUS, Merriam 1898. P'roc. Acad. Nat. Sci. Philadelphia, p. 353.

Lakc Cushman, Olympic Mountains, Mason County, Washington.
83. MICROTLS CORONARIUS, Swarth 1911. Univ, Calif. Pub. Zool. V1I, p. 131.

Egg Harbour, Coronation Island, Alaska.
84. MllCROTUS ANGUSTICll's, Bailey 189S. Proc. Biol. Soc. Washington, SII, p. 86.

Creseent City, Del Norte County, California.

## MIICROTUS

85. Microtle alticola aliticola, Merram
86. North Amer. Fauna, no. 3, p. 67.

Little Spring, San Francisco Mountain, Coconino County, Arizona.
86. AIICROTLS ALTICOLA LIE COPHAEL'S, Allen
${ }_{1}$ S9.4. Bull. Amer. Mus. Nat. Hist. VI, p. 320.
Graham Mountains, Graham County, Arizona.

## mexicanus (iroup

87. MICROTUS MEXICANTS MEXICANLS, Saussure

186ı. Rev. et Mag. Zool. ser. 2, XIIl, p. 3.
Mount Orizaba, Pucbla, Mexico.
s8. MICROTLS MENICANLS NAVAHO, Benson
1934. Proc. Biol. Soc. Washington, XLVII, p. 49.

Soldier Spring, east slope of Navajo Mountain, San Juan County, Utah.
89. MICROTLS MEXICANL'S PHAELTS, Merriam
1892. Proc. Biol. Soc. Washington, VII, p. 171.

Sierra Nevada de Colima, Jalisco, Mexico.
90. MICROTES MESICANLE GLADALIDENSIS, BaIEy
1902. Proc. Biol. Soc. Washington, XV, p. 1 t8.

Guadalupe Mountains, El Paso County, Texas.
91. MICROTLS FULVIVENTER, Mermam
1898. Proc. Bıol. Soc. Washington, XII, p. 106.

Cerro San Felipe, Oaxaca, Mexico.
92. MICROTL'S MOGOLLONENSIS, Mearns
1890. Bull. Amer. Mus. Nat. Hist. 11, P. 283 .

Baker's Butte, Mogollon Mountains, Yavapai County, Arizona.
santhognathus Group
93. MICROTCS NANTHOGNATHUS, Leach
1814. Zool. Misc. vol 1, p. 60.

Hudson Bay. (Ranging west to Alaska.)
chrotorthinus Group
94. MCROTL's CHROTORRHINUS CHROTORRHINLS, Mitler
1894. Proc. Boston Soc. Nat. Hist. 26, p. 190.

Tuckerman's Ravine, Mount Washmeton, Coos County, New Hampshire.
05. MIICROTL'S CHROTORRHINUS RAVLS. Bangs
1898. Proc, Biol. Soc. Washington, XII, p. 188.

Black Bay, Strat of Belle Isle, Labrador, Canada.
96. AIICROTUS CHROTORRHINLis CAROLINENSIS, Komarek
1932. Journ. Mamm. Baltimore, 13, p. $15 \%$.

Great Smoky Mountains, about 5 miles north of Smokemont, Swain County, North Catolina.

The remaining North . American form is described as a member of the subgenus Stenocranius (below).

## Palaearctic Forms roberti Group

97. MICROTUS ROBERTI ROBERTI, Thomas 1906. Ann. Mag. Nat. Hist. 7, XVII, p. 418.

Sumela, south of Trebizond, Asia Minor.
98. MICROTUS ROBERTI OCCIDENTALIS, Turov 192S. Arb. Nord. Kaukas. Assoc. 44, p. 27.

Caucasus Mountains, S. Russia.
99. MICROTUS ROBERTI PERSONATUS, Ognev
1924. Rodentia of North Caucasus, p. 39.
N. Caucasus, Russia.
100. MICROTU'S ROBERTI PSHAVU'S, Shidlovsky
1919. Tiflis Bull. Terr. Exper. Stat. no. 5, p. 38.

Source of River Iora, Mgelat-Zihe (Kapari), 20 versts south-west from Mount Borbalo, Caucasus, Russia.
10r. MICROTUS GUD GUD, Satunin
1909. Beitr. Kenntnis. Säugetier, p. 4.

Alm Tarpank auf d. Abusar-Dagh, Kr. Olty, Transcaspia.
102. MICROTCS GUD LASISTANIL'S, Neuhäuser
1936. Zeitschr. für Säugetierk. 11, p. 160.

Varsambeg-Dat, Vilayet Riza, Àsia Minor.

## nizalis Group

(It is possible that some races of niralis from the Caucasus Mountains described by Russian authors may belong in the roberti group, or may be races of gud.)
103. MICROTLS SYRIACC'S, Brants
1827. Het geslacht d. Muizen, p. 92.

Syria.
104. MiCROTUS NIVALIS NIVALIS, Martins
1842. Rev. Zool. p. 331.

Faulhorn, Berne, Switzerland.
Synonym: petrophilus, Wagner, 1853, Münch. Gel. Anz. 38, p. 307, Bavaria.
alpinus, Wagner, 1843, Schreber's Säugt. Suppl. III, p. 576 . Uri, Switzerland.
nizicola, Schinz, 1845, Syn. Mamm. II, 236. Swiss Alps.
105. MILCROTLS NIVALIS AQUITANILS, Miller 1908. Ann. Mag. Nat. Hist. 8, 1, p. 99.

Near L'Hospitalet, Ariege, France.
106. MICROTLS NIVALIS HERMONIS, Miller 1908. Ann. Mag. Nat. Hist. 8, I, p. 103.

Mount Ifermon, Palestine.
107. MICROTLS NIVALIS PONTIUS, Miller
1908. Ann. Mag. Nat. Hist. S, I, p. 102.

25 miles north of Baibort, Asiatic Turkey.
 1919. Tiflic Bull. Terr. Exper. Stat. 5, P. 36.

Near Village Edisi, Caucasus.
109. NHCROTLS NJALIS LECIDLs, shidlovsky rgap. 'Tiflis Bull. Terr. Exper. Stat. 5, p. 36.

Village Edisi, Caucasus.
110. NICROXLS NJAALIS IGHESICLS, shidlovsky roIq. Tiflis Bull. Terr. Exper. Stat. 5, p. 36.

Eastern part of Central Caucasus Chain and Mountainous Daghestan.
Synonym: mizalis ighesicus gotshobi, Shidlovsky, same reference, p. 37.
111. MICROTCS NIVALIS TRIALETICUS, Shidlovsky 1919. Tiflis Bull. Terr. Exp. Stat. 5, p. 37.

Kisil-kilisa, Ashcala, Kuembet, Caucasus.
112. NILROTLS NIVALIS SATLNINI, Shidlovsky 1919. Tiflis Bull. Terr. Exp. Stat. 5, p. 37.

Forestland in vicinity of Village Mirzik, near Surnabad, Caucasus.
153. NIICROTL'S NIVALIS NECJLKOVI, Formozov 1931. Folia Zool, Hydrob. Riga, 3, p. 8 r.

Bolschaja Loba, Maikop District, N.-IW. Caticasus,
114. MICROTLS NIVALIS ABLLENsis Agacme I936. Bol. Real Soc. Esp. Hist. Nat. 36, p. 15 I.

Solosancho, province of Avila, Spain.
115. NICROTCS NINALIS (HLYMPILS, Deuhäuser 1936. Zeitschr. für Säugetierk. II, P. 159.

Olymp, Valayet Brussa, Asia Minor.
116. NICROTC'S NIVALIS MALYI, Bolkay
1925. Nov. Mus. Sarajevoensis, 1, p. 10.

Tisovica Valley, on Prenj Jountain, Ifercegovina.
15\%. MIICROTLS LEBRL NII LEBRL'XII, Lirespon
IS A $_{4 .}$ Faune Meridionale, 1, 1P. 77.
Nîmes, Gard, France.

I852. Rev. Mag. Zool, and ser. IV, p. 260.
Barcelonnette, Basses-Alpes, France.
119. MICROTLS CLIIUS, Niller 1908. Ann. Mar. Nat. Hist. 8, I, p. 100.

Hatszeg, Hunyad, Austria-Kungary.

## soctalis Group

120. WlleRott $九 \mathrm{soc}$ (ALIs suclad.Is, Pallas
121. Nox. Sp. Quad. Glir. Ord. p, 218.

Ural River, W: Siberia.
Synonym: gravesi, Goodwin, 1934, Amer. Mus. Nov, 742, p. 2. Kazakstan.
 1 $\$ 22$. Mammalogie, ii, p. 285.

Environs of Astrakan, S. Russia.

## MICROTUS

122. MICROTUS SOCIALIS SATUNINI, Ognev ${ }^{1}$
123. Rodentia of North Caucasus, p. 37.
'Tiffis, Caucasus, Russia.
124. MIICROTL'S SOCIALIS PARVUS, Satunin
125. Mt. Kaukas Mus. 1, p. 117.

Village of Divny, N.-E. Caucasus.
124. MICROTL'S SOCIALIS COLCHICUS, Argyropulo 1932. Journ. Mamm. Baltimore, I3, p. 268.
'Transcaucasia.
125. MICROTUS SOCIALIS SCIHIDLOVSKII, Argyropulo
1933. Zeitschr. für Säugetierk. 8, p. 182.

Transcaucasia.
126. MICROTLS SOCIALIS IRANI, Thomas 1921. Journ. Bombay Nat. Hist. Soc. XXVII, p. 41. Shiraz, Persia.
127. NICROTL'S SOCIALIS PARADONU'S, Ognev \& Heptner 1928. Zool. Anz. 75, p. 263.

Kopet-Dag, S. Turkmenia, Transcaspia.
128. MICROTUS MYSTACINU'S, Filippi 1864. Viagg. Persia, p. 255.

Persia.
Synonym: (?) micruros, S. G. Gmelin, 1774, Reise Russl. iii, p. 500.
guentheri Group
[29. MICROTUS GLENTHERI GCENTHERI, Danford \& Alston 188o. Proc. Zool. Soc. London, p. 62.

Marash, Asia Minor.
130. MICROTUS GUENTHERI SHEVKETI, Neuhāuser
1936. Zeitschr. für Säugetierk. 11, p. 160.
'Tarsus, Vilayet Adana, Asia Minor.
131. MICROTL'S GUENTHERI LIDIL'S, Blaekler
1916. Ann. Mag. Nat. Hist. 8, XVII, p. 426.

Smyrna, Asia Minor.
132. MICROTL'S GUENTHERI HARTINGI, Barrett-Hamilton
1903. Ann. Mag. Nat. Hist. 7, XI, p. 307.

Larissa, Thessaly, Greece.
133. MICROTUS PHILISTINLS, Thomas
1917. Ann. Mag. Nat. Hist. 8, XIX, p. 450.

Ekron, south-east of Jaffa, Palestine.
134. MICROTL` MLESTERSI, Hinton
1926. Ann. Mag. Nat. IIst. 9, XVIII, p. 305.

Merg, Cyrenaica, N. Africa.
135. NICROTL'S CABRERAE, Thomas 1906. Ann, Mag, Nat. IIist. 7, XVII, p. 576.

Rascafria, Sicrra de Guadarrama. Province of Madrid, Spain.
${ }^{1}$ This appears to be preoceupied by No. IIz (.1. nivalis satunini) of this list; I therefore renarne it binominatus.

## MICROTUS

## arcalis Group

136. MILC'ROTL'S ARVALIS ARVALIS, Pallas 1778. Nov. Sp. Quad. Glir. Ord. p. 78.

Gummany.
Synonym: fulzus, (ienffroy, iSo3, Cat. Mamm. Mus. Nat. Hist. Paris, p. I87. France.
zulgaris, Desmarest, $1 \$ 22$, Nammalogie, ii, 282. France. alhus, Bewhstem, i8o:, Gem. Nat. Deutschi. i, 2nd ed., 998. Gurmany.
atcr, de Selys-Longehamps, iS45, Atti sesta Riun, Sci. Itai. Milano ( 8844 ), p. 32 I . cunicularins, Ray, 1847, Rev. Zool. 312. France. campestris, Blasius, 1853 . Gelehrte Anz. München, XXXV11, 106. Germany.
gaillardi, Fatı, 1905 , Arch. Sci. Phys. Nat. Genève, 4, xix, 197. Switzerland.
zariahilis, Rörig \& Börner, Arheiten aus der kaiserlichen Prol. Anstalt fur Land- und Forstwirtschaft, V, Heft ii, p. 76, 1905. (fermany.
contigher, Rörig \& Börner, same reference, p, 76.
assimilis, Rörig \& Börner, same reference, p. 77.
depressa, Rörig \& Bötner, same refurence, p. 76.
simplex, Rörig \& Börner, same reference.
principalis, Rörig $\&$ Börner, same ruference.
137. AICROTL'S ARVALIS , MERIDIANL'S, Miller rgoS. Ann. Mag. Nat. Hist. 8, 1, p. 197.

Near Blarritz, Basses-Pyrentes, France.
13\%. NHCROTLS ARVALIS DLPLICATLS, Rorig \& Borner
1905. Arbeiten aus der kaiserlichen Biol. Anstalt für Land- und Forstwrtschaft, V, Heft ii, pl. $\because$.
Rossiten, Ostpreussen, Germany.
139. AlCROTLA ARVALIS LELIS, Miller
1908. Ann. Mag. Nat. llist. 8, 1, p. 197.

Gageni, Prahova, Roumania, at foot of Carpathians, north-west of Bucharest.
140. NICR()TLS ARVALIS GLDALRICLS, (qnev
1929. Ber. Nicrobiol. Staats. Ins. No. 9, p. 164.

Caucasus, Russia.
141. MICROTLSA ARVALIS (IBSCLRLA, Exersmanm 1841. Nem. Lniv. Kazan, p. 156.

Siberna, Altai Mountams.
 1924. Rodentia of North Caucasus, p. 27.
N. Caucasus, Russia.
 1024. Rodentia of North Cancasus, P. 30.

The Borchalinsk subdistrict, Tiflis govt. Caucasus.
144. NIICROTLS ARVAI.IS ROSASIAEDERIDIONALIS, Ognev 1924. Rodentia of North Caucasus, p. 27.

Voryi Kurlak, Boberot suhdistrut of Vormej (iovt., N. Ciucasus.
145. MICROTUS ARVALIS TRANSURALENSIS, Serebrennikov
1929. Ann. Mus. Zool. Leningrad, 30, p. 257.

Transouralie méridionale, Russia.
146. MICROTUS ARVALIS BRAUNERI, Martino 1926. Ann. Mus. Nat. Hung. 23, p. 165.

Kraljevo, Serbia.
147. MILCROTL'S ARVALIS INCOGNITUS, Stein 1931. Mitt. Zool. Mus. Berlin, 17, p. 289.

Gimmel, Krs. Oels, Silesia, Czecho-Slovakia.
148. Microtus Arvalis Cinibricus, Stein 1931. Mitt. Zool. Mus. Berlin, 17, p. 287.

Lauenberg, Schleswig-Holstein.
149. MICROTUS ARVALIS HAWELKAE, Bolkay
1925. Nov. Mus. Sarajevoensis, 1, p. 9.

Lebrsnik Mountains, near Gacko, Hercegovina.
150. MICROTUS ARVALIS RHODOPENSIS, Heinrich 1936. Bull. Inst. R.H.N. Sophia, 9, p. 48.

Village Tschepelare, Central Rhodopen, Bulgaria.
15s. MilCrotus arvalis MUHLISI, Neuhâuser
1936. Zeitschr. für Säugetierk. 11, p. 194.

Bartin, Asia Minor.
152. MICROTC'S ARVALIS RELICTUS, Neuhāuser 1936. Zeitschr. für Säugetierk. 11, p. 195.

Inevi, Asia Minor.
153. MICROTCS BREVIROSTRIS, Ognev
1924. Rodentia of the North Caucasus, p. 32.
N. Caucasus; surroundings of Vladikawkas.
154. MICROTUS TRANSCASPICUS TRANSCASPICUS, Satunin 1905. Mitt. Kaukas. Mus. II, pp. 57, 58.

Tschuli-Schlucht, Transcaspia.
155. MICROTLS TRAN゙SCASPICUS ILAEUS, Thomas 1912. Ann. Mag. Nat. Hist. 8, IS, p. 348 .

Djarkent, Semiretschensk, on banks of River Ussek, E. Russian Turkestan.
156. MICROTES SCHELKOVNIKOVI, Satunin
1907. Mitt. Kaukas. Mus. 3, p. 243.

Forest on path to village Dzi, Caucasus.
157. NIICROTLS TSAIDAMENSIS, Satunin
1903. Ann. Mus. Zool. St. Petersb. VII (1902), p. 579.

Central Asia. See Tosso-noor; Tsaidam.
(Position doubtful.)
158. MICROTUS INCERTUS, de sélys-Longchamps
1841. Atti della Sec. Riun. degli Sci. Ital. Torino, 18 \& 0 , p. 225.

Near Summit of St. Gothard Pass, Uri, Switzerland.
Synonym: fulva, Fatio, 1869, Faune. Vert. Suisse, 1, 236, and flava, Fatio, 1905, Arch. Sci. Phys. Nat. Genève, 4, xix, 195.
20-Living Rodents- 11

## Microtus

150. MICROTLS AsTLERIANUS, Miller 1908. Ann. Mag. Nat. Hist. 8, 1, p. 198. Pajares, Leon, Spain.
151. MICROTUS MONGOLICLS, Radde
152. Reise in den Süden von Ost-Sibirien, p. 194.

On der daurischen Hochsteppen, neighbourhood of T'arei-Nor, Siheria,
161. MICROTUS MALCOLMI, Thomas ${ }^{1}$
1911. Abstr. Proc. Zool. Soc. London, p. 5 ; Proc. Zool. Soc. London, p. 174 .

South-east of Tau-chow, Kansu, China.
162. MICROTUS MONTLBELLOI MONTEBIISLOI, Milne-Edwards 1871. Rech. Mamm. p. 285.

Japan.
Synonym: (?) hanatedzumi, Sasaki, 1904, Bull. Cull. Agric. Tokyo, vi, p. 52. Japan.
163. NICROTUS NONTEBELIAT BREVICORPESS, Tokuda 1933. Annot. Zool. Jap. 14, p. 236.

Sado 1sland, off Japan.
164. MICROTLS UCHIDAE, Kuroda 1924. Journ. Mamm. Baltimore, 5, p. II8.

Kurile Islands, off Japan.
165. MICROTLS KISHIDAI, Mori 1930. Journ. Chosen Nat. Hist. Soc. No. 10, p. 53. Korea.
166. MHCROTUS ORCADENSIS ORCADENSIS, Mılars 1904. Zoologist, 4 th ser. VIII, p. 244.

Pomona Island, S. Orkney Islands, Scotland.
167. MICROTLAS ORCADENSIS RONALDSllAIENSIS, Hinton 1913. Ann. Mag. Nat. Hist. 8, X゙11, p. 457.
S. Ronaldshay Island, Orkneys.
168. MICROTLS ORCADENSils SANDAYEVSis, Millas
1905. Mamm. Git. Britain \& lreland, ii, p. 280.

Sanday Island, N. Orkney Islands.
ifog. MICROTLS ORCADENSIS WIESTRAE, MIlle 1908. Ann. Mag, Nat. Jist. 8, I, p. 199.

Westray Island, N. Orkney Islands.
r7o. MllCROTLS ORCADENSIS ROLSAIENSIS, Hmton 1913. Ann. Mag. Nat. Hist. 8, N゙IJ, p. 460.

Rousay lsland, S. Orkneys.
171. NILCROTUS SARNITS, Miller 1909. Ann. Mag. Nat. Hist. 8, 11I, p. 420.

St. Martins, Guernsey, Channel Islands.
172. Mll ROTU'S DENTATLS: Miller
1910. Amn. Mag. Nat. Hist. 8, VI, p. 459.

Molinicos, Sierra de Segura, Albacete, Span.
${ }^{1}$ Microtus mulcolmi has been wrongly allocated in this list. From the structure of it , first lower molar, it appears to be a Chinese representative of the oeconomus group.
173. MICROTUS ANGLlLARIS, Miller
1908. Ann. Mag. Nat. Hist. 8, I, p. 198.

Transylvania, probably near Hatszeg, Hungary.
174. MICIROTUS IGMANENSIS, Bolkay
1929. Nov. Mus. Sarajevoensis, 8, p. 1.

Near Sarajevo, Bosnia.

## calamorum Group

175. MICROTUS UNGURENSIS, Kastschenko 1912. Ann. Mus. Zool. 17, p. 418.

Makoveevo, about 50 km . south-east from Chita, Transbaikalia.
176. MICROTUS CLARKEI, Hinton
1923. Ann. Mag. Nat. Hist. 9, XI, p. 158.

On divide between Kiuchiang and Salween Rivers, latitude $28^{\circ} \mathrm{N}$., Yunnan, China.
177. MCROTUS CALAMORUM CALAMORUM, Thomas
1902. Ann. Mag. Nat. Hist. 7, X, p. 167.

North bank of Lower Yangtsekiang River, near Nanking, China.
178. MICROTUS CALAMORUM SUPERUS, Thomas
1911. Abstr. Proc. Zool. Soc. London, p. 27; Proc. Zool. Soc. London, p. 691.

30 miles south of Feng-hsiang-fu, S. Shen-Si, China.
179. MICROTUS MIICHNOI MICHNOI, Kastschenko
1910. Ann. Mus. Zool. Ac. Sci. St. Petersb. 15, p. 288.

Transbaikalia.
I8o. MICRO'TUS MICHNOI PELLICEUS, Thomas
1911. Ann. Mag. Nat. Hist. 8, VII, p. 383.

Ussuri River, East Siberia.
s8r. MICROTUS FORTIS, Buchner
1889. Wiss. Res, Przewalski Central-Asien Reisen: Zool. Th. 1, Säugeth. p. 99.

Ordos, Central Asia.
(Position provisional.)
agrestis Group
182. MICROTUS AGRESTIS AGRESTIS, Linnaeus
${ }_{1761}$. Faun. Suec. 11, pars. 2, no. 30, p. 11.
Upsala, Sweden.
Synonym: gregarius, Linnaeus, 1766, Syst. Nat. I, 12th ed. p. 84. Germany and Sweden. insularis, Nilsson, $18+4$. Ofvers. K. Vetensk. Akad. Forhandl. Stockholm, 1, p. 34. Ostgötha, Skärgard, Sweden.
nigricans, Kerr, 1792, Anim. Kingd. 239.
183. MiCROTLS AGRESTIS EXSLL, Miller
1908. Ann. Mag. Nat. Hist. 8, I, p. 201.

入. Uist, Mebrides, Scotland.
184. NILCROTL'S AGRESTIS EFVERN1:DII, C'respon

1844 . Faune Méridionale, 1, p. 73.
Narshes between St. Gilles and Aigues-Mlortes, Gard, France.
Synonym: nigra, Fatio, 1869, Faun. Vert. Suisse, 1, 241. Switze rland. rufa, Fatio, 1900, Rev. Suisse Zool. V1II, 472. Switze rland. angustifrons, Fatio, rgo5, Arch. Sci. Phys. Nat. Genève, $4^{\text {th }}$ ser xix, 191 . Switzerland. latifrons, Fatio, same reference, p. 194. Switzerland.
185. MICROTL'S AGRESTIS BAHLLONI, de Sélys-Longchamps 1841. Atti della Sec. Riun, degli Sci. Italiani, Forino, i8 40, p. 225.

Abbeville, Somme, France.
Synonym: intermedia, Bonaparte, $\mathbf{1 8} 85$, Atti della Sesta Riun. degli Sci. Italiani, Mhlano, i844, 350. nom. nud.
186. MICROTLS AGRESTIS HIRTL'S, Bellamy
1839. Nat. Hist. S. Devon, p. 373.

Ycalmpton, Devonshire, England.
Synonym: brittanicus, de Sélys-Longchamps, 1847, Rev. Zool. 307.
187. MICROTUS AGRESTIS NEGLECTUS, Jenyns
1841. Ann. Mag. Nat. Hist. i, VII, p. 270.

Moors near Megarnue Castle, Perthshire, Scotland.
188. NICROTLS AGRESTIS ROZIANLS, Boxage 1865. Mem. Ac. Real Sci. de Lisboa, N.S. IH, pt. 2, p. 7. Geria, near Coimbra, Portugal.
189. MICROTUS AGRESTIS MACGILLIVRAI1, Barrett-1lamilton \& I Inton 1913. Proc. Zool. Soc. London, p. 831.

Islay, Ilebrides.
190. MICROTUS AGRESTIS MIAL, Barrett-Hamiton \& Hinton 1913. Ann. Mag. Nat. Hist. 8, XII, p. 364.

Eigg, Hebrides.
191. Microtus agrestis luch, Barrett-1lamiton \& Hinton 1913. Ann. Mag. Nat. Hist. 8, Xill, p. 366.

Muck, Hebrides.
192. MHCROTUS AGRESTIS FIONA, Mmentagu
1922. Proc. Zool. soc. London, p. 940.

Gigha, Inner Ilebrides.
193. NICROTL'S AGRESTIS PINCTL'S, Montagu
1923. Proc. Zool. Suc. London, p. 868.

Bled, Slovenia, Y'ugoslavia.
19夕. NHCROTLS AGRESTIS (ALIPSLS, Mmontagu
1923. Proc. Zool. Soc. London, p. 869.

Nova Varos, Lervia, Iugoslavia.
195. MLCROTL'S AGRESTIS ORIOECLS, Cabrera
1924. Publ. Cien. Nat. Barcelona, 7, No. 3, p. 8.

Molins, Montseny, Prov. Gerona, Catalona, Spain.
1y6. M1CROTTS AGRESTTS PANNONICLS,
1924. Ann. Mus. Nat. Hung. 21, p. 76.

Ormand, near Komarvaros, Co. Zala, Hungary.
197. MICROTUS AGRESTIS TRIDENTINUS, Dal Piaz 1924. Studi Trent, 5, No. 4, p. 10. Brenner, N. Italy.
198. MICROTUS AGRESTIS ESTIAE, Rcinwaldt 1927. Act. Comm. Univ. Tartu, 12, p. 13. West Jsles, Estonia.
199. MICROTUS AGRESTIS MONGOL, Thomas 191t. Ann. Mag. Nat. Hist. 8, VIll, p. 759.

Kemtchik Valley, Tannu-ola Mountains, N.-W. Mongolia.
200. MICROTUS ARCTURUS, Thomas
1912. Ann. Mag. Nat. Hist. 8, IX, p. 398.

Dzungaria, Central Asia.

## oeconomus Group

201. MCROTUS OECONOMUS OECONOMUS, Pallas ${ }_{1778}$. Nov. Sp. Quad. Glir. Ord. p. 225.

Siberia; definite locality uncertain.
202. MICROTUS OECONOMIUS OURALENSIS, Poliakoff \& Lataste 1884. Ann. Mus. Civ. Stor. Nat. Genova, p. 277.

Utal, Russia.
203. MICROTUS OECONOMUS DAURICUS, Kasts:henko 1910. Ann. Mus. Zool. Acad. Sci. St. Petersb. 15, p. 293.

Transbaikalia.
204. MICROTUS OECONOMUS SUNTARICUS, Dukelski 1928. Zool. Anz. 78, p. 106.

Yakutsk, Siberia.
205. MICROTUS OECONOMUS SHANTARICUS, Ognes 1929. Zool. Anz. 83, p. 85.

Great Shantar Island, east coast Siberia.
206. MICROTUS OECONOMUS KORENI, G. M. Allen 1914. Proc. New Eng. Zool. Club, 5, p. 64.

Nijni Kolymsk, near mouth of Kolyma River, N.-E. Siberia.
207. MICROTUS OECONOMUS KAMTSCHATICUS, PaIlas 1778. Nov. Sp. Quad. Glir. Ord. p. 233.

Kamtchatka, E. Siberia.
208. MICROTUS OECONOMUS TSHUKTSCHORLM, Miller 1899 . Proc. Biol. Soc. Washington, X1II, p. 11.

Plover Bay, E. Siberia.
209. MICROTUS OECONOMIS KJUSJERENSIS, Jolyushev 1935. Animand. Syst. Mus. Zool. Inst. Biol. Univ. Tomsk, i, p. 1. Village Kusur, $71^{\text {c }}$ N., right bank of River Lena, Siberia.
210. MICROTUS OECONOMUS RATTICEPS, Keyserling \& Blasius 1841. Bull. Acad. Sci. Nat. St. Petersb. iv, livr. 3, p. 333.

Welikii-Ustjug, Dwina River, North-central Russia.
Synonym: medius, Nilsson, 18 44, Ofvers. Kongl. Vetensk. Akad. Forh. Stockholm, 1, p. 34. Lapland, and mountains about the Gudbrandsdal, Norway.

614
（Murotus occonomzs rattceps）stimmingi，Nehring， 1899 ，litz．Ber，Ges，Nat，F＇r，Berlin， p．69．Near Brandenburg，Germany．
arenicola，de Sélys－Longchamps，I8＋1，Bull．Acad．Roy． Sci．Arts，Bruxelles，V111，2，236．Lisse，near Lciden， Holland．

211．JICROTL＇S OECONOMLS WEJTSTEJN1，Bhik 1929．Ann．Mus．Nat．Hung．25，p． 197.

Trixen，Karinthia，Hungary．
212．NILROTLS OECONOMLS MBHEJSI，lhik
1929．Ann．Mus．Nat．Hung．25，p． 197.
Rajka，Hungary．
middendorffi Group
213．NICROTUS MHDDE゙ND（）RFlil，Polakoff \＆Lataste
1884．Ann．Mus．Civ．Stor．Nat．Genova，p． 289.
Tamour，N．Siberia．
Synonym：obscurus，Middendorff， 1853 ，Reise Sibir，ii，p．109，pre－ occupied．
214．MICROTLSHYPOBORELF，Vinogrados．（Position prosisional）
1934．＇Trav．L＇Inst．Zool．Acad．Sci．1933，p． 1.
Verhoiansk Mountains，E．Siberta．
memidarinus Group
215．NH（R才TU＇S MAN1）ARINUS MANDARJNUS，Milne－Edwards 1871．Rech．Mamm．p． 129.

Mongolia．
216．WICROTUS MANDARINUS FAECEUS，G．M．Allen
1924．Amer．Mus．Nov．no．133，p．S．
I 00 miles north－east of Pekin，Chihli，China．
217．Mll ROTL＇S JOHANNLS，Thomas
1910．Ahstr．Proc．Zool．Soc．London，p．26；Proc，Zool．Soc．London，15． 637.
Ko－lan－chow，Shan－si，China．
218．N1LROTLS PULELS，Miller
1911．Proc．Biol．Soc．Washington，XXIV，p． 53.
Chiao Cheng Shan，go miles west of T＇a1 Y＇uan Fu，Shan－si，China．

## millicons Group

219．MICROJCS MHLILCJNS，Thomas
1111．Abstr．Proc．Zool．Soc．London，p． 49 ；Proc．Zool．Sue．London，p．13í．
Wei－choe，Si－ho River，W．Szechuan，China，
Subgenus Stchocrantus，Kastschenko
（According to Netson，1931，this subgenus should also include the North American abbreziatus group，formerly listed as members of Microtus s．s．by \liller，1923，etc．）

220．MILCROTL G GREGAIIA（iREGiAl，IS，Pallas
177リ．Nov．Sp，Guad．Glir．Ord．p． 23 K．
E．Siberia．
Synonym：（？）poljakozti，Kastschenko，1yo1，Ann．Mus，St．Petersh．V＇l， p． 31 ．
221. MICROTUS GREGALIS SLOWZOWI, Poliakoff 1881. Bull. Acad. Sci. St. Petersh. 39, p. 79.

Omsk, Siberia.
222. MICROTUS GREGALIS NORDENSKIOLDI, Poliakoff \& Lataste 188.4. Ann. Mus. Civ. Stor. Nat. Genova, XXX, p. 290.

Taimoursk Peninsula, North-central Siberia.
223. MICROTUS GREGALIS BUTURIINI, Ognev
1924. Biol. Mitt. Timiriazeff, 1, p. 107.

Ryusskoe Ust, Indigirka, Siberia.
224. MICROTUS GREGALIS RADDEI, Poliakoff \& Lataste 1884. Ann. Mus. Civ. Stor. Nat. Genova, XX, p. 299.

Transbaikalia district.
Synonym: angustus, Thomas, 1908, Proc. Zool. Soc. London, p. 108. Mongolia.
225. MICROTUS GREGAL1S EVERSMANN1, Poliakoff \& Lataste
1884. Ann. Mus. Civ. Stor. Nat. Genova, XX, p. 285.

Altai, Siberia.
Synonym: tianschanicus, Büchner, 1889 , Wiss. Res. Przewalski CentralAsien Reisen: Zool. Th. i, Säugeth. p. 107.
226. MICROTLS GREGALIS CASTANEL'S, Kashkarov 1923. Trans. Sci. Soc. Turkestan, I, p. 196.
W. Tianshan.
227. MICROTUS GREGALIS RAVIDULUS, Miller
1899. Proc. Acad. Nat. Sci. Philadelphia, p. 284.

Okchi Valley, Aksai, E. Turkestan.
228. MICROTUS GREGALIS MONTOSUS, Argyropulo
1932. Journ. Mamm. Baltimore, I3, p. 268.

Sary-Tash, Alai Valley, Russian Turkestan.
220. MICROTLS GREGALIS UNGUICULATLSS, Koljuschew 1936. Trav'. Inst. Sci. Biol. Tomsk, 2, p. 298.

Mouth of River Lena, Siberia.
230. MICROTUS KOSSOGOLICUS, Ognev
1924. Bull. Soc. Nat. Moscou, p. So.
N.-W. Mongolia.

23r. MICROTUS MAJOR, Ognev
1924. Bull. Soc. Nat. Moscou, p. 83.

Yamal Peninsula, N.-W. Siberia.
232. NIICROTUS MURIEI, Nelson
1931. Journ. Mamm. Baltimore, 12, p. 311.

Kutuk River (tributary of Alatna River), Endicott Mlountains, Alaska.
(Pcrhaps a member of the American abbreviatus group.)

## Species not allocated to Groups

233. MICROTLS LIMNOPHIILC'S LIMNOPHILL"S, Buchner
234. Wiss. Res. Przewalski Central-Asien Reisen: Zool. Th. r, Säugeth. p. ıı.

Zaidam, Central Asia.

```
    23.. MILCROTLS LIMINOPHILU'S FLAVIVENTRIS, Satumm
5903. Ann. Mus. St. Petersb. vii, p. 577.
            Kloster Tschortentan, Kansu, Central Asia.
    235. MIICROTUS DINNIKI, Satunin (nom. nud.\)
1903. \amm. Caucasus, p. 59.
                            Surroundings of Maikon, Caucasus.
    236. MICROTLSS SANATILIS, Pallas
1779. Nov. Sp. Quad. Glir. Ord. p. 255.
Transbaikal Region, Siberia.
237. MICROTL'S MANIMOWICZI, Schrenck 1858. Säugeth. Amurland, p. 140.
Amurland, E. Siberia.
23\%. MICROTLS KIKLCHI, Kurnda
1920. Dobuts. Zool. Tokyo, 32, p. 36.
Alt. Morrison, Formosa.
(A member of the genus Eothenomys is, in 1937, described from Formosa, which seems out of the range of true Microtus. I have not been able to sce the description of kikuchi.)
```

Vinogradov quotes a form Microtus (Stenocranius) gregalis brezicaudus, from lakutsk and Transbaikalia; the reference to this has not been traced.

## Genus 17. LASIOPODOMIS, Lataste

1887. Lasiopodomys, Lataste, Ann. Mus. Civ. Stor. Nat. Genova, ser. 2a, IV, p. 268.

Type Species.-Arvicola brandii, Radde.
Range.-Eastern Asia: Mongolia, Manchuria, and Transbaikalia.
Number of Formis.-About four.
Characters.-This genus is often regarded as a synonym of Phaiomys, to which the type shows considerable resemblance in external characters, hut has been revived by Hinton for those forms in which the first lower molar agrees with that of Microtus, while the external cliaracters are as just indicated. 'The tail is short, fully haired, and little longer than the hindfoot; the sole is heavily haired, with six pads, "the two posterior very small, placed low down, and eompletely hidden beneath the hair" (tlinton). The ear is small. The foreclaws are considerably though not excessively lengthened. The supraorbital ridges fuse in the adult. 'J he palate is as in Microtus. . 1.3 is reduced, with two inner folds only. M.1 lower has a posterior loop, five alternating closed triangles, and a small anterior loop. $\$ 1.3$ lower appears rather reduced.

Forms seen: brandti.
The species zeamingtoni, not seen, is described as near brandti, and the species dolichocephalus, not seen, as near warringtoni.
'This genus is closely connected with Microtus by the M. mandarinus group, which have a similar skull and M.3, and in which the ear appears even more
reduced; though the sole is less or not particularly hairy. The claws in this group may be large, though thinner than the few specimens seen of Lasiopodomys.

## List of Named Formis

I. LASIOPODOMI'S BRANDTI BRANDTI, Radde 1861. Mél. Biol. Acad. St. Petersb. iii, p. 683.

Tarei-nor, Plateau of Mongolia.
2. LASIOPODOMIS BRANDTI AGA, Kastschenko 1912. Ann. Mus. Zool. Acad. Sci. St. Petersb. 17, p. 418.

Transbaikalia.
3. LASIOPODOMIS WARRINGTONI, Millet 1913. Smiths. Misc. Coll. LX, 28, p. 1.

Tabool, 100 miles north of Kalgan, E. Mongolia.
4. LASIOPODOMYS DOLICHOCEPHALUS, Mori
1930. Annot. Zool. Japan, 12, p. 420.

Cheng-chiatun, Central Manchuria.

## Genus 18. PROEDROMIYS, Thomas

1911. Proedromys, Thomas, Proc. Zool. Soc. London, p. 177.

Type Species.-.-Proedromys bedfordi, Thomas.
Range.-Known from Kansu, China.
Number of Forms.-One.
Characters.-Skull with prominent peg-like squamosal crests, and supraorbital ridges probably fused in adult. Palate and zygomatic plate as in Microtus. Upper incisors broad, clearly one-grooved. Lower incisors short, scarcely invading the condylar process. Cheekteeth rootless, M.I and M. 2 (upper series) normal; M. 3 strongly reduced, with one inner re-entrant fold only, and two closed triangles. M.r lower with posterior loop, four closed triangles only, and the anterior loop and anterointernal triangle confluent. Third lower molar reduced, with third outer angle obsolete.

External form without peculiarities; tail short; plantar pads 6; mammae 8.
Forms seen: bedfordi.

## List of Named Forms

1. PROEDROMYS BEDFORDI, Thomas
2. Proc. Zool. Soc. London, p. 177.

South-east of Min-chow, Kansu, China.

## Genus 19. PHAIOMYS, Blyth

1863. Phaiomys, Blyth. Journ. Asiat. Soc. Bengal, 32, no. i, p. 89.

Type Species.- Phaiomys leucurus, Blyth.
Range.-Mountains of Central Asia: Tibet, Chinese Turkestan, Northern India to Nepal.

Number of Forms--Six. The genus as restricted by Hinton appears to contain only the forms listed below. It is sometimes regarded as a subgenus of Microtus, and, in a wider sense, containing Veodon, Lasiopodomys.

Chiracters.-Sikull with moderate squamosal crests, and without heavy supraorbital ridges, which, however, fuse in the adult. Incisors usually rather pro-odont. Bullae large, well inflated. Palate as in Microtus. First lower molar with only three closed triangles, and all in front of these merged into the anterior loop, which has a deep inner fold, but the anteroexternal fold is reduced (the fourth and fifth triangles are present, but not closed from each other nor from the anterior loop). MI. 2 and M. 3 lower normal. Upper cheekteeth: M.1 and M1.2 normal; M. 3 reduced, with anterior loop, two closed triangles, and rather reduced posterior loop, the folds two each side. This tooth is more reduced than in, for instance, Microtus mizalis.

Mammac $3-2=10$ or $2-2=8$. Tail short, well haired. Foreclaws and hindclaws considerably though not excessively enlarged. Sole densely haired; plantar pads 5 (constant?); more or less concealed; ear relatively short.

Forms seen: eqeresti, leucurus, petulans, strauchi, waltoni.
Whether there is more than one valid species in this genus is not clear.
List of Named forme

1. Phaionis letclert's leletris, Blyth
2. Journ. Asiat. Soc. Bengal, XXXII, p. 89. Tingri, Tibet. Synonym: btythei, Blanford, 1875 . Journ. Asiat. Soc. Bengal, XLIV, p. 107.
3. PHAIOMYS EVERESTI, Thomas \& Hinton
4. Ann. Mag. Nat. Hist. 9, IX, p. i\&2.
E. Mount Everest.
5. PhaIOMIYS FUSCLS, Buchner
6. Wiss. Res. Przewalski Central-Asien Reisen: Zool. Th. 1, Säugeth. p. 125. Tibet.
7. Phaioniys stratuchi, Büchner
8. Wiss. Res. Przewalski Central-Asien Reisen: Zool. Th. 1, Säugeth. p. I21. Tibet.
9. BHAOMYS Waltoni waltoni, Bonhote
10. Abstr. Proc. Zool. Soc. London, no. 22, p. 14; Proc. Zool. Suc. London, p. 306. Lhasa, Tibet.
b. Phalonis waltoni petidans, Wroughton
11. Journ. Bombay Nat. Hist. Soc, XX, p. 931. Teza, Upper Sutlej Valley, Hinalayas.

> Genus zo. NEODOX, Hodgson
1849. Neodon, Hodegon, Ann. Mag. Nat. Hist. 2, III, p. 203.
'Type Species.- Veodon sikimensis, Hodgson.
Rayge.-Russian Turkestan, Sikkim, Kansu, Szechuan, and Iunnan.

Number of Forms.-Six.
Ciaracters.-Skull with temporal ridges fused in fully adult (weakest in carruthersi), and squamosal crests quite well developed. Bullae as a rule rather small, mastoids not inflated. Other cranial characters normal; palate as Microtus. Upper cheekteeth: M.1, M. 2 normal; M. 3 about as Microtus in the type; tending in some species to become reduced, and with only two clear inner folds in oniscus and irene. M.2, and M. 3 lower normal; M. 1 with only three closed triangles, as in Pitymys, Phaiomys, and Pedomys; in sikimensis, there are in front of these two triangles (the fourth and fifth) confluent; two more triangles (sixth and seventh) confluent, and more or less closed off from the anterior loop. The other species lack the sixth and seventh triangles of the type; this tooth appears in oniscus and carruthersi to approach that of Phaiomys.

Plantar pads 5 in carruthersi, 6 so far as known in other species. Fur usually soft; tail relatively short, or of medium length (sometimes approaching half head and body length). Ear not reduced. External form not specially modified, not fossorial. Mammae $2-2=8$ (Hinton) (some specimens of sikimensis are labelled as with 6 mammae). I take the genus to include the species juldaschi, Severtzow ( $=$ pamirensis, Miller).

If Neodon and Phaiomys are considered congeneric, as they are by some authors, the name Neodon should be used, antedating Phaiomys by fourteen years.

Three species groups are recognizable among material examined:
sikimensis group, from Sikkim, with unusually complex lower first molar (and skull with rather more prominent median interorbital crest than usual); mammae 6 (?); plantar pads 6.
carruthersi group, from Hissar Mountains, Russian Turkestan; rather small soft-furred form, with the median interorbital crest weak, and plantar pads 5 ; M. 1 lower more normal.
juldaschi group: the other species; plantar pads, as far as known, 6; M. 1 lower normal; without special peculiarities. N. oniscus seems to be the most dentally simplified of these forms.
Forms seen: carruthersi, forresti, irene, oniscus, pamircnsis, sikimensis.

# List of Named Forus <br> carruthersi Group 

1. NEODON CARRE"THIERSI, Thomas
2. Ann. Mag. Nat. Hist. 8, III, p. 263.

Hissar Mountains, roo miles east of Samarkand, Turkestan.
sikimensis Group
2. NeODON Shemiensis, Hodgson
1849. Ann. Mag. Nat. Hist. 2, III, p. 203.

Sikkim.
Synonym: thricolis, Hodgson, 1863, Cat. Mamm. B..\. and ed. p. 1o, nom. nud.
juldaschi Group
3. NEODON FORRESTI, t tinton
1923. Ann. Mag. Nat. Hist. 9, XI, p. 156.

On divide between Mekong and langtse Rivers, in Latitude $27^{\prime} 30^{\prime} \mathrm{N}$. N.-W. Vunnan.
4. NEODON ONISCLS, Thomas
1911. Ann. Mag. Nat. Hist. 8, VIII, p. 723.
to mile's south-east of Tao-Chou, Kiansu.
5. NEODON IRENL, Thomas
1911. Abstr. Proc. Zool. Soc. London, p. 5 ; Proc. Zool. Soc. London, p. 173. Ta-tsien-lu, Szechuan, China.
6. NEODON JULDASCHI, Severtzow
1879. Sapiski Turkest. Ot. Obs. Juh. Estest. vol. 1, p. 63.

Lake Kara-kul, in Pamir Mountains.
Synonym: pamirensis, Miller, 1 S99, Proc. Acad. Nat. Sci. Philadelphia, p. 287. Tagdumbash, 1'amir, E. Turkestan.

Genus 21. PEDOMIS, Baird
1857. Pedomys, Baird, Mamm. North Amer. p. 517.

Type Species.-Arricola austerus, Le Conte=Hypudaeus ochrogaster, Wagner.
Range.-North America: C'entral United States from Louisiana northwards just over the Canadian border (Alberta) (Wisconsin, Missouri, Oklahoma, Nebraska, Kansas, South Dakota, North Dakota, Colorado, MFontana).

Number of Forms.-Four.
Characters.-Like Neodon, but braincase deeper, mastoids more inflated; M. 3 more reduced, with two inner folds, and shortened posterior loop; M.s lower with posterior loop, three closed triangles, the fourth and fifth triangles confluent, and more or less closed off from anterior loop; other tecth normal. Plantar pads 5. Mammae 1 -2 $=6$. Fur long, coarse; ears rather small; tail rather shorter than is usual in Neodon.

Remarks.-Regarded as a subgenus of Microtus by American authors.
Distinct from that genus on the character of the first lower molar, but in my opinion not generically separable from Neodon.

Forms seen: "austerus," minor, ochrogaster.

## List of Named Formis

(Revised by Bailey, 1900, North Amer. Fauna, no. 17.)

[^14]2. PEDOMYS LUDOVICIANUS, Bailey
1900. North Amer. Fauna, no. 17, p. 74.

Iowa, Caicasieu Parish, Louisiana.
3. PEDOMYS HAYDENII, Baird
1857. Mamm. North Amer. p. 543.

Fort Pierre, S. Dakota (Stanley County).
4. PEDOMY'S MINOR, Merriam
1888. Amer. Natur. XXII, p. 600.

Bottineau, Turtle Mountains, N. Dakota (Bottineau County).

## Genus 22. PITYMYS, McMurtrie

183. Pitymys, McMurtrie, Cuviers Anim. Kingd. (American ed.), r, p. 434.
184. Micrurus, Forsyth Major, Atti della Soc. Toscana di Sci. Nat. III, p. 126. (Arvicola nebrodensis, Mina-Palumbo.) Not of Ehrenberg, 1831.
185. Ammomys, Bonaparte, Saggio Distrib. Metod. Anim. Vert. p. 20. (Psammomys pinetorum, Le Conte.)
186. Arbusticola, Shidlovsky, Tiflis Bull. 'Terr. Exper. Stat. no. 2, p. 21. (Microtus rubelianus, Shidlovsky $=$ Pitymys majori, Thomas.)

Type Species.-Psammomy's pinetorum, Le Conte.
Range.-Continental Europe south of the Baltic, eastwards to Ukraine, Asia Minor and Caucasus; South-eastern U.S.A.; Mexico. In Europe, occurs in Belgium, France, Switzerland, Hungary, Roumania, Italy, Sicily, Portugal, Spain, Montenegro, Greece, Czechoslovakia, Serbia, the Ukraine, the Caucasus, and Transcaucasia. In America, forms named from Georgia, New York, Oklahoma, Florida, and Vera Cruz (Mexico).

Number of Forms.-About fifty-two.
Characters.-Skull weak, with relatively small squamosal crests, and supraorbital ridges widely separated in the adult in the interorbital region. The braincase is usually flattened to a greater or lesser degree. Zygomatic plate and infraorbital foramen normal. Incisors may be pro-odont in some species, as ibericus, prozincialis, thomasi. Bullae relatively large. Palate posteriorly as in Microtus; pterygoid fossae deep. Upper cheekteeth: in the subterranens group, including majori, the upper molars are about as in Microtus arealis; M. 3 is longer than M.2. In the sazii group, M. 3 is more reduced, with usually two inner re-entrant folds; this tooth is not longer than M.2. In the ibericus group, Ml .3 is still more reduced, the anteroexternal triangle is abnormally reduced, and confluent with the opposite triangle as a rule. The American species, so far as seen, have M. 3 moderately reduced, about as in $P$. saziï. Lower molars: M. 3 with three transverse loops (very rarely closed triangles may be present in this tooth); M. 2 with posterior loop and four alternating triangles; M.1 with posterior loop, then three closed triangles, then the fourth and fifth triangles which are confluent, well developed, and substantially closed from the anterior loop, which may be simple, or may possess a fold each side. M. 2 lower may have the two front triangles confluent.

Plantar pads 5. Externally, at any rate as compared with .Microtus, modified
for fossorial life to a greater or lesser degree．Fur soft，dense ；car often strongly reduced（of those seen，apparently least so in the Mexican quasiater）；foreclaws slightly lengthened；sole not fully haired；tail relatively short ；mammac o－2 -4 or $1-2-6$ ．I linton divides the genus into two subgenera Pitymys and Micrurus based evidently solely on mammary formula．I have elsewhere remarked that it is inadvisable to retain names solely on this character（sec genus Rattus， Murinae），and treat Micrurus as a synonym．

Niller（Catatogue of Nammals of Western Europe，p．752）divides the Euro－ pean species into three groups：
subterraneus group，with complex ．Nicrotus－like $\mathrm{Nl}_{3}$ ，in which I include majori from Asia Minor and the Caucasus which differs from subter－ rancus in mammary formula and relatively longer tail；
sazii group，with more reduced M．3；
ibcricus group，with M． 3 still more reduced，as indicated above．＇T＇his group contains the species listed above with strongly pro－odont upper incisors，and some species，as depressus，lusitanicus，mariac，pelandonius， without this character．

The American forms are revised by Bailey，North American Fauna，no．17， 1900, P． 62.

Forms seen：auricularis，brauncri，brumneus，capucinus，centralis，colchicus， ducius，daghestanicus，depressus，duodecimcostatus，fatioi，fuscus，gerbii，ibericus， intermedius，lusitanicus，majori，mariae，multiplex，nehrotensis，pelandomius，pine－ torum，planiceps，procincialis，pyrenaicus，quasiater，regulus，sazii，selysï，sub－ terraneus，thomasi，mustersi（Pitymys mustersi，Martino，1937，from Yugoslavia）， hercegozinensis（Pitymys multipiex hercegozinensis，Martino，1939）．

## List of Nanifd Forms <br> Palaearetic Forms subterraneus Group

1．PITYMY＇s SL＇BTERRANELS st＇BTERRANEL＇s，de selys－fonmechamp
${ }^{1} \mathbf{S}_{3} 6$ ．Essai Monogr．sur les Campagnols des env：de Liége，p． 10.
Waremme，Liège，Belgium．
Synonym：mefescentefuscus，Schinz，1845，Syn．Mamm．II，240．Uri， Switzerland．
rufofuscus，Schinz，same reference．
fusca，Fatio，1900，Rev．Suisse．Zool．VHII， 472.
2．PHTYMY＇S SLBTERRANEL゙か CAPCCINUR，Maller
1908．Ann．Mag．Nat．Hist．8，I，p． 202.
Near Salon de Capucin，Mont－Dore，Puy－de－Dôme，France．
3．PITYMI＇S SLBTERRANELS WL：TTSTREINI，Ehk
1926．Ann．Mus．Budapest，24，p． 63.
I Iungary．
＋PITYMYS SLBTERRANEL ATRATLふ，Stゃい
1931．Mitt．Zool．Mus．Berlin，17，p． 293.
Krs．Trebnitz，Silesia．
5. PITYMYS SUbTERRANEUS MATRENSIS, Ehik
1932. Ann. Mus. Nat. Hist. Hung. 27, p. 252.

Matra Mountains, Hungary.
6. HTYMY'S SLBTLRRANEL'S UKRAINICUS, Vinogradov
1922. "Nahojdenie veujnoi Rossi roda Pitymys," Isvestia Severnoi Oblasti Strasta 3; 7-10, fig. 1A-D.

Gouv. Kharkov, Ukraine, S. Russia.
7. PITYMYS DACIUS DACIUS, Miller
1908. Ann. Mag. Nat. Hist. 8, I, p. 202.

Gageni, Prahova, north-west of Bucharest, Roumania.
8. PITYMYS DACIUS HUNGARICUS, Ehik
1926. Ann. Mus. Budapest, 24, p. 64.

Budafok, near Budapest, Hungary.
9. PITYMYS DRUENTIUS, Miller
1911. Proc. Biol. Soc. Washington, XXIV, p. 39.

Terres-plaines, near Barcelonnette, Basses-Alpes, France.
Synonym: selysii, Gerbe, 1852, Rev. Mag. Zool. 2nd ser. IV, 159. Not of Bonaparte.
10. Pitymys fatiol fatiol, Motaz 1909. Bull. Soc. Zool. de Genève, 1, 180.

Zermatt, Valais, Switzerland.
11. PITYMYS FATIOI ORIENTALIS, Dal Piaz
1924. Studi. Trent. 5, no. 4, p. 13.

Trentino, Italy.
12. PITYMYS MULTIPLEX MULTIPLEX, Fatio 1905. Arch. Sci. Phys. Nat. Genève, 4 th ser. N1X, p. 193. Lugano, Ticino, Switzerland.
13. P!TYMIYS MULTIPLEX BRAUNERI, Martino 1926. Ann. Mus. Budapest, 23, p. 166.

Serbia, Kraljevo.
14. PITYMIS MAJORI MAJORI. Thomas 1906. Ann. Mag. Hat. Hist. 7, XVII, p. 419.

Sumela, south of Trebizond, Asia Minor.
Synonym: rubelianus, Shidlovsky, 1919, Tiflis. Bull. Ter. Exp. Stat. 2, p. 21.
15. PITINIYS MAJORI FINGER1, Neuhäuser 1936. Zeitschr. für Säugetierk. 11, p. 159.

Karadere, Northern Bolu, Asia Minor.
16. PITYMY'S MAJORI COLCHICUS, Shidlovsky 1919. Tiflis Bull. Terr. Exper. Stat. no. 2, p. 21. N. Koutais, Caucasus, Russia.
17. PITYMY'S MLAJORI INTERMEDILS, Shidlovsky 1919. Tiflis Bull. Terr. Exp. Stat. no. 2, p. 22.

Southern declivities of Central Caucasus.
18. PITYMYS MAJOR1 DAGHESTANICL'S, Shidlovsky 1919. Tiflis. Bull. 'Terr. Exp. Stat. no. 2, p. 22.

Daghestan, Caucasus.
19. PITYAY'S MAJORI CISCAUCASICLS, Ognev
1924. Rodents of North Caucasus, p. 34.

Caucasus (Surroundings of Vladikawkas.)
20. PITYMY'S TRANSSYLVANICUS, Ehik
1924. Ann. Mus. Budapest, 21, p. 159.

Mountains Fogaras, near Kercz, around the Bulea Lake, Hungary.
21. PITYMYS KLPELJJESERI, Wettstein
1925. Anz. Akad. Wiss. Wien, 62, p. 3 I.

Biological Station in Lunz, Lower Austria.
22. PITYMY'S LICHTENSTEINI, Wettstein
1927. Anz. Akad. Wien, 2.

Gipfel des Mali Rainac, Velebit, bei Krasno, Croatia.
23. PITYMYS INCERTOIDES, Wettstein
1927. Anz. Akad. Wien, p. 3.

Gschnitztal, N. Tyrol.
24. PITYMYS EHIKI, Wettstein
1927. Anz. Akad. Wien, p. 3.

Martinitz bei Klobouk, Mahren, Moravia, Czecho-Slovakia.
25. PITYMYS NYIRENSIS NYIRENSIS, Ehik
1930. Ann. Mus. Hist. Nat. Hung. 27, p. 255.

Mateszalka, Szatmar County, Hungary.
26. PITYMYS NYIRENSIS MARTINOH, Ehik
1935. Allat. Kozlem. 32, p. 60.

Babje-gore, distr. Pozega, Slavonia, Yugo-Slavia.

## sazii Group

27. PITYAIYS SAVII, de Sélys-Longchamps
28. Revue Zool. p. $2^{8}$.

Neighbourhood of Pisa, Italy.
Synonym: selysii, Bonaparte, 1845, Atti della Sesta Riun. degli Sci. Ftal. Mifano, s844, p. 350.
28. PJTYMIS NEBRODENSIS, Nina-Palumbo
1868. Ann. Agric. Sicil. Xil, p. 6r.

Le Madonie, Sicily.
29. PITYAY'S PYRENAICLS PYRENAICLS, de Sélys-Longchamps 1847. Revue Zool. p. 305.

Bagnères de Pigorre, Fautes-Pyrénées, France.
30. PITYANS PYRENAILLS BRLNNELS, Miller 1go8. Ann, Mag. Nat. Hist. 8, I, p. 203.

Forest of Bouconne, Gers, France.
31. PITYMIS PLANICEPA, Miller
1908. Ann. Mag. Nat. Hist. 8, I, p. 203.

Barèges, Hautes-Pyrénées, France.
32. PITYAILS GERBII, (Gerbe
1879. Le Naturaliste, Paris, 1, p. 51.

Dréneuf, Loire-Inférieure, France.
33. PITYMYS BYRON1, Bolkay.
1926. Glasnik Zem. Mus. Sarajevo, p. 171.

Kephissia (Attica), Greece.

## ibericus Group

34. PITYMY'S LUSITANICUS, Gerbe 1879. Rev. Mag. Zool. 3rd ser. VII, p. 44. Portugal.
35. PityMis Marlae, Forsyth Major 1905. Ann. Mag. Nat. Hist. 7, XV, p. 515. Villalba, Lugo, Galicia, Spain.
36. PITYMYS PELANDONIUS, Niller 1908. Ann. Mag. Nat. Hist. 8, I, p. 204. Silos, Province of Burgos, Spain.
37. PlTYMY'S DEPRESSUS, Miller 1908. Ann. Mag. Nat. Hist. 8, I, p. 20.4.

Rascafria, Sierra de Guadarrama, Madrid, Spain.
38. PITYMYS FLAVESCENS, Cabrera 192.4. Publ. Cien. Nat. Barcelona, 7, 3, p. 13.

Lerida, Artesa de Segre, Catalonia, Spain.
39. PITYMYS IBERICUS IBERICU'S, Gerbe 1854. Rev. Mag. Zool. 2nd Ser. 6, p. 400.

Province of Murcia, Spain.
40. PITYMIY IBERICUS CENTRALIS, Miller 1908. Ann. Mag. Nat. Hist. 8, I, p. 205.

Near Silos, Province of Burgos, Spain.
41. PITYMYS ibericus PascuUs, Miller 1911. Proc. Biol. Soc. Washington, XXIV, p. 39.

Dehesa de Valencia, Prov. of Valencia, Spain.
Synonym: fuscus, Miller, 1908, Ann. Mag. Nat. Hist. 8, I, 206. Not of Fatio.
42. PITYMYS IBERICUS REGLLU'S, Miller 1908. Ann. Mag. Nat. Hist. 8, I, p. 206.

Alhambra Hill, Granada, Spain.
43. PITYMI'S DUODECIMCOSTATUS, de Sélys-Longchamps 1839. Rev. Zool. p. 8.

Montpelier, Gard, S. France.
4. PITYMIYS PROVINCIALIS, Miller 1909. Ann. Mag. Nat. Hist. 8, I1I, p. 420.

Saint Gilles, Gard, France.
45. PITYMY'S THOMLAS1, Barrett-Hamilton
1903. Ann. Mag. Nat. Hist. 7, XI, p. 306.

Vranici, Montenegro.
46. PITYMYS ATTICLS, Miller
1910. Ann. Mag. Nat. Hist. 8, VI, p. 460.

Kephissia, near Athens, Greece.

## Nearctic Forms

(Revised by Bailey, North Amer. Fauna, no. I7, p. 62, 1900.)
47. IITYMYS PINETORLA PINETORUM, Le Conte
x 829 . Ann. Lyc. Nat. Hist. N.Y. IHI, p. 133 .

Pine forests of Gentgia, probably on the Le Conte plantation, near Riceboro, Liberty County.
48. PITYMY's PINETORUM SCALOPSOIDES, Audubon \& Bachman

1841 . Proc. Acad. Nat. Sci. Philadelphia, i, p. 97.
Long Jsland, New lork.
Synonym: apclla, Le Conte, Proc. Acad. Nat. Sci. I'hiladelphia, IV. 405. 1853.
kemicotti, Baird, Mamm. North Amer. 547, 1857.
49. PITYMYS PINETORUM AURICULARIS, Baley
isgs. Proc. Biol. Soc. Washington, XII, p. 90.
Washington, Adams County, Mississippi.
50. PITYMY's NEMORALIS, Baiky
1898. Proc. Biol. Soc. Washington, Xll, p. Sg.

Stilwell, Adair County, Oklahoma.
51. PITYMS'S PARVULLIS, Howell
1916. Proc. Biol. Soc. Washington, XXIX, p. 83.

Ocala, Marion County, Florida.
52. PITYMI'S QUASIATI:R, Coues
1874. Proc. Acad. Nat. Sci. Philadelphia, p. int.

Jalapa, Vera Cruz, Mexico.

## Genus 23. BLANFORDIMY'S, Argyropulo

1933. Blanfordimys, Argyropulo, Zeitschr. für Süugetierk, S, p. 182. (Subgenus of Microtus.)

Type Species.-Microtus bucharicus, Vinogradov:
Range.-Afghanistan and Russian Pamir. (In C.S.S.R., from Sarevshan Mountains, 8 km . south from Pendjakent, and in Surhan-Daria district, 28 km . West from Denau) (Vinogradov).

Number of Forms.-Two.
Characters.--(I have not seen the type species, and two skulls only of B. afghanus; the type as described and figured by Vinogradov appears essentially similar to $B$. afghames.)

Supraorbital ridges not traceable in the British Nuseum material, nor according to Vinogradov in the type species. Mastords extremely inflated, and appearing at back of skull cach side, surpassing the occiput posteriorly. Bullac very large indeed. Palate, zygomatic plate normal (Microtus type).

Upper checktecth: M.i, M. 2 normal; M. 3 with anterior loop, two closed triangles, and posterior loop with a small triangle or projection on its anteroexternal side, the re-entrant folds two each side. Lower eheekteeth: M.2 and M. 3 normal. M. i with posterior loop, three closed triangles in front of
which the fourth and fifth triangles are confluent, as in Pitymys, and closed off from the anterior loop. External form evidently not much modified; tail relatively short.

Blanfordimys was proposed as a subgenus of Microtus (containing also according to Argyropulo Phaiomys, Neodon and other groups recognized as genera by Hinton). Ilinton has not yet dealt with the species. There is no doubt, I think, that the form constitutes a very distinct genus, more distinct from Microhus in my opinion than Phaiomys, Neodon and others. It seems to resemble Pitymys more than other genera, but the enormous bullae distinguish it at once from that genus, and indeed from all other Microtinae examined. However, few specimens have been seen, and more material would he welcome.

Forms seen: afghanus.

## List of Named Formis

1. BLANFORDINIYS AFGHANUS, Thomas
2. Ann. Mag. Nat. Hist. S, IX, p. 349.

Afghanistan.
2. BLANFORDIMYS BUCHARICUS, Vinogradov
1928. Abh. Pamir. Exped. 8, p. I4.

Zeravshankette, 8 km . südlich von Pendzhakent, beim Kischlak Sivon, Russian Pamir.

Genus 24. ARVICOLA, Lacepède
1799. Arvicola, Lacepède, Tab. de Mamm. p. 10.

Type Species.-Mus amphibius, Linnaeus.
Range.-Palaearctic: Europe, except Ireland and the smaller islands, north to Arctic, south to Mediterranean; Russia and Siberia east to Amur River; also known from Syria and Persia. In Western Europe, from Scotland, England, Spain, France, Norway, Sweden, Finland, Switzerland, Italy, Yugoslavia, Belgium, Germany, Estonia, Roumania; in U.S.S.R., from Kola Peninsula and Pechora district south to Ukraine and Caucasus in European Russia; Transcaucasia; Siberia to the River Lena, Yenessei, Irkutsk; Semipalatinsk; Kazakstan; Semirechyia, and other localities quoted by Vinogradov.

Number of Forms.-About thirty-thrce are named.
Characters.-Skull in adult becoming massive and angular, with prominent peg-like squamosal crests, and powerful supraorbital ridges which fuse into a sharp median crest; interorbital constriction great. Upper incisors often tending to be pro-odont. Occipital region strong, and paroccipital process relatively large. Bullae relatively small for a member of this subfamily. Palatal foramina variahle, but often much constricted and reduced. Posterior palate as in Microtus. Upper cheekteeth: M.I, M. 2 normal; M. 3 with anterior loop, two or three closed triangles and short posterior loop, the inner folds of the tooth reduced to two. Lower cheekteeth: M. I with posterior loop, three closed triangles, and anterior loop with a shallow fold present each side. Other lower molars normal. 'There is occasional individual variation in these teeth;


Fig. 48. Arvicola terrestris terrestris, Linnaeus. B.M. No. 8.8.9.25, jै; • 2.


Fig. 49. Arvicola terrestris terrestris, Linnaeus. B.M. No. 8.8.9.25, 今; - 2 .

I have seen one specimen with closed triangles in M. 3 lower, and one with four closed triangles in M. I lower. Cheektecth evergrowing.

Mammae $\mathbf{2 - 2}=8$. Plantar pads usually 5 ; a rudimentary sixth one may be present; according to Hinton there is some individual variation in the characters of the hindfoot in this respect. Size large, largest of Palaearctic members of the subfamily; head and body usually over 150 mm ., often over 200. Tail about half head and body length, or longer; well haired, the scales nearly concealed. Hindclaws and foreclaws prominent and enlarged; three centre digits of hindfoot longer than D.5, which is longer than the hallux. Sometimes slight aquatic


Fig. 50. Arvicola terrestris terrestris, Linnaeus.
Cheekteeth: B.M. No. 8.8.9.25; $\times 8$.
modifications may be apparent, the foot with a small swimming-fringe developed. Fur thick; ear short. Sole of hindfoot mostly naked. Flank glands present in both sexes.

I do not think it is very likely that there is more than one valid species in this genus, though Ilinton's arrangement is followed; on account of the fact that Vinogradov states that whereas the species amphibius, terrestris, and scherman can be maintained in Western Europe, in a large series of material from the U.S.S.R., the distinctions between them break down. Hinton (p. fro) suggests that intergradation may be found to take place between terrestris and scherman (the latter the most extreme type). A. amphibius is usually larger; sapidus seems to be not more than subspecifically separable from it. All forms in the U.S.S.R. are regarded as one species by Vinogradov.

Hinton remarks, ' Apparently, that is so far as my observation goes, Voles of this genus are anmals which never stop growing and never grow old persistent growth of the cheekteeth appears to be accompanied by persistent growth of the skeleton; in the oldest individuals examined among the enormous amount of fossil and recent material at my disposal, not only are the molars in wigorous growth, but the epiphyses of the limb-bones are still unfused with their shafts."

Forms seen: amphibius, armenius, brigantium, exitns, illyricus, italicus, meridionalis, monticola, musignani, persicus, reta, sapidns, scherman, seythicus, terrestris, tomebricus, korahensis (Arzicola terrestris korabensis, Martino, 1937. from Yugoslavia).

List of Named Forms
I. ARVICOLA TERRES'IRIS TERRIESTRIS, Linnaeus

175S. Syst. Nat. 1, roth ed. p. 61
Upsala, Sweden.
Synonym: paludosus, Linnaeus, 1771, Mantissa Plantarum, pt. 2, P. 522.
ater, Billberg, 1827, Syn. Faun. Scand. p. \&.
littoralis, Billberg, same reference, p. 5 .
aquaticus, Billberg, same reference.
2. ARVICOLA TERRESTRIS ITALICLS, Navj
1830. Vunvo Giorn. de Letterati, Pisa, 37, 102, p. 202.

Vicinity of I'ssa, Italy.
Synmym: pertinax; Savi, 1839, Nuovo Giorn. de. Lett. Pisa, XXXVII, 102, p. 203.
minor, de Sélys-Longchamps, 1845, Atti della Sesta Run. degli Sci. Ital. Milano, 1844 , p. 322, nom. nud.
3. ARVICOLA TERRESTRIS MUSIGNANI, de Selys-Longchamp 1839. Rev. Zool. p. S.

Vicinity of Rome, Italy.
Synonym: destructor, Savi, 1839, Nuovo Giorn. Let. Pisa, XXXVII, 102, p. 204.
fuliginosus, de Sétys-Longchamps, 1845 , Atti della Sesta Riun. degli Sci. 1tal. Milano, 18 f4, p. 322, nom. nud.
4. ARVICOI A 'JERRESTRIS ILLY'RICUS, Barrett-Hamilon

IKg9. Ann. Mag, Nat. Hist. 7, JII, p. 225.
Bosnia, no exact locality.
5. ARVICOLA TERRESTRIS RLFESCENS, Satunin
1908. Mitt. Kauk. Mus. + p. 50.

Pokun Syrt, Podkumok, Karacai Territory, N. Caucasus.
6. ARLICOLA TERRESTRIS NERIDIONALIS, Ognev
1923. Biol. Mitt. Timiarazeff, 1, p. 109.

Tscherepinski Kanal, Ural District, Russia.
7. ARVLCOIA TIERRLSTRIS PERSICUS, de Fhppt
1865. Viaggio in Persia, 1865 , p. 344.

Sultanich, south of Elburz Mountans, l'ersia.
Synonym: armenius, Thomas, 1907, Ann. Mag. Nat. Hist. 7, XX, p. zor. Van, Asia Minor.

## ARVICOLA

8. ARYICOLA 'TERIESTRIS SCYTIICU'S', Thomas 1914. Ann. Mag. Nat. Hist. 8, KIII, p. 568.

Djarkent, Semiretchensk, Central Asia.
9. ARVICOLA TERRESTRIS OGNLEVI, Turov
1926. Bul. Sci. Inst. Expl. Caucase, 1, p. 326.

Village of K゙alaki, near the Mamissonschen lassess, Ossetinischen Militarstrasse, N. Ossetien, Caucasus.
10. ARIICOLA TERRESTRIS TATARICUS, Ognev
1933. Zcitschr. für Säugetierk. 8, p. 158.

Gouv. Kasan, Russia.
11. ARVICOLA TERRES'TRIS FERRUGINEUS, Ognev 1933. Zcitschr. für Säugetierk. 8, p. 159.

Arctic coast of Russia.
12. ARVICOLA TERRESTRIS VOLGENSIS, Ognev 1933. Zeitschr, für Säugetierk. 8, p. 162.

Volga Delta, Russia.
13. ARVICOLA TERRESTRIS CAUCASICLS, Ognev 1933. Zeitschr. für Säugeticrk. 8, p. 163.

Near Vladikawkas, Caucasus, Russia.
14. ARVICOLA TERRESTRIS TLROVI, Ognev
1933. Zeitschr. für Säugeticrk. 8, p. 165.

Kabardino-Balkarisches Gebiet, Staniza Kotljarevskaja, Tschernaja, Russia.
15. ARVICOLA TERRESTRIS VARIABILIS, Ognev
1933. Zeitschr. für Säugetierk. 8, p. 169.

Gouv. Tomsk, Siberia.
16. ARVICOLA TERRESTRIS JENJSSEJENSIS; Ognev
1933. Zeitschr. für Säugetierk. 8, p. 170.

Minussinsk, Siberia.
17. ARVICOLA TERRESTRIS KUZNETZOVI, Ognev 1933. Zeitschr. für Säugctierk. S, p. 171.

Urdshar River, Semipalatinsk, Siberia.
18. ARVICOLA TERRESTRIS JACUTENSIS, Ognev
1933. Zeitschr. für Säugetierk. 8, p. I72.

Yakutsk, Siberia.
19. ARVICOLA TERRESTRIS TAL'RICUS, Ognev 1923. ISiol. Mitt. Timiarazeff, p. 109.

Ung. von Melitopol, Suden des Europ. Russlands.
20. ARVICOLA TERRESTRIS CLBANENSIS, Ognev
1933. Zeitschr. für Säugetierk. 8, p. 164.

Kuban River, Staniza (Kasaken Dorf) Grivenskaja, S. Russia.
21. ARVICOLA T'ERRESTRIS ABRUKENSIS, Reinwaldt
1927. Act. Com. Univ. Tartu, 12, p. 23.

West Isles, Estonia.

## 632 ARVICOLA

22. ARVICOLA TERRESTRIS IINTONJ, Aharoni
23. Zeitschr. für Säugetierk. 7, p. 209.
N. Syria.
24. ARVICOLA SCHERMAN SCHERMIAN, Shaw
25. Gen. Zool. 2, pt. 1, p. 75.

Strassburg, Germany:
Synonym: albus, Bechstein, Gem. Nat. Deutsch. 1801, 1, 2nd ed., P. $9: 5$.
camus, Bechstein, same reference. argentoratensis, Desmarest, Mamm. II, p. 281, 1822. buffonii, Fischer, Syn. Mamm. 293, 1829.
24. ARVICOLA SCHERNAN EXITL'S, Maller 1910. Proc. Biol. Soc. Washington, XXIII, p. 21.

St. Gallen, Switzerland.
Synonym: niger, de Selys-Longchamps, 1845, nom. nud.
castaneus, de Sélys-Longchamps, 1845, nom. nud. both Atti della Sesta Riun. degli Sci. Ital. Milano, 1844, p. 321.
25. ARVICOLA SCHERMAN MONTICOLA, de Sélys-Longchamps 1838. Rev. Zool. p. 249.

St. Bertrand de Comminge, Hautes-P'yrénées, France.
26. ARVICOLA AMIPHIBIU'S AXIPHIBIUS, Linnaeus
1758. Syst. Nat. ed. Io, 1, p. 61.

England.
Synonym: aquaticus, Cuvier, 1817, Dict. Sci. Nat, 6, 306.
americana, Gray, 1842 , Ann. Mar. X, 266.
nigricans, de Seelys-Longchamps, i845, Atti della Sesta Riun. degli Sci. Ital. Milano, 1844, p. 322 . nom. nud.
27. ARVIC'OLA AMPHIBIC'S RETA, Mhller
1910. Proc. Biol. Soc. Washington, XXIII, p. 19.

Aberdeen, Scotland.
Synonym: ater, Macgillirray, 1832 , Mem. Wernerian Nat. Hist. Soc. 6, 429. Not of Billberg.
28. ARVICOLA ANPHIBIL'S BRIGANTICN, Thomas

192S. Ann. Mag. Nat. IIst. Io, I, p. 3 if.
Huddersfield, Northumbria, England.
29. ARVICOLA AMPHIBIUS KLRUSCHI, Heptner \& Formozov 1928. Zool. Anz. 77, p. 276.

Near Aul Kurusch, Samurski-Bezirk, Daghestan, E. Caucasus.
30. ARVICOLA AMPMIBIUS TANAITICA, Kalabuchow \& Rajewskij
1930. Bull. N. Caucas. Pl. Prot. Sta. 5, p. 140.

Donez Region, S.-E. Russia.
31. ARVICOLA AMPIIIBILA DJLKOVI, Ognev \& Formozov
1927. Ann. Mag. Nat. Hist. 9, NIX, p. 138.

Daghestan, Caucasus, Russia.
32. ARVICOLA sAPlDC's AAPIDl's, Miller
1908. Ann. Mag. Nat. Hist. 8, I, p. 195.

Santo Domingo de Silos, Burgos, Spain.
33. ARVICOLA SAPIDUS TENEBRICL'S, Miller
1908. Ann. Mag. Nat. Hist. 8, 1, p. 196.

Biarritz, Basses-Pyrénces, France.
Synonym: musiniani, Lataste, Act. Soc. Linn. Bordeaux, XXXVIII, p. 37, not of de Sélys-Longchamps.

The "Nesokia" argyropus of Cabrera, 1901, Bol. Real Soc. Esp. Nat. Hist. 1, 118 , Persia, belongs to this genus.

## Genus 25. LAGURUS, Gloger

1841. Lagurus, Gloger, Hand- u. Hilfsbuch d. Naturg. vol. i. p. 97.
1842. Lemmiscus, Thomas, Ann. Mag. Nat. Hist. 8, IX, p. 401. (Arzicola curtata, Cope.) Valid as a subgenus.

Type Species.-Lagurus migratorius, Gloger = Mus lagurus, Pallas.
Range.-South Russia, Russian Turkestan, Mongolia; Western North America. In the Palaearctic, from Ukraine, Northern Caueasus, Volga-Ural Steppe, Kazakstan, Minussinsk district, Tianshan, Dzungaria, Semirechyia, Ust Yurt and Karakum districts, Chinese Turkestan, and Mongolia. In America, from Nevada, Eastern California, Oregon, North Dakota, Montana, Alberta, Washington, Idaho, Utah.

Nember of Forms.-Eleven.
Characters.-Skull angular, with prominent peg-like squamosal crests. The supraorbital ridges, though strong, do not fuse in the interorbital region. Bullae very large, the mastoids conspicuously inflated, tending to show in superior aspect of skull; the bullae and mastoids are more inflated than other members of the group, except Blanfordimys. The bullae, as in that genus, are spongy within. Zygoma robust. Interparietal rather small. Palate posteriorly as in Microtus. Cheekteeth evergrowing, lacking cement in folds, which are very widely open. M.1 with the usual elements, but also with a sharp projection between the anterior and posterior inner salient angles. X. 2 with the usual elements, and this peculiarity repeated. M. 3 in L. luteus with a straight anterior loop, three more or less closed triangles, and a long narrow straight posterior loop. In the type species, M. 3 has an anterior loop, three closed triangles, and a slight projecting angle on the outer side in front of the posterior loop. M.i lower with posterior loop, five elosed triangles, and an anterior loop with a slight fold each side of it. M. 2 normal. M. 3 with posterior loop, and four closed triangles; this tooth therefore more or less like M.2. In the luteus group, the anterior loop of N. i appears simple.

External form highly specialized. Tail about length of hindfoot only, fully haired. General appearance heavy, thickset and Lemming-like; ear extremely short, more or less covered by fur; sole of hindfoot densely haired, the pads ( 5 in number) eoncealed. Claws becoming prominent in luteus group. A black middorsal stripe present in lagurus group. Mammae $2-2=8$.

I have seen comparatively few skulls of this genus. 'The American forms, which are not represented in the British Museum, are separated as a subgenus

Lemmisces, on account of the "less Lemming-like external form; longer tail; A. 3 lower with only three closed triangles." This group was diagnosed by Bailey (who revised it, 1900 , North Amer. Fauna, no. 17, p. 67) as follows: "Plantar tubercles five. Nammae 2-2-S. Lateral glands on flanks. Tail little longer than hindfoot. . . . Bullae very large, mastoids reaching plane of exoccipital condyles. Molars slender, with wide re-entrant angles; M. 3 with two closed triangles, and narrow posterior loop; M.r (lower) with five closed triangles, four inner and four outer salient angles; M. 3 (lower) with two terminal transverse loops and a pair of median triangles."

Apart from the American forms, which differ as indicated in the longer tail and the number of closed triangles in M. 3 lower, there are two very distinct specific groups in the Palaearctic:
lagurus group: general coloration darker; a middorsal stripe; size smalker; \1.3 with less reduced posterior loop: Ukraine, North Caucasus, North Kazakstan, South-east Russia, and eastwards to Tianshan and Minussinsk.
luteus group: general coloration paler; no middorsal stripe; size larger; M. 3 with more reduced posterior loop; Mongolia, Chinese Turkestan, Dzungaria, Kazakstan, Karakum, to valley of River Cral. This group includes the species praezualski.
The genus appears very sharply separated from Wicrotus and its numerous allies.

Forms seen: abucumicus, agressus, altorum, lagurus, lutens, fraewalski.

> List of Named Forvis
> Suhgenus Lagurus, Gloger
> lagurus Group

1. LAGLLRLS LA(ilRL'S LAGLRL゚S, Pallas
2. Reise, ii, P. 704.

Ural River, W. Siberia.
Synonym: migratorius, Gloger, 1841. Gemeinn. Nat. I, p. 97. W: Siberia

ב. LAGCRUS LAGLRLS ALTORLM, Thomas
1912. Ann. Mag. Nat. Hist. 8, 1N, p. 40 I.

Barlik Mountains, N.-W. Dzungaria, Central Asta.
3. JAGLRLS LAGLRLS AGRESSL'S, serebrennhos
1929. Ann. Nus. Zool. Leningr. 30, p. 267.

Samara Gouv. Russia.

1929. Ann. Mus. Zool. Leningr. 30, p. 267.

Mimussmsk district, Siberia.
luteus Group
5. L.AGLRLS LLTELS, Eversmann
isfo. Bull. Nat. Moscow, p. 25.
N'.-IV. U'fer des Aralsees, 'Turkestan.
6. LAGURLS PRZEWALSKII, Büchner

1889 . Wiss. Res. Przewalski Central-Asien Reisen: Zool. Th. 1, Säugeth. p. 127. Zaidam, Central Asia.

Subgenus Lemmiscus, Thomas
7. L.AGURL'S CLR'PATLS CLRTATLS, Cope
1868. Proc. Acad. Nat. Sci. Philadelphia, p. 2.

Pigeon Spring, Mount Magruder, Nevada.
8. L.AGURL'S ('L'RTATL'S ARTEMIISIAE, Anthony
1913. Bull. Amer. Mus, Nat. Hist. XXXII, p. If.

Ironside, Malheur County, Oregon.
9. LAGURUS 1NTERMEDIUS, Taylor
1911. Univ. Calif. Publ. Zool. VII, p. 253.

Big Creek, Pine Forest Mountains, I Iumboldt County, Nevada.
10. LAGL'RU'S PALLIDL'S, Merriam
1888. Amer. Nat. XXII, p. 704.

Fort Buford, Williams County, N. Dakota.
ir. LAGURL'S PALPERRIMILS, Cooper
I868. Amer. Nat. II, p. 535.
Plains of the Columbia, Snake River, S.-W. Washington.
(American forms revised by Bailey, North Amer. Fauna, no. 17, p. 67, 1900.)

Genus 26. NEOFIBER, True
1884. Neofiber, True, Science, IV, p. 34.

Type Species.-Neofiber alleni, True.
Range.-Nearctic: Florida.
Number of Formis.-Two.
Cilaracters.-Skull with considerable interorbital constriction, and peglike squamosal crests. Zygomatic plate normal. Bullae medium in size. Temporal ridges widely separated on braincase, but in the one skull seen nearly fused in interorbital region. Palate about as Ondatra (below). Incisors broad. Cheektecth evergrowing; M.i, M. 2 normal; M. 3 with anterior loop, two alternating closed triangles, and posterior loop, the inner folds two only. M.i lower with posterior loop, five closed triangles, and rather complex anterior loop; M.2 normal; N .3 reduced, with only one outer fold and two salient angles.

Externally large; considerably modified for aquatic life, but less so than Ondatra; tail round (normal), with long hairs partly clothing it, but scales apparent; hindfoot considerably larger than forcfoot; D. 5 shorter than the three central digits, longer than the hallux; claws relatively well developed; pollex less reduced than is usual, foreclaws relatively large. Mammae $1-2=6$. Plantar pads 5. Fur very soft. Swimming-fringes on feet and tail not highly developed.

Forms scen: alleni.

# List of Named Formis 

1. NEOFIBER ALIENI ALLENI, True
2. Science, IV, p. 34.

Georgiana, Brevard County, Florida.
2. NEOFIBER ALJENI NGGRESCENS, Howell .
1920. Journ. Mamm. Baltimore, 1, p. 79.

Ritta, Lake Okcechobee, Palm Beach County, Florida.
Genus 27. ONDATRA, Link
1795. Ondatra, Link, Beyträge zur Naturgesch. vol. 1, pt. 2, p. 76.
1800. Fiber, Cuvier, Tabl. Elem. Hist. Nat. Anim. p. I4r. (Castor zibethicus, Linnaeus.)

Type Species.- Castor aibethicus, 1, innaeus.
RANGE.- Nearctic, widely distributed in Canada and U.S.A. Canada from Alaska to Hudson Bay, and in Labrador; Newfoundland; most of United States except extreme south central portion, and not occurring in Florida; forms named from Virginia, Oregon, Nevada, Arizona, New Mexico, Kansas, Louisiana; a good range map published by 1Iollister, and in Anthony, Field Book North American Mammals, 19z8. (The genus also now ranges owing to artificial human introduction, in parts of Europe).

Number of Forms.-Fifteen. The genus is revised by Hollister, North Amer. Fauna, no. 32, 1911.
Characters.-Skull angular, with extreme interorhital constriction; interorbital ridges fused to form a very sharp median crest, this continued backwards behind the level of the squamosal crests; temporal ridges close to each other on braincase. Lambdoid crest heavy in adult. Squamosal crests very prominent. Rostrum relatively heavy. Zygomatic plate strongly ridged above. Incisive foramina narrow but long; bullae relatively small, and lacking spongy tissue. Palate unspecialized posteriorly, the sloping median ridge found in Microtus is more or less suppressed, the spinous process short, the posterolateral pits small. Cheektecth rooted in adult. M.., M. 2 upper normal; M. 3 with anterior loop, two alternating triangles, and a moderately large rounded posterior loop. Lower molars: M. 3 with two closed triangles between the terminating loops; M. 2 normal; M. with posterior loop, five closed triangles, then two well-marked triangles (sometimes closed) nearly cut off from anterior loop by a deep inner and outer fold.
size largest of subfamily; up to 320 mm . head and body or perhaps more. Externally highly modified for aquatic life; tail highly specialized, relatively long, more or less naked, but with well developed swimming-fringe below, and compressed laterafly so that it is much higher than broad. D. 2 of manus short, D. 3 slightly longer than D.4; D. 5 shortest; claws strong. llindfoot much larger than forefoot; swimming-fringes conspicuous; sole naked; plantar pads 5 or 4 ; D. 5 relatively long, but shorter than D.2; D. 4 tending to be slightly
longer than D.3; claws large; hallux quite well developed. Ear very short. Fur thick and soft (most valuable commercially). Mammae $1-2=6$. "Perineal glands, secreting a powerful musk, are well developed."

Forms seen: obscura, osoyoosensis, zibethica.

## List of Named Forms

1. ONDATRA OBSCURA, Bangs

1894 . Proc. Biol. Soc. Washington, 1X, p. 133.
Codroy, Newfoundland.
2. ONDATRA ZIBETHICA ZIBETHICA, Linnacus 1766. Syst. Nat. 12 th ed. vol. 1, p. 79.
E. Canada.
3. ondatra zibethica macrodon, Nerriam
1897. Proc. Biol. Soc. Washington, II, p. 143.

Lake Drummond, Dismal Swamp, Norfolk County, Virginia.
Synonym: niger, Brass, Aus dem Reich der Pelze, p. 604, 1911 .
4. ONDATRA ZIBETHICA AQUILONIA, Bangs
1899. Proc. New. Eng. Zool. Club, I, p. ir.

Rigolet, Hamilton Inlet, Labrador, Canada.
5. ONDATRA ZIBETHICA ALBA, Sabine
1823. Franklin's Narr. Journ. to Polar Sea, Appendix, p. 660.

Cumberland House, Saskatchewan, Canada.
Synonym: hudsonius, Preble, 1902, North Amer. Fauna, no. 22, p. 53. Keewatin.
6. ONDATRA ZIBETHICA SPATULATA, Osgood
1900. North Amer. Fauna, no. 19, p. 36.

Lake Marsh, Vukon, Canada.
7. ONDATRA ZIBETHICA ZALOPHA, Hollister 1910. Proc. Biol. Soc. Washington, XXIII, p. 1. Becharof Lake, Alaska Peninsula, Alaska.
8. ONDATRA ZIBETHICA OSOYOOSENSIS, Lord 1863. Proc. Zool. Soc. London, p. 97.

Lake Osoyoos, British Columbia, Canada.
9. ONDA'TRA ZIBE'THICA OCCIPITALIS, EHiot
1903. Field Columb. Mus. Pub. 74, zool. ser. vol. 3, p. 162. Florence, Lane County, Oregon.
10. ONDATRA ZIBE'THICA MERGENS, Hollister 1910. Proc. Biol. Soc. Washington, NXIJI, p. i. Fallon, Churchill County, Nevada.
11. ONDATRA ZIBETHICA PALLIDA, Mearns
1890. Bull. Amer. Nus. Nat. Hist. II, p, 2 So.

Fort Verde, Yavapai County, Arizona.
12. ONDATRA ZIBETIHCA RIPENSIS, Batey
1902. Proc. Biol. Soc. Washington, XV, p. 119.

Eddy, near Carlshad, Eddy County, New Mexico.
14. ()NDATRA ZIBETHICA BIRNARDI, Goldman 1932. Proc. Brol. Soc. Washington, KLV, p. 93. + miles south of Gadsden, Yuma County, Arizona.
15. (INDATRA RIVALICLA, Bangs 1895. Proc. Boston Soc. Nat. Hist. XXV1, p. $5 \not \psi^{1 .}$ Burbridge, Plaquemines Parish, Louisiana,

## Genus 28. PROME'THEOMY'S, Satunin

igor. Prometheomys, Satunin, Zool. Anz. XXIV, p. 572.
Type Species.-Promethcomys schaposchmikozti, Satunin.
RaNge.-Caucasus Mountains, Russia.
Ncmber of Forms.-One.
Characters.-This genus and Ellobius differ from other Microtinae in their reduced third molars, and their extreme specialization towards underground life. The present genus is much the more primitive of the two in cranial characters. 'The molars in both are rooted. The present genus evidently relies on the claws for digging, whereas Ellobius hurrows chiefly with the incisors.

Skull not highly abnormal. Supraorbital ridges fused in the interorbital region, and continuing backwards nearly to the lambdoid ridge. Interparictal small but not suppressed. Infraorbital foramen normal. Squamosal erests moderately developed. Zygoma relatively narrow. Upper incisors onegrooved. Mandible with high coronoid, and moderate angular portion. Incisive foramina not much reduced. Bullae large, but mastoids not inflated. Palate terminating posteriorly nearly as in Clethrionomys, but rather more primitive in structure than in that genus, "the inner borders of the posterolateral pits not directly connected with palatal shelf, each pit with a large foramen." Cheektecth rooted; upper cheekteeth more or less like those of Ellohius (below), hut triangles tending to be more closed, so that M.i can he normal. M. 3 with two outer, one inner folds, the tooth reduced in size. M.i lower with posterior loop, three closed triangles, and antcrior loop with traces of a fold in it each side (which are sometimes well marked). X.2 with posterior loop, two closed triangles, and anterior loop. W. 3 with tiv loops, this tooth very small. Each tooth with two roots; in X.I a vestige of a third root, supporting the second inner angle-is sometimes present ; in $\lambda . \frac{3}{3}$ the ronts may coalesce (Hlinton).

Plantar pads 5. Mammae $2 \quad 2-8$. Tail ahout a third of head and body length, fully haired. Ear small. D. 5 of hindfoot rather strongly reduced; heel hairy. Ilindelaws prominent. Foreclaws extremely enlarged; D. 3 the main digit, D. 4 a little longer than 1).2; D. 5 short. Pollex vestigial, but clawed.

Forms seen: schaposchnikozei.

## List of Named Forms

1. PRONIETHEOMYS SCHAPOSCHNIKOWI, Satunin
2. Zool. Anz. XXIV, p. 574.

Alpine zone of the Central Caucasus, Russia.

Genus 29. ElLLOBILS, Fiseher

18i4. Elloblus, Fischer, Zoognosia, iii, p. 72.
Type Species-Mus talpinus, Pallas.
Range.-From South Russia and Asia Minor eastwards through Russian Turkestan and Persia to Afghanistan, Baluchistan, Chinese 'Turkestan and Mongolia. In U.S.S.R., from Ukraine, Crimea, Transcaucasia, North Caucasus, Bashkiria, Ural, Kazakstan, Ashabad, Bokhara, Samarkand, Prealtai Steppe, Semirechyia, etc. (Vinogradov).

Numbir of Formis.-Seventeen.
Characters.-Skull highly modified for fossorial life; upper incisors extremely pro-odont, white in colour, and much lengthened. Supraorbital ridges tending to come together, though not well marked, and interparietal well developed in the type species. In this group there is no sagittal ridge formed. In E. fuscocapillus and E. lutescens, there is a sagittal crest, which in the former extends to the lambdoid; and no interparietal. Lambdoid ridge very promiment as a rule. Zygoma thick. Infraorbital foramen, large, abnormal, with no well marked outer wall, and no separate portion for nervetransmission apparent. Squamosal crests weak. Bullae medium. Palate terminating posteriorly essentially as in Microtus. Palatal foramina small in the type, vestigial in the larger species (fuscocapillus group). Mandible with high recurved coronoid process; angular portion reduced; lower incisor root showing prominently beside condylar process. Cheekteeth rooted. Upper molars with apparently no closed triangles; M. I with two inner, two outer folds; M. 2 with two outer, one inner well-marked folds; M. 3 very reduced, considerably smaller than M. 2 (thus differing from other \icrotinae, except Prometheomys), with one well-marked fold each side; a vestigial posterointernal fold, and a vestigial anteroexternal fold may be present. 'I he pattern wears out with age. N.1, M. 2 two-rooted; M. 3 one-rooted, both upper and lower series (Hinton). Folds of cheekteeth without cement. Lower teeth: M.I with four inner, three outer folds, the triangles confluent, not closed, the anteroexternal fold often very small. M. 2 with two folds each side. M. 3 with two well-developed folds each side, this tooth smaller than M.2.

Plantar pads 6 . Mammae $2-2=8$. Externally highly specialized for underground life; tail shorter than hindfoot; fur soft; ear vestigial. Claws not much enlarged, but the hands and feet are broad. The three central digits of the hindfoot are longer than the two outer ones. The pollex is less reduced than is normal in a Rodent, and D. 5 in the manus is short.

Two species groups, typificd by talpinus and fuscocapillus are recognizable,
characterized by the cranial peculiarities indicated above. The latter is typically larger than the type species. Vinogradov regards all named forms occurring in the U.S.S.R. as races of the type, except fuscocapillus and lutescens. Probably the Persian form zooosnami is not more than a race of lutescens.

Forms seen : albicatus, coenosus, fuscipes, fuscocapillus, kashtchenkoi, Intescens, talpinus, tancrci, transcaspiae, ursulus, zooosnami.

## List of Named Formis

## fuscocapillus Group

1. FLLOBIUS FUSCOCAPILLU'S FUSCOCAPILLUS, Blyth 1841. Journ. Asiat. Soc. Bengal, X, p. 928. Quetta, Baluchistan.
2. ELLOBIUS FUSCOCAPILLUS INTERMEDIUS, Scully
3. Journ. Asiat. Soc. Bengal, LVI, p. 73.

Herat, Afghanistan.
3. ELLOBIUS LUTESCENS LUTEACENS, Thomas
1897. Ann. Mag. Nat. Hist. 6, XX, p. 308. Van, Kurdistan, Asia Minor.
4. ELLOBIUS LUTESCENS WOOSNANII, Thomas
1905. Abstr. Proc. Zool. Soc. London, no. 24. p. 23; Proc. Zool. Soc. London, p. 526. Dumbeneh, Persia.

## talpimus Group

5. ELLOBIUS TALPINUS TALPINUS, Pallas 1770. Nov. Comm. Acad. Petrop, XIV, 1, p. 568.

Kostytschi, west bank of River Volga, Russia.
Synonym: mtrinus, Pallas, 1811 , Zoogr. Ross. As. 1, p. 160. ater, Pallas, Now. Sp. Quad. Glir. Ord. 179, 1778.
f. ELJOBJLS TALPINLS RLFESCENS, Eversmann
1850. Estest. Istor. Orenberg, Kraya, ii, p. 175.
"Steppes eastwards from River Ural" (Vinogradot).
7. ELLOBIUS TALPINUS TANCRE1, Blasius
1884. Zool. Anz. VII, p. 197.

Altai Mountains, Siberia.
8. ELLOBIL'S TALPINUS KASH'TCHENKOI, Thomas 1912. Ann. Mag. Nat. Hist. 8, 1X, p. +o4.

Tomsk, W. Siberaa.
9. ELLOBIUS TALPINUS TRANACASPIAE, Thomas
1912. Ann. Mag. Nat. Hist. 8, IX, p. 405.

Sultan-Bent, Transcaspia.
10. ELLOBft's TALPINUS OGNEVI, Dukelshaya
1927. Bull. Univ, Asia. Centr. 15, p. 71.

Bokhara, Turkestan.

1912. Ann. Mag. Nat. Hist. 8, IS, p. 403.

Dzungaria, Central Asia.
12. ELLOBILS TALPINU゚ FLSC'IC'EPS, Thomas
1909. Ann. Mag. Nat. Hist. 8, III, p. 265.

Samarkand, Turkestan.
13. ELA, OBILS TALPINUS ALBICATUS, Thomas
1912. Ann. Mag. Nat. Hist. 8, IX, p. 401.
S.-E. Ilami Mountains, N.-E. Chinese Turkestan.
14. ELLOBIUS TALPINLS COENOSLS, Thomas
1912. Ann. Mag, Nat. Hist. 8, IX, p. 402.

Muzart Valley, Tian-Shan, China.
15. ELLOBILS TALPINUS (?) LARVATLS, G. M. Allen 192.4. Amer. Mus. Nov. no. 133, p. 11.

Artsa Bogdo, Sain Noin, Mongolia.
16. ELLOBIUS TALPINUS (?) ORIliNTALIS, G. MI. Allen
1924. Amer. Mus. Nov, no. 133, p. 12.

Iren Dabasu, E. Mongolia.

## Not allucated to Group

17. ELLOBIUS FARSISTANI, U'garov
18. Acta. Univ. Tashkent, 8A, no. 4, p. 12. Persia.
The subfamily Microtinae is known fossil from the Miocene. Full notes on many fossil forms are given by Hinton, Monograph of Voles and Lemmings.

## Genera Unrepresented

There is one named genus, not represented in the British Museum:
NEOASCHIZOMIS, Tokuda
1935. Mem. Coll. Sci. Kyoto, гов, p. 241.

Typf.-N. sikotanensis, 'Tokuda, same reference, p. 242, from Sikotan Island, Kurile 1slands, north of Japan.
It appears to be closely allied to, or probably a subgenus of Clethrionomys. with which it agrees in structure of palate, and rooted cheekteeth, but is more specialized according to its describer because "its body is furnished with remarkably thick and soft fur," "it has a massive and robust external body well adapted for fossorial life," "it has marked angularity of the skull, with welldeveloped facial muscles."
M. 3 lower is said to be not much displaced by the shaft of the lower incisor (like normal Clethrionomys, according to Ilinton's key).

2T-Living Rodents-11

ELLOBIUS

## Milcrotinae

## SPECIAL HORKS OF REFERENCE

IIINTON, Nonograph of Voles and Lemmings, $1,1926$.
Miller, North American Fauna, no. 12, 1896 ; genera and subgenera of Microtinae
Bailey, Proc. BioI. Soc. Washington, XI, p. 113, 1897. Revision of North American Clethrionomys under the name Ezotomys.
Bailey, North American Fauna, nn. 17, 1900. Revision of North American Microtus (with Pitymys, Pedomys, Lagurns, Neofiber).
Howfle, North American Fauna, no, 50, 1927. Revision of Symaptomys.
G. M1. Allen, BuIl. Mus. Comp. Zool. Harvard CoIl. LXII, p. 509, 1919. Revision of Dicrostonyx.
Howfll, North Amer. Fauna, no, 48, 1926. Revision of Phenacomys.
Hollister, North Amer. Fauna, no. 32, 1911. Revision of Ondatra, under the name Fiber.
Vivogradov, Rodents of U.S.S.R., Tabl. Anal. Fauna l'URSS. Inst. ZooI. Acad. Sci. 10. F. II, 1933. Nicrotinae, species occurring in U.S.S.R.: Myopus, Lemmus, Dicrostonyx, Ellobius, Prometheom's, Clethrionomys, Alticola (with Aschizomys), Lagurus, Arzicola, .Wicrotus (with Pitymys, Neodon, Blanfordimys, etc.).
\iller, Catalogue Mammals Western Europe, 1912, p. 6io. Myopus, Lemmus, Cletlurionomy's, Microtus, Arvicola, Pitymys.
Argyroptlo, Subgenera of Microtus in Palaearctic region; 1933, Zeitschr. für Säugetierk. S, p. 182.

THE END
Completal for publication Yune 30th, 1931)

## APPENDIX I

List of New Names published in this Work
Yol. I
"Tamiops" (= Callosciurus) lylei, Thomas, 1920, replaced by holti, new name, p. 355 .

Not Callosciurus lylei, Wroughton, 1908.
Citellus atricapilla, Orlov, 1927, replaced by binominatus, new name, p. 442.
Not Citellus (Otospermophilus) atricapillus, Bryant, 1889.
Citellus pallidus, Orlov \& Feniuk, 1927, replaced by orlovi, new name, p. 442. Not Citellus pallidus, Allen, 1877.

Vol. II
MICAËLAMY'S, subgenus new, of Rattus, for Mus granti, Wroughton, from South Africa; pp. 149, $\mathbf{1}_{70 .}$
"Stenomy's" (= Rattus) klossi, Thomas, 1913, replaced by haymani, new name, p. 206. Not Rattus klossi, Bonhote, 1906.
"Stenomys" ( = Rattus) clare, Rummler, replaced by pococki, new name, p. 206. Not Rattus clarar, Miller, 1913.
"Myomys" ( $=$ Rattus) saturatus, Ingoldby, replaced by ingoldbyi, new name; p. 21 r. Not Rattus saturatus, Lyon, 1911.
RATTUS TATEI, sp. nov. (concolor group), from Tamalanti, Mid Celebes, p. 215 . RATTUS FROSTI, sp. nov. (xanthurus group), from Tamalanti, Mid Celebes, p. 216. RATTUS HELLWALDI DOLLMAN1, subsp. nov. from Rantekaroa, Quarles Mountains, Mid. Celebes, p. 218.
Mus mystacimus, Mohr, replaced by molri, new name, p. 246 .
Not Mus mystacimus, Danford \& Alston (an Apodemus).
ZOKOR, subgenus new, of Myospalax, for Myospalax fontanieri, Milne-Edwards,
p. 541. To include fontanicri group, and M. smithi, Thos.

Microtus angustus, 1lall, 1931, replaced by halli, new name, p. 603.
Not Microtus angustus, Thomas, 1908.
Microtus satunini, Ognev, 1924, replaced by binominatus, new name, p. 607. Not Microtus satunini, Shidlovsky, 1919.

## APPENDIX II

1. Correction to List of Named Formis in Genus Scierts (Vol. 1, p. 343)

On ground of priority the specific name used for forms Nos. 162 and 163 should be paraensis, Goekdi (1904) and not alphonsei, Thomas (1906) as printed.
2. Correction of locality for Sciurillus murinus (Vol. i, p. 64). For "Philippines" read Cclebes.

## APPENDIX III

## Purther Cotes on Camel Fords in the Genus Rattus

Fhe important work on Ruttus, Chasen, Handlist Maday Mammals, Bull. Raffles Nus. Singapore, no. 15, 19+0, arrived too late to be utilized in my list above. Some notes are given, below, on the first +30 names, coupled with if few further suggestions on some of the Indian forms.

No. 1. Ruttus baluensis. Chasen says it is almost certainly a high level form of Rattus ruttus.
12. Rattus cumus, and races. This species also occurs in Borneo and Java.
15. Ruttus tunesumi is I think a race of Rattus rattus, and the same applies probably to no. 16, R. losed.
20. Ruttus turkestanicus, vicerex, and rattoides will doubtless all prove to be races of the earliest named ruttoides; it is possible also that no, ${ }^{1}+5$, humiliatus, and races, might represent this branch in China, and not noreegicus as I had previously supposed.
So. Rattus ruttus palembung is a synonym of no. 93, R.r. diardi, according to Chasen.
$\mathrm{S}_{2}$. Ruttus rattus brezicandatus is a synonym of $R$. I. argentizenter, no. 79, according to Chasen.
83. Ruttus ruttus buli; a synonym of R. r. diurdi, no. 93, according to Chasen.
84. Rattus rattus samati, is a synonym of $R$. r. diardi, no. 93.
1). Rattus rattus neglectus, is also a synonym of R. r. diardi.
97. Rattus montumus, Phillips, Cevlon, is a very distinct species characterized by, for the genus, unusually complex and heavily cuspidate molars.
101. Ratus "griseiventer grisetrenter," is a synonym of Rattus rattus diardi, nos. 93 , according to Chasen.
102. Rattus "griseiventer" ammandulei is a valid species according to Chasen. Ile says bullutus (no. 118), synonym zillosus (no. 201), is a race of it. Whether this is so or not, specimens seen of zillusus represent a thoroughly distinet species, probably of ruttus group and not mulleri group as here listed.
104. Ruttus remotus, is a race of amamdulci, no. 102, accurding to Chasen.

入os. 105, tingius, 107, roa, 108, pannesws, 109, pannellus, 113, lugchs, 11 t, mactens, 115 , simalur ensis, 116 , babi, and 117 , lasiue, are all races of Rattus rattus.
No. 118. Rathus bullatus, is a race of annandalei, no, 102, according to Chasen. Fice note above, on no. 102.
Vos, 119, siantanicus, 120, timmanicus, 121, tumbelanicus, 123, tue, and 124, jutiamus, are all races of Ruttus ruttus.
Nin, 125, dommomani, and 126 , pesticulus, are both, I think, races of Ruttns ruttus.

No. 145. Ruthus humiliatus and races; it is possible that these are the Chinese representatives of rattoides, and not norvegicus; see note above, no. 20 . R. rattoides differs from rattus, among other things, by its considerably shorter palate.
165. Rattus concolor clahatus; is a synonym of concolor, according to Chasen.

16 g . Rattus pullus; a synonym of R. c. concolor, no. :62, according to Chasen.
t\%o. Ruttus surdus, is a race of $R$. concolor.
171. Rattus schuitemakeri, is a synonym of R. concolor ephippium, no. 163, according to Chasen.
172. Rutfus rateni is I think a race of $R$. concolor. But I think this whole group, including concolor, will have to bear the name Rattus exulans, Peale, 1848, (no. 189), which antedates concolor. Doubtless the Philippines forms are races also.
193. Ruttus mulleri; its synonym, zictor, Miller, should be listed as a synonym of zulidus, no. 198, and not of mulleri.
195. Ruttus mulleri foderis, is a synonym of R. mulleri validus, no. 198.
198. Ruttus vulidus, is a race of mulleri.
199. Rattus validus tcrempu, is a race of mulleri.
200. Ruttus jarak; wrongly allocated here; it is a race of $R$. rattus.
201. Rattus villosus; wrongly allocated here; it is, according to Chasen, a synonym of bullatus, no. 118 , which Chasen thinks is a race of annandalei, no. 102. See note above on no. 102. Specimens seen bearing the name villosus represent a species quite distinct from either rattus or mulleri.
Nos. 202, firmus, 203, domitor, 204, pollens, 205, potens, 206, valens, 207, balmasus, 208, chombolis, are all races of $R$. mulleri, no. 193.
No. 209. Rattus maxi; is according to Chasen a race of infraluteus, no. 210, which is the "high level representative of $R$. mulleri".
Nos. 211 , crassus, 212, sebucus, and 213, integer, are all races of $R$. mulleri, no. 193 .
No. 218. Rattus marmosurus, is probably 1 think a race of $R$. xanthurus, no. 216.
235. Rattus chrysocomus; fratrorum, no. 236 , is a race, and I think it probable that most or all of the forms listed in this group will be regarded as races of chrysocomus.
250. Rattus excelsior, is I think a race of andersoni, no. 248 .
251. Rattus culturutus, is very probably a race of andersoni, no. 248 .
252. Rattus confucianus, and its races, will in all probability be regarded as races of $R$. nizizenter, no. 264 .
265. Rattus ling, is probably a synonym of huang, no. 266, according to Osgood.
266. Rattus huang, is a race of $\dot{R}$. fulucscens, no. 267 .
275. Rattus fulzescens lepturoides, is, according to Chasen, a synonym of no. 325, besuki, which Chasen lists as a race of bukit ( $=$ fulrescens), and not of lepturus, as it was described.
$27-$. Rattrs ohiusis, Phillips, Cevion, is a thoroughly distinct species, characterized, among other things, by unusually reduced toothrow, as in buodom and alticolu, and very short palatal foramina.

No. 25y. Ruttus alticolu; appears th have an unusually reduced toothrow, as in R. bacodon.
280. Rattes ochraccizenter, is a race of alticola, no. 279.

2N1. Rattus brama; it is possible that this represents orbus, no. 304.
282. Ruttus mentosus; probably a race of futzescens, no. 267.
283. Rattus lupidus; Chasen suggests this represents bukit.
284. Rattus gracilis; very near orbus, according to Chasen. It antedates orbus.

2N5. Rattus indusinicus. Probably a race of cremoritenter, no. 29 f.
286. Rattus butamamus; a race of rhitchodi, no. 316 , according to Chasen.
$2 \mathrm{~N}_{7}$. Rattus mandus; a synonym of 286, R. zuhteheadi batamamus, according tis Chasen.
2S8. Rattus harussamus; a race of cromoricenter, no. 206, according to Chasen.
289. Rattus hylomoides. Chasen lists this as a race of alticola (no. 279), stating, however, that it is a very distinct form, and most systematists would regard it as a representative species. Toothrow apparently not specially reduced; see note above, no. 279 .
290. Rattus spatulatus; a race of cremorizenter, no. 296, according to Chasen.
291. Ruttus rapit. This is a salid species, and is used in a wide sense by Chasen, including, as races, orbus and fraternus, also leptwus, which, however, antedates rapit.
292. Rattus trachynotus, is queried as a synonym of batodom, no. 320, hy Chasen.
293. Rattus lapcha is very likely a race of nicizenter, no. 264.
302. Rattus bluthi; Chasen suggests it is a form of bukit ( $=$ fulvescons $)$.
304. Ruttus orbus; listed as a race (or "representative species") of ropit, no. 291. But cranial charactors of orbus seem rather different from rupit, and nearer to fulvescens.
305. Rattus orbus fratormus; remarks as no. 304.
307. Rattus solus; a race of rapit, no. 291, according to Chasen.
308. Rattus mengurus; a race of cremorizenter, no 296, according to Chasen.
309. Rattus flaziventer; a race of cremorizenter, no. 296, according to Chasen.
311. Rattus asper; a race of $R$. zehiteheadi, no. 316 .
313. Rattus klossi; a synonym of R. w. asper, no. 311 , according to Chasen.
314. Rattus imas. A race, or "representative species," of alticola, no. 279, according to Chasen.
315. Rattus butus; a race of culitcheudi, no. 316.
317. Rattus zchitcheadi perlutus, is a synonym of zchitcheadi, no. 315, according to Chasen.
318. Rattus melinoguster, queried by Chasen as a synonym of whitchecdi.
323. Rattus lepturus. Listed as a race of rapit by Chasen; but it antedates rupit. In any case, the very fong tonthrow of lepturas seems to suggest it is a thoroughly distinct species.
325. Rattus lepturus besuki, is a race of bukit ( - futzescens), according to Chasen, and not of lepturus.
32\%. Ruttus moi; regarded as a race of surifer, no. 329, by Osgood.

No. 355. Rattus pellax, is a race of rajah, no. 357, according to Chasen, though the cranial characters of pellax seem rather distinct.
369. Rattus catellifer, is a race of surifer, no. 329.
370. Rattus pagensis, is a race of $R$. surifer.
371. Rattus inflatus, Robinson \& Kloss, Sumatra, is a thoroughly distinct and highly specialized species.
Nos. 372, perflavus, 373, carimatce, 374, serutus, 375, saturatus, 376 , ubecus, 377 , anamber, and 378 , panglima, are all races of $R$. surifer, no, 329 .
No. 396. Rattus vociferans, and all forms here listed as races of it, are races of R. sabanus, no. 39 .

Nos. 409 , siporanus, 410 , soccatus, $4^{11}$, fremens, 412 , mansalaris, 413 , tuancus, $4^{14}$, balre, $4^{15}$, masa, $4^{16}$, nasutus, $4^{17}$, luta, $4^{18}$, stridens, and 419 , strepitans, are all races of $R$. sabanus, no. 390 .
No. 420. Rattus ferreocanus, is a race of bozersi, no. 42 I .
Nos. 424, wellsi,425, mackenziei, 426, fece; all these I think are very probably races of $R$. bowersi, no. 421 .

## INDEX

abacanicus, Lagurus, 634
abbotti, Mus, 243, 2.45
abbreviata, Neotona, 474
abbreviatus group, Microtus, 587, 590, 591, $593,602,614,615$
ablereviatus, Microtus, 593, 602
abditus, Microtus, 603
abietorum, Pcromyscus, 389
ablutus, Acomys, 272, 274
abrocodon, Phyllotis, 453
A13ROTHR1X, $406,407,409,410,416,419$, 423
abrukensis, Arvicola, 631
abulensis, Microtus, 606
abyssinicus, Arvicanthis, 124, 125
abyssinicus, Dendromus, 308
acaciae, Thallomys, 147
acadicus, Microtus, 598
accedula, Cricetulus, 433
acervator, Mus, $24^{6}$
acervifex, Mus, 246
acholi, Mus, 252
acomyoides, Uranomys, 276
ACOMIS, $2,10,11,19,22,32,41,45,58$, $65,167,269,276,284,313$
acraeus, Dendromus, 307, 309
acraia, Neotoma, 478
acrophilus, Alticola, 580
adelaidensis, Mus, 243
admiraltiac, Microtus, 599
adocetus, Microtus, 597
adspersus, Rattus, 191
adustus, Tryphomys, 294
adventor, Cricetomys, 289,290
aegyptiacus, Acomys, 272
aegyptius, Gerbillus, 508
acmuli, Rattus, 171, 187
AEPEOMIS', 366,367
aequicaudalis, Rattus, 171, 174
aequivocatus, Microtus, 601
aerosus, Akodon, 410,413
aerosus, Melomys, 228
aestuarinus, Microtus, 600
aeta group, Rattus, 167
aeta, Rattus, 168, 171, 209
AETHOMIS, 9, 20, 21, 35, 37, 39, 51, 52, $70,74,142,146,223$
afer, Lophuromys, 263
affinis, Acomys, 272
affinis, Nicroxus, 419
affinis, Neotoma, $47 \mathrm{I}, 477$
affinis, Oryzomys, 356
affinis, Peromyscus, 395
afghanus, Blanfordimys, $550,626,627$
affra group, Tatera, 512, 516
afra, Tatera, 513.517
africanus, Tatera, 517
aga, Lasiopodomys, 617
agag, Gerbillus, 502, 508
agilis, Micromys, 90
agrarius, Apodemus, 93, 95, 102
agrarius group, Apodemus, 95, 102
agressus, Lagurus, 634
agrestis group, Microtus, $586,587,593,595$, 597, 611
agrestis, Microtus, $590,594,596,611$
ainu, Apodemus, 95, 101
airensis, Acomys, 272, 273
aistoni, Notomys, 264, 266
aitchisoni, Hyperacrius, 581,582
akeleyi, Peromyscus, 390
akka, Lemniscomys, 130,133
AKODON, 8, 26, 328, 330, 331, 336. 406,
$407,408,409,410,417,418,419,423$, $426,427,446$
akodontius, Oxymycterus, 421
alascensis, Clethrionomys, 572
alascensis, Dicrostonyx, 558
alascensis, Lemmus, 564
alaschanicus, Rhombomys, 540
alba, Ondatra, 637
albayensis, Phloeomys, 293
alberti, Mylomys, 120
albertisi, Mlus, $2+3$
albescens, Onychomys, 404
albescens, Reithrodontomys, 379
albicans, Mus, 243
albicatus, Ellobius, 640, 641
albicauda, Alticola, 579
albicauda, Brachytarsomys, 556
albicaudatus, Malacothrix, 314
albicaudatus, Mystromys, 445
albidiventris, Mus, $2+9$
albifrons, Peromyscus, 393
albigena, Acomys, 272, 275
albigula group, Neotoma, 471,472
albigula, Neotoma, 472
albigularis, Lemmus, 564
albigularis, Oryzomys, 344, 349
albigularis, Rattus, 159, 171, 190
albilabris, Reithrodontomys, $3^{8} 4$
albipes group, Conilurus, 154
albipes, Conilurus, 114
albipes, Cricetulus, 435
albipes group, Phenacomy's, 583, 584
albipes, Meriones, 533
albipes, Mystromys, 445
albipes, Phenacomys, 583,584
albipes, Rattus, $168,171,210$
albiventer, Aethomys, 145
albiventer, Akodon, $410,+15$
albiventer, Clethrionomys, 574

## 650

albisenter, Oryzomys, 346
albocaudata, Stenocephalemys, 141, 142
albocinereus, Gyomys, 220, 221
albolimbatus, Lemniscomys, 131
alborufescens, Microtus, 598
albostratus, Apodemus, 102
albus, Apodemus, 97
albus, Arvicola, 632
alhus, Cricetus, +40
albus, Microtus, 608
albus, Mus, 243
albus, Rattus, 174
alcinous, Clethrionomys, 568,571
alettensıs, Rattus, 210
alexandrinorattus, Rattus, 174
alexandrinus, Rattus, 171, 175
ALENANDROMIS, 586,596
alexis, Notomys, 265
alfari, Nectomys, 362
alfarot group, Oryzomys, $3+4$
alfaror, Oryzomys, 344
alpazel, Aethomys, $1+3$
algericus, Psammonys, 538
algidus, Peromyscus, 390
algirus, Nus, 242, 243, 2,6
allenbyi, Gerbillus, 502, 508
alleni, Alticola, 580
allens, Hodomys, 479
allent, Melomys, 229
allenı, Neofiber, 635, 636
allens, Notiomys, +25
alleni, ()ryzomys, 348
allen1, Rattus, $167,168,171,210$
allens, Reithrodontomys, 382
allem, sigmodon, 466
allex, Baiomys, 402
alliarius, Alticola, 58 i
ALLOCRICETCI,US, 408, 428, 429, 432 , $+35$
ALLONIS. 44
allophylus, Peromyscus, 400
alpinus, Microtus, 605
ALSOMIYS. 37, 92
alstom, Clethriononyys, 568,570
alston, Neotomodon, 469
alstons, Sigmomys, +67
alsus, Phyllotis, 453, 455
altaica, Alticola, 579, 580
alterss, Akodon, +10
AI,TICOLA, 7, 13, 19, 553, 574, 575, 578, 579, 58:
alticola, Aethomys, $143,1+4$
alticola, Ciscetulus, $428,429,431,432$, $+33$
alticola, Gerbillus, $501,502,504,509$
alticola, Microtus, 604
alticola, Rattus, 571,194
alticola, Renthrodontomys, 380
aiticola, Sigmodon, 466
altulaneus, Peromyscus, 399
altissimus, ()ryzomys, 356
altorum, Akodon, $+10,+11$
altorum, Laeurus, 634

## INDEX

altorum, Thomasomys, 368
alutacea, Notomys, 265
amakensis, Microtus, 602
amalae, Aethomys, 143
amatus, Rattus, $21+$
anzazonicus, Holochilus, 462
amblyrrhynchus, Oryzomys, 352
ambrosius, Meriones, 529,531
ansericana, Arvicola, 632
amicus, Phyllotis, 452,453
AMMODILIL心, 7, 23, 498, 499, 524
ammodytes, Peromy'scus, $39+$
ANMOMIYS, $33,3+, 116,621$
amoenus, Akodon, $410,+15$
amoenus, Gerbillus, $502,503,505$
amoenus, Ncacomys, 360,361
amoenus, Reithrodontomy's, 382
amoles, Reithrodontomys, 38 I
amoles, Sigmodon, 466
amphibius, Arvicola, $629,630,632$
amplus, Peromyscus, 398
amurensis, Clethriononvs, 568,571
amurensis, Lemmus, 564
amurensis, Mus, 245
anak, UTromys, 233
analogus, Basomys, 402
anambae, Rattus, 200
anastasae, Peromyscus, 395
anchictae group, Otomys, 320,321
anchietae. Oenomys, 118
anchictac, Otomys, $319,320,321$
A.NCHOTOMYS, 318
andamanensis, Rattus, 171,179
andersoni, Clethrionomys, 568,572
andersoni, Cricetulus, $+32,+33$
andersoni, Gerbillus, 502, 508
andersoni, Rattus, 161, 171, 191
andersoni, Synaptomys, 560
anderssoni, saccostomus, 285,286
ANDINOMIS, $8,27,331,335,452,456$. $457,468+479$
andinus, Notiomys, 425
andinus, Oryzomys, 355
andium, Phyllotes, 453
andrewsi, Rattus, 190
angelensis, Peromyscus, 400
angelus, Taterillus, $5 \geq 0,521$
angolae, Rhabdomys, 134, 135
angolae, Tatera, 513,518
angolensis, Dendromus, 310
angolensis, Rattus, 168, 171,211
angoniensis, Otomys, $320,321,322$
angouya, Oryzomys, $341,342,344,349$
angularis. Microtus, 506, 611
angularis, Oxymycterus, 421
angusticeps, Microtus, 603
angusticeps, Ncotoma, +72
angusticeps, () ${ }^{\text {ryzomys, }} 347$
angustifrons, Microtus, 612
angustus, Microtus, $546,603,615$
angustus, Notiomys, 423,424
angustus, Peromyscus, 392
ANISOMIYES, 9, 76

ANISOMY゙S, $4,6,9,28,33,37,44,45,60$, $75,77,276,293,483$ ankoberensis, Rattus, 210 ankoliae, Tachyoryctes, 493, 496 anna, Chiropodomys, 85 annamensis, Mus, 243, 249 annandalei, Kattus, 171,180 annectens, Neotoma, 471, 477
annectens, Tachyoryctes, 493,496
ANOMALUROPS, 376
anomalus, Sciurus, 500
ANOTOMYS, $8,28,45,331,332,483$
ansorgei, Arvicanthis, 124,125
ansorgei, Cricetomys, 289, 290
ansorgei, Dendromus, 307, 308
ansorgei, Lophuromys, 261, 262, 263
ANTELIOAIY'S, 7, 13, 19, 552, 577
anthonyi, Neotoma, 474
anthonyi, Peromyscus, 388
anthonyi, Reithrodontomys, 384
anthonyi, Taterillus, 521
antillarum, Oryzomys, 347
antimena, Hypogeomy's, 481
antucus, Rattus, 199
aokii, Micromys, 9I
aoris, Rattus, 171, 198
apatelius, Oryzomys, 345
apella, Pitymys, 626
aphorodemus, Nlicrotus, 599
aphrastus, Oryzomys, 349
apicalis, Hydromys, 299
apicalis, Lenoxus, 420
apicalis, Leporillus, 222
apicalis, Nectomys, 362
apicalis, Neotoma, 478
apicis, Rattus, 187
APLODONT11D.AE, 4
apodemoides, Gyomys, 221
APODEMLCS, $9,10,17,31,33,34,36,38$ 44, 47, 64, 92, 293
apoensis, Tarsomys, 294
APOMYS, $9,18,33,40,54,71,224,227$
APORODON, $377,378,383,408$
apricus, Scotinomys, 428
aquaticus, Arvicola, 630,632
aquaticus, Nectomys, 363
aquaticus, Oryzomys, 344,346
aquaticus, Scapteromys, 426
aquilo, Meriones, 529, 534
aquilo, Notomys, 265
aquilo, Steatomys, 311,312
aquilonia, Ondatra, 637
aquilus, Clethrionomys, 568,571
aquilus, Lophuromys, 262
aquitanius, Microtus, 596,605
arabium, Gerbillus, 502,505
araucanus, Notiomys, 424, 425
arborarius, Thallomys, 146, 147
arboreus, Rattus, 171,176
arboricola, Rattus, 174
ARBORINICS, 582
ARBUSTICOLA, 621
arcium, Melomys, $22 \mathrm{~S}, 231$
arcticeps, Onychomys, 404
arcticus, Peromyscus, 386,389
arcturus, Microtus, 596,6:3
arcuatus, Rattus, 189, 217
ardens, Lemniscomys, 130,132
arduus, Gerbillus, $502,503,509$
arenacea, Neotoma, 471,474
arenalis, Oryzomys, $34+355$
arenarius, Cricetulus, 432,433
arenarius, Dendromus, 310
arenarius, Peromyscus, 387,393
arenarius, Phyllotis, 453
arenicola, Akodon, 410
arenicola, Microtus, 684
arenicola, Onychomys, 405
arenicolor, Brachiones, 539
arfakianus, Melomys, 228
arfakiensis, Melomys, 228, 229
arfakiensis, Rattus, 171, 206
argentata, Alticola, 579
argentata, Mallomys, 112, 113
argenteus, Apodemus, 101
argenteus, Peromyscus, 389
argentiventer, Rattus, 171, 179
argentoratensis, Arvicola, 632
argillaceus, Acomys, 272, 274
argurus, Alticola, 578, 579
argurus, Hesperomy's, 447
argurus, Zyzomys, 115
argyropus, Arvicola, 282, 633
arianus, Apodemus, 95,98
aridulus, Grammomys, 105
aridulus, Peromyscus, 394
arimalius, Weriones, 529, 530, 535
arizonae, Neotoma, 478
arizonae, Peromyscus, 394
arizonae, Sigmodon, 464
arizonensis, Microtus, 599
arizonensis, Reithrodontomys, 380
armandi group, Myospalax, 546,547
armandi, Myospalax, 541, $544,545,546,547$ 548
armandvillei, Mallomys, 33, 112, 113
armenius, Arvicola, 630
aroaensis, Mallomys, 113
arrogans, Rattus, 171, 206
arsenjevi, Clethrionomys, 572
artemesiae, Lagurus, 635
artermesiae, Peromyscus, 390
artemesiae, Synaptomys, 560
aruensis, U'romys, 233,234
arundinaceus, Micromys, 91
arvalis group, Microtus, 586, 587, 589, 595. $596,599,608$
arvalis, Microtus, 567, 587, 590, 592, 593, $594,595,596,608,621$
ARVICANTHIS, $9,10,20,32,36,39,50$, $51,52,53,57,70,123,127,128,130$ $135,142,165,238,267,537$
ARIICOLA, $7,{ }_{1} 4,426,552,554,555,583$. 592, 596, 627
arviculoides, Akodon, 410
arviculoides, Microtus, 596, 597

## 652

ASCHIZOMYS, 7, 13, 552, 574
ASCOPHARYNX, 32, 33, 263, 264
asiaticus, Rattus, 175
ASI()CRICETLS, 220
aspalax, Myospalax, $545,546,548$
alsper, Parahydromys, 301
asper, Rattus, 162, 171, 196
aspinatus, Rattus, 10,6
assinnlis, Microtus, $1: 0 \mathrm{H}$
assmmis, Peromyscus, 392
assmmis, Rattus, $166,171,207$
astrachanensis, Microtus, bots
asturianus, Microstus, 596,610
ater, Arvicola, 630, 632
ater, Ellobius, 640
ater, Mictotus, 608
ater, Rattus, 171, 174
athahascac, Clethrionomys, 573
athi, Steatomys, 313
atratus, Pitymys, 622
atratus, Rattus, 181
atridorsum, Rattus, 18 I
atticus, Cricetulus, 432,434
itticus, Pitymys, 625
dtwateri, Neotoma, 47 I
attwateri, J'eromyscus, 396
.tuceps, Neriones, 528,529.536
audax, Tachyoryctes, 493,406
audeberti, Nesomys, 376
ALLACOXIS, $586,591,592,593,596,597$
ALLISCONIYS, $4+4,450,451,452,455$, +60, 468
aurantius, Reithrodontomys, 38 I
auratus, Nesocricetus, $4+1,443,4+4$
auratus, Otomys, 320,323
aurepectus, l'eromyscus, 380
aureiventer, ()ryzomys, 344. 349
aurcolus, Beromyscus, 386 , 401
aureus group, Thomasomys, 367,368
aureus, Reithrodontomys, 384
aureus, Thomasomys, 367,368
duricomis, Thallomys, $146,1+7$
duricularis, Desmodillus, 522
.suricularis, Pitymys, 62z, 626
vuricularis, Thomasomys, 368
surillus, Oryzomys, $3+4.356$
suripsla, Neotoma, 477
auritus, Peromyscus, 386,400
auritus, Pseudomy's, 223, 224
auritus, Reathrodon, +59
aurora, Eothenomys, 576
dustensis, Meriones, 529,533
austerulus, sigmodon, 460
austerus, Pedomys, 620
dusterus, Peromyscus, 386, 390
australis, Melomys, 228, 230
australis, Ototylomys, 374
australis, Pelomys, 128,129
australıs, I'scudonys, 2.23
atustralis, Rattus, 171, 173
auvtralis, Reithrodontomys, 378,382
australis, Thomasomys, 370
au-trinus, Rattus, 171, 206

## INDES

austrmus, Rhipidomys, 364 avaricus, Mesocricetus, $4+4$
avarillus, Aethomys, 143, 147
avius, Peromyscus, 387
avunculus, Rattus, 171, 210
ayres. Dendromus, 308
azoricus, Mus, 243, 2.44
azrek, Rattus, 171, 213
aztecus, Hicrotus, 599
aztecus, Oryzomys, 346
aztecus, Peromyscus, 396
aztecus, Reithrodontomys, 380
bahi, Rattus, 179
babylonicus, Cricetus, ++1
bacchante, Akodon, 410,415
bacchante, ()enomys, 118 , i11)
bacheri, Nesokia, $28_{1}, 282$
bactrianus. Mus, $242,243,248$
badius, Hybonys, 136
badrus, Peromyscus, 400
badius, Tachyoryctes, 493,49 t
badıus, Vandeleuria, 87
baeba, Nesokia, 2 K ı
baeodon group, Rattus, 162,196
bavodon, Rattus, 67, 171, 106
bacops, Thomasomys, 367,369
bacssleri, Apodemus, 97
bagopus, Rattus, 154, 159, 171, 190
bahadur, Mus, 243, 254
baikalensis, Clethrionomys, 570
bailevi, Mlyospalax, $545,546,547,54)$
baileyi. Neotoma, 771
baileys, Sigmodon, $4^{175}$
bailloni, Microtus, 596, 612
bailwardi, Calomyscus, 403
balwardi, Nesokia, $28 \mathrm{r}, 2 \mathrm{~K} 2$
bailwardi, Tatera, 513, 514
BA1O, 11YS, $8,15,25,329,335,339,401$
bairds, Microtus, 507
bardai, Peromyscus, 389,391
balac, Rattus, 203
balchascherssis, Apodemus, 98
balı, Rattus, 179
baliolus, Akodon, $+10,+1+$
baliolus, Grammonys, 105, 107
baliolus, Peromescus, 393
balmasus, Rattus, 188
balnearum, Holochilus, 462
balneator, ()ryzomys, $34+3+4$
baluchi, Calomyscus, 403
baluensis group, Rattus, 156, 172
baluensis, Rattus, 154, 156, 171, 172
bampensis, C'ricetulus, 435
banacus, Rattus, ryo
bandahara, Rattus, 171, 190)
banderanus, Peromyseus, 400
BANDIC(けTA, 10, 11, 19, 32, 33, 41, 45. $58,61,276,277,278,281,262$
bandicota, Bandicuta, $27 \mathrm{~K}, 2 \mathrm{No}$
bandiculus, Rattus, 171,205
bantieldi, Actomys, 228, 23 I
bangueyi, Rattus, 179
baptistae, Meriones, 528, 529,531
barabensis, Cricetulus, 431,432
barabensis group, Cricetulus, $429,431,432$
barbacoas, Oryzomys, 341, 349
barbarus group, Lemniscomys, 130, 131
barharus, Lemnisconys, 130
barhatus, U'romys, 234
barclayanus, Bandicota, 279
bardus, Apomys, 225
bargusinensis, Clethrionomys, 571
baroni, Oryzomys, 354
bartelsi group, Rattus, 162, 197
bartelsi, Rattus, 154, 155, 165, 171, 197, 218
barussanus, Rattus, 194
basilanus, Rattus, 187
bastardi, Macrotarsomys, 485
basuticus, Dendromus, 309
basuticus, Otomys, 325
hatamanus, Rattus, 194
hatarovi, Micromys, 90, 91
batesi, 1'rionomys, 315
batin. Rattus, 178
BATOMIS, $9,17,32,38,48,64,75,107,108$
baturus, Rattus, 193
batus, Rattus, 196
bauri, Oryzomys, 350
baveri, Tatera, 515
BEAMYS, $10,22,31,34,42,45,50,59,62$, $75,117,282,283,284,285,287,305$
beatae, Peronyscus, 386,396
beatus, Akodon, 410
beavenii, Mus, 249
beccarii, Hydromys, 299, 300
beccarii, Rattus, 151, 155, 162, 174, 196
bechuanae, Rhabdomys, 134
bechuanae, Tatera, 513, 517
bedfordiae, Clethrionomys, 568, 572
beirensis, Tatera, 518
bedfordi, Proedromys, 617
bedfordiae, Phodopus, 436, 437
beljawi, Cricetulus, 432, 435
bella, Neotoma, 476
bellicosus, Cricetulus, 434
bellus, Mus, 242, 243, 251
bellus, Peromyscus, 396
benefactus, Akodon, 410,411
benevolens, Oryzomys, 34, 357
bengalensis, Bandicota, 278
bengalensis group, Bandicota, 278
benguetensis, Apomys, 225
beniensis, Tatera, 516
benitoensis, Peromyscus, 387
bensoni, Neotoma, 476
bentincanus, Rattus, 200
bentleyae, Dasymys, 121, 122
benvenuta, Tatera, 5t2, 513, 516
berbicensis, I lolochilus, 462
herdmorei group, Rattus, 164, 204, 238
herdmorei, Rattus, 69, 151, 154, 164, 171, 20.4
berezow:kii, Nicromys, 91
bergensis, Apodemus, 97
bergensis, Otomys, 325
berlandieri, Sigmodon, 46.4
berlepschii, Akodon, $+10,415$
hernardi, Ondatra, 638
hernardinus, Microtus, 603
berneyi, Gyomys, 221
besuki, Rattus, 197
betsilcoensis, Brachyuromys, 3, 4, 5, 490, 492
betsileoensis group, Brachyuromys, 492
bhotia, Rattus, 171,177
bicolor, Clethrionomys, 560
bicolor, Coelomys, 235
bicolor, Colomys, 257
bicolor, Mus, 248
bicolor, Oryzomys, 34+. 357
bilensis, Gerbillus, 510
bimaculatus, Hesperomys, $4+7$
binominatus, Microtus, 607
binominatus, Rattus, 171, 198
birungensis, Mus, 253
bisulcatus, Otomys, 323
blackleri, Meriones, $525,528,529,530,532$
blainei, Rattus, 171,213
blandus, Peromyscus, 391
blanfordi, Alticola, 578, 579, 580
blanfordi group, Rattus, 157,172
blanfordi, Rattus, 151, 154, 157, 171, 172
Bl.ANFORDIMIYS, 7, 14, 550, 553, 596 . 626, 633
BIARINOMIYS, 8, 26, 327, 330, 332, 409 $421,422,423$
blicki, Arricanthis; 125
blythei, Phaiomys, $6: 8$
blythei, Rattus, 195
blythianus, Bandicota, 279
bocagei, Aethomys, 143
bocagei group, Steatomys, 311, 312
bocagei, Steatomys, 311, 312
bocourti, Rattus, 21.4
bodenheimeri, Meriones, 530, 532
bodessae, Tatera, $5^{15}$
bodessana, Tatera, 515
bochmi group, Tatera, 513
hnehmi, Tatera, 513, 519
boettgeri, Nesokia, 282
hogdanovi, Dolomys, $5_{5}^{8}$
bogdanovi, Meriones, 530,532
bogotensis, Microxus, 419
bogotensis, Sigmodon, 464,467
bolami, Leggadina, 256
bolivaris, Oryzomys, 344,350
boliviae, Hesperomys, $4+7$
boliviae, Oryzomys, $341,34+350$
boliviensis, Akodon, $409,410,411$
boliviensis group, Akodon, 410
holiviensis, Phyllotis, 453, 455
BOLOMIS, 406, 407, 408, 409, 415
bombax, (iolunda, 267,268
bombycinus group, Oryzomys, 344. 348
bombvinus, Oryzomys, $3+4,34^{x}$
bombicinus, Thomasonys, 360
bonariensis, Ifesperomys, 447
bonhotei, Gerbillus, 502, 508
bontanus, Rattus, 159, 175, 190, 216
bonzo, Eotbenoms's, 576
booduga group, Mus, 242, 249
boodura, Mlus, 243, 249
borealis, Lemmus, 562
botealis, Mus, $2+3,244$
borealis, Peromyscus, 389
borealis, Synaptomys, 559,560
borneanus, Rattus, 188
borucae, Sigmodon, 465
bottai, Gerbillus, 502, 507
bougainville, Nelomys, 230
bovalli, Rhipidomys. 364
bovonei, Acomys, 275
howeri, Mesembriomys, 117
bowersi group, Rattus, 164, 204
bowersi, Rattus, 154, 16+, 171, 204
boylii kroup, Peromyscus, 395
boslii, Peromyscus, 386,395
brachelix. Hyperacrius, 581
BRACHIONES, 7, 12, 498,500, 529,538
bracbiotis, Akodon, +10, +16
brachyotis, Laomys, 116
brachyrhanus, Rattus, 206
BRACHYTARSOMIES, 6,550,555
BRACHYTARSOMIYS, $3,4,6,30,490,549$, 550, 555
brachytarsus, Akodon, 416
brachyura, Nesokia, 28 I, 282
BRACHYUROMYES, 8, 491
BRACHYU'ROMIS, $3,4,5,6,8,30,490$. 491, 402
bradtieldi, Thallomys, 146
bradfieldi, Rattus, 171, 212
brama, Rattus, 171, 19t
brandti, Lasiopodomys, 616,617
brandti, Mesocricetus, $4+3$, $+4+$
brantsi, Tatera, 512, 513,517
brantsi, Parotomys, 326
brauern, Desmodiliscus, 523
brauneri, Apodemus, 95, 100
brauneri, Micromys, if
brauneri, Microtus, 596,609
brauneri, Pitymys, 622, 623
braziltensts, Holochilus, 462
breviauritus, Onycbomys, +05
brevicauda, Neotoma, +73
brevicauda, Zygodontomys, +17
brevicaudatus, Desmodillus, 522
brevicaudatus, Meriones, 535
brevicaudatus, Rattus. 171, 179
brevicaudus, Cletbrionomys, 572, 573
brevicaudus, Lopburomys, 262, 263
brevicaudus, Microtus, 6,6
brev lcaudus, (Inycbomys, $40+$
breviceps, Blarinomys, 422,423
brevicorpus, Microtus, 610
brevicula, Echiotbrix, 219, 26e)
brevmolaris, Rattus, 191
brevirostris, Aicrotus, 609
brevirostr3s, Mus, $2+3$
bremert, Microtus, 506,599
breveri, Rattus, 213
breyen, Tatera, 520

## INDEX

brigantium, Arvicola, 630, 632
brittanicus, Cletbrionomys, 568
brittanicus, Microtus, 612
brockmani, Acomys, 272, 274
brockmani, Gerbillus, 502, 503, 506
brockmani, Rattus, 168, 171,210
broomi, Gerbillus, 502, 508
broomi, Otomys, 320,325
browni, Rattus, $17 \mathrm{r}, 187$
brucbus, Petronyscus, 316
bruijnii group, Melomrs, 232
bruijnii, Melomys, 228, 232
brunneus, Baiomys, 102
brunneus, Lophuromys, 262, 263
brunneus, Pitymys, 622, 624
brunneus, Rattus, 171,176
brunneus, Zygodontomys, 4 r7, 418
brunneusculus, Rattus, 171, 176
bryanti, Neutoma $+71,4+$
buchanani, Cricetomys, 289,290
buchanani, Desmodilliscus, 523
bucharicus, Blanfordmys, 550, 627
bucbneri, Meriones, 529, 536
budini, Akodon, $+10,+14$
buenavistae, Oryzomys, 356
bufo group, Mus, 242, 250
buto, Mus, $2+3,250$
buffoni, Arvicola, 632
bukit, Rattus, 171, 193
bullaris, Tylomys, 373
bullata, Neotoma, 475
bullatus, Peromyscus, 398
bullatus, Rattus, 182
bullatus, Synaptomys, 560
bulleri, Orizomys, 3.4
BULLIMUS, 33, $148,159,160$
bungei, Lemmus, 564
bunguranensis, Rattus, 202
bunkeri, Neotoma, +77
BLNOMYS, $341+8,160$
bunting1, Grammomys, 105, 106
burrescens, Rattus, $18+$
burrulus, Rattus, $18+$
burrus, Rattus, $18+$
burtoni, Gerbillus, 502, 508
burtoni, Otomys, $320,321,323$
burtoni, Rattus, 208, 214
buruensis, Rattus, i86
buryn, Mermones, 529, 530, 532
butangensis, Rattus, 171,198
butei, Apodemus, 95,97
butleri, Rattus, 171, 209)
butleri, Taterillus, 520, 522
buttneri, Leimatomys, 294
buturlini, Microtus, 615
buxtoni, Nesokia, 281, 282
byroni, Pitymys, 625
cabretae, Mherotus, 595.506, 607
cacabatus, Peromyscus, 386,399
cachinus, Fothenomys, 576
cacbinus, Graomys, +50
caenosus, Rattus, 173
cacrulus, Rattus, 174
caesarius, Clethrionomys, $565,567,568,570$ cacsius, Cricetulus, +34
caffer, Tatera, 5zo
cahirinus, Acomys, 272, 273
cahirinus group, Acomys, 272
caicarae, Oryzomys, 357
calamianensis, Chiropodomys, 86
calamorum group, Microtus, 587 , 596, 611
calamorum, Microtus, 596, 6r 5
calarius, Thallomys, 146,148
calcis, Rattus, 186
caledonicus, Rattus, 175
calidior, Lemniscomys, 130, 133
calidior, Melomys, 228, 230
calidus, Gerbillus, 502, 503, 507
californica, Neotoma, 473
californicus, Clethrionomys, 572,574
californicus group, Microtus, 587,593, 600 californicus, Microtus, 600 californicus, Peromyscus, 386,387
caliginosus, Oryzomys, 345,356
callewaerti, Hylenomys, 239
callichrous, Brachiones, 539
callidus, Hesperomys, 447,448
callinus, Rhipidomys, 364
callipides, Apodemus, 95, 97
callithrix, Grammomys, 106
callitrichus, Rattus, 83,159,171, 189,216,219
callosus, Mesperomys, 447
CALOMIIS, 445
CALOMISCUS, 8, 1 I, 329, 339, 402, 428
calopus, Rattus, 211
calurus group, Meriones, 529, 531
calurus, Meriones, 501, 527,528,529, 531
calypsus, Microtus, 596, 612
camarus, Rattus, 189
campanae, Pelomys, 128,129
campbelli, Phodopus, 436,437
campestris, Gerbillus, 502, 504
campestris group, Gerbillus, 502,504
campestris, Micromys, 90, 91
campestris, Microtus, 608
campestris, Neotoma, 471
campestris, Peromyscus, 394
campestris, Phyllotis, 453
campestris, Saccostomus, 285
campus, Rattus, 171, 188
canacorum, Mus, 246
canadensis, Peromyscus, 386,389
candidus, Apodemus, 96
cancscens, Akodon, 410,413
canescens, Cricetus, 440
canescens, Microtus, 600
canescens, Neotoma, 472
canescens, Otomys, $3 z 0,322$
canicaudus, Microtus, 600
canicaudus, Tachyoryctes, 495
caniceps, Peromyscus, 389
canicularius, Mus, $2+6$
caniculator, Mus, z $\$ 6$
canna, Rattus, 2 I4
canorus, Rattus, 171, 192
CANSUMYS, 429
cansus, Myospalax, $545,546,547,548$
cantwelli, Microtus, 597
canus, Arvicola, 63 t
canus, Cricetulus, 435
canus, Eropeplus, 141, 219
canus group, Rattus, 157, 164, 173
canus, Onychomys, 406
canus, Peromyscus, 394
canus, Rattus, 157, 173
caoecii, Mus, 247
capensis, Dasymys, 122
capensis, Dendromus, 309
capensis, Thallomys, 1.48
capitis, Dendromus, 309
capitulatus, Onychomys, 405
capricornis, Aethomys, 145
capucinus, Pitymys, 622
caraco, Rattus, 171,184
caracolus, Oryzomys, 344, 350
carillus, Hesperomys, 447
carillus, Rattus, $168,171,210$
carimatae, Rattus, zoo
carmeni, Peromyscus, 388
caroli, Mus, 243, 245
carolinensis, Clethrionomys, 568,572,573
carolinensis, Microtus, 604
CARPOMISS, 9, 17, 32, $38,48,62,107$
carrikeri, Oryzomys, 348
carruthersi group, Neodon, 619
carruthersi, Neodon, 619
caryi, Microtus, 599
caryi, Reithrodontomys, 381
CARYOMIYS, 565
casensis, Rattus, 200
caspius, Rattus, 183
castaneus, Arvicola, 632
castaneus, Microtus, 615
castaneus, Mus, 241, 253
castaneus, Oryzomys, 344, 350
castaneus, Peromyscus, 394
castaneus, Rattus, 208
catalinae, Peromyscus, 39 r
catalinae, Reithrodontomys, 38 i
catellifer, Rattus, 200
catherinae, Oryzomys, $342,344,357$
caucasicus, Arvicola, 631
caucasicus, Meriones, 535
caucensis, Rhipidomys, 364
caudatior, Rattus, 193
caudatus, Meriones, 529,533
caudatus, Mus, 244
caudatus, Oryzomys, 347
caudimaculatus group, Uromys, 233
caudimaculatus, Uromys, 233, 234
caudivarius, Thomasomys, 369
caurinus, Clethrionomys, 572
caurinus, Hydromys, 299
caurinus, lchthyomys, 48 z
caurinus, Mclomys, 228, z31
caurinus, Reithrodon, $458,+59$
caurinus, Steatomys, $3 \mathrm{It}, 3 \mathrm{tz}$
catutus, Alticola, 579
catutus, Nierotus, 603
CAVIA, 545
cayllomae, Akodon, 410,416
cearanus, Rhipidomys, 364, 366
cechiii, Peromyseus, $3^{86}, 393$
cedrosensis, Peromyseus, $3^{87} 7$
CJLAENONHS, $9,19,298,302$
celatus, Apodemus, 95, 100
celatus, Phenacomys, $58+$
celebensis, Rattus, $159,171,190,216,217$, 219
cellarmus, Apodemus, 100
celsus, Phenacomys, 583
celsus, Rattus, 184
celticus, Apodemus, go
centralis, Aethomys, 143
centralis, Arvicanthis, 124
centralis, Clethrionomys, 568,569
centralis, Graomys, +50
centralis, Mafacomys, 236
centralis, Pitymys, 622, 625
centralis, Thallomys, $146,1+8$
centrals, Thamnomys, $\mathrm{IO}_{3}$, IO4
centrosa, lichothrix, 269
centrosus, Arvicanthis, 126
ceramicus, Nesoromys, 258
cereus, Rattus, 201, 210
cervicolor, Wus, $2+3,249,250$
cervmipes group, Nelomys, 230
cervmipes, Melomys, 228, 231
cervmus, Nutomys, 265
ceylonica, 'Jatera, 512, 513, 514
cevlonus, Rattus, 176
chacarius, Holochilus, +62
chacoensis, Akodon, +11
chacoensis, Graomys, 450,451
chacoensis, Scapteromys, 427
chakat, Rhabdomys, 134
CHALCOMVS, fo6, 407
champa, Rattus, 17I, 193
chamula, Neotoma, 475
changensis, Rattus, 171, 197
chanleri, Aryteanthis, 124,126
chaparensis, Oryzonys, 350
chapman, Akodon, $+1+$
chapmani, ()ryzomys, $3+4.3+8$
chapmani, Synaptumys, 560
charon, Meriones, 521). 530,535
cheesmam, Gerhullus, 502,503,504,509
cheesman, Tachyoryctes, 493,496
(H1SHANS, +23, 424
CHELNMISCCUS,8,27,327,331,332, 40S, 460
CHELIONEN, $448,525,529,531,536$
cherrie, Resthrodontomys, 378,383
cherrici, Zyzodontomys, $+17,+18$
chevief1, Apodemus, 93, 95, 102
chapenses, Retthrodontomys, 382
chihlensis, Rattus, 171, 192
chilaloensis, Muriculus, 234
childi, Gryzonves, $34+, 350$
chilocisis, Notionys, 425
(1111,OMY's, 8, 25, 336, 372
('111), (9TUS, 550,586,591,593,596,597
chinchillodes, Funcomys, 460
ClllNCHIl,I,LI, A, 8, 27. 331, 334, 335. $+52,456,479$
thimensis, Anteliomss, 577
chionogaster, Rattus, 174, 175
CHIONONJS, 586, 581), 591, 592, 593,596
chıonopaes, Dicrostonyx, 558
chiriquensis, sigmodon, 464,465
CIHROM1SCLUS, $2,9,18,36,37,40,47$, $55,68,110,237$
CHIROPODOMYS, $2,9,16,32,37,38,46$, $47,55,63,84,86,110,236,237$
chiropus, Chiromyscus, 237
CHIRLRONIS. $32,38,46,81,82,83$
chiversi, Dendromus, 301
chwersi, Steatomys. 313
chombolis, Rattus, is8
chonensis, Sigmodon, +67
chorassanicus, Apodemus, 48
(HORTON1YS, $306,307,311$
Christy, Deomys, $317,31 \mathrm{~S}$
christys, Mylomys, 120
CHROIEOMIS, $+06,407,+08,+09,+15$
CHROTOAVI's, 9, 19, 208, 302, 303,304
chrotorrhinus group, Microtus, 5 Si7. 503, 60.4
chrotorrhinus, Nicrotus, 540, 604
chrysocomus group, Rattus, 160, 1190, 217
chrysocomus, Rattus, 151, 155, 190
chrysogaster, Hydromys, 299
ehrysngaster, Lemmus, $56+$
chrysomelas, Neotoma, +76
chrysomelas, Oryzomys, 345. 356
chrysophilus, Aethomys, $1+2,143,144$
chrysopsis group, Reithrodontomys, $378,3^{8 / 3}$
chrysopsis, Reithrodontomys, $38 \mathrm{I}, 383$
chrysopus, Lophuromys, 262
chudeaui, Acomys, 275
ciencgae, Sigmodon, $46+$
eiliatus, Rattus, 171, 201
embricus, Microtus, 609
cinderella, Mus, 243, 253
cmeraceus, Acomys, 273
cinerascens, Acontys, 273
cimerascens, (ricetulus, +33
encrea group, Neotoma, +70
enterea, Neotoma, 471,478
emerciventer, Thomasomys, 367, 369
cmereus, Cricetulus, $+32,+34$
cmereus, Peromyscus, 388
emereus, Rethradontomys, 380
emereus, Rhahdomys, $13+$
cimeteus group, Thomasomys, 368,364
cinereus, Thomasomys, $367,3(30)$
emertios, Peromyseus, 392
cmeromaculatus, Mus, $24+$
ctnnameus, 'Thomasomys, 370
tinnamonea, Neotoma, $+7^{-8}$
conamoneus, Gerbillus, 502, 504
cinnamomecus, Pedomys, 6,20
cinnamome us, Rattus, 145
cimnamomma, 19 nelatra, 638
ciscaucasicus, Apodemus, 95, 97
ciscaucasicus, Meriones, 532
ciscaucasicus, Pitymy's, 624
CHTEL,LUS, 500
clabatus, Rattus, 185
clarae, Melomys, 228
clarae, Rattus, 202, 206
clarkei, Microtus, 596, 611
clarus, Mclomys, 228, 229
clarus, Onychomys, 405
clementis, Peromyscus, 39 t
CHETHRIONOMY'S, $7,12,15,550,552$, $565,574,575,578,582,641$
clivosus, Taterillus, 520, 522
cnemophila, Neotoma, 477
cocalensis, 1 hipidomys, 364
coelest is group, Rattus, 160, 191
coelestis, Rattus, $160,162,171,191$
COELONYS, $9,18,35,40,55,73,234$
cocnorum, Rattus, 171, 205
coenosus, Akodon, $+10,41$
counosus, Ellobius, 640, 641
coenosus, Golunda, 267, 268
coenosus, Otomys, 320, 324
coerulescens, Cricetulus, 434
coffacus, Golunda, 267, 268
cognatus, Peromyscus, 395
colchicus, Microtus, 607
colchicus, Pitymys, 622, 623
colimae, Reithrodontomys, 382
colimae, Sigmodon, 464,465
collitus, Peromyscus, 388
colletti, Rattus, 166, 171, 207
collinus, Akodon, $+10,+11$
collinus, Cricetulus, 435
collinus group, Petronyscus, 316
collinus, Meriones, 529, 536
collinus, Petromyscus, 316
collinus, Thomasomys, 367, 369
collium, Meriones, 537
COL,OMYS, $9,21,34,41,50,56,69,123$, 235, 256
colonus, Rattus, 168 , 171,21 i
coloratus, Oryzomys, 345
coloratus, Rattus, 183
columbiana, Ncotoma, 478
columbianus, Oryzomy's, 357
colurnus, Eothenomys, 576
comberi, Millardia, 138
cometes, (irammomy's, 104, 107
commissarius, Mus, 253
comptus, Peromyscus, 386, 400
conatus, Rattus, $165,166,171,207$
concinnus, Dendromus, 307, 310
concolor group, Rattus, 159, 185, 215, 220
concolor, l'clomys, 128, 129
concolor, Rattus, $151,155,167,171,185,215$, 220
conditor, Leporillus, 222
condorensis, Rattus, 193
confalonieri, Meriones, 533
confinii, Eothenomys, 576
continis, Sigmodon, 464
confucianus group, Rattus, $16 \mathrm{t}, 191,218,220$
confucianus, Rattus, $150,154,155,156,161$, $165,171,192,220$
congicus, '1'aterillus, 520, 521
coniger, Rattus, 171
CONJLURUS, $9,28,32,33,38,49,54,64$, $113,115,221,222$
coninga, Rattus, 199
connectens, Notinmys, 425
connectens, Ototylomys, 374
connectens, 1Rattus, 171,198
consobrinus, Peromyscus, $39^{8}$
constabliei, Phenacomys, $5^{8} 3$
constigua, Microtus, 608
constrictus, Microtus, 600
constructor, Conilurus, 114
contradictus, Thomasomys, 369
convictus, Lemniscomys, 130,131
cooki, Mus, 243, 249
coolidgei, Peromyscus, 386, 391
coombsi, Gerbillus, 508
cooperi, Synaptomys, 559
coppingeri, Oryzomys, 344, 350
coracius, Rattus, 171, 207
coraginis, Golunda, 267, 268
cordillerae, Peromyscus, 306
cordovensis, Hesperomys, 447, 48
coreae, Apodemus, 95, 102
coronarius, Microtus, 603
cortensis, Hesperomys, 447, 448
cosensi, Cricetomys, 289,291
cosensi, Gerbillus, 502, 508
cosensi, Tatera, 513,519
costaricensis, Oryzomys, 344,355
costaricensis, Reithrodontomys, 378,383
coucha group, Rattus, 168,277
coucha, Rattus, 169, 171, 21 15
couesi, Oryzomys, $340,3+2,344,345$
couesi, Rhipidomys, 364
coxingi, Rattus, $163,171,199$
cozumelae, Oryzomys, 346
cozumelae, Peromyscus, 395
CRASEOMYS, 565
crassibulla, Mleriones, 529.533
crassipes, Rattus, 174
crassus, Meriones, $525,527,529,530,533$
crassus, Phenacomys, 584
crassus, Rattus, is9
CRATEROMIS, $2,9,17,32,38,48,49,62$, 110, 111, 112, 292, 293
CRALROTHR1N, 268
CREMNOM1YS, $35,148,151,157$
cremoriventer group, Rattus, 162, 195, 237
cremoriventer, Rattus, $150,{ }^{151}, 154,155$, 171, 195
creper, Reithrodontomys, $37 \mathrm{~B}, 384$
crepidatus, Phodopus, 437
cretaceiventer, Rattus, 171,195
creticus, Apodemus, 95, 97
CRICETINAE, S, 326
CRICETISCL $-3,+36$
CRICETOMIS, $3,10,22,32,42,45,59,62$ $283,285,286,289,293,305$

CRICITLLUS，$\delta, 11,330,338,404,408$ ， 428，429， 435
cricetulus，Alticola， 579,580
cricetulus，$\rightarrow$ Saccostomus， 286
CRICETLE，8，11， $328,330,331,338,403$ ， $40 \mathrm{~S}, 427,428,429,436,437,441,445$
cricetus，Cricetus， $44^{\circ}$
crimitus，（）ryzomys， 346
crinitus，Peromyscus， 386
cristobalensis，Peromyscus， 386,400
crociduroides，Nycteromys， 255
CRO，SílIIS，2，9，30，298，299， 301
cruceri，Akodon， 410,416
crumpi，Dromy＇s， 293
CRLN（）NIY，9， $8,31,32,41,50,56,66$, $75,258,260,297$
cryptorhmus，Vleriones， 529,535
cubanensis，Arvicola， 631
culmorum，Rattus， $165,166,171,206$
culturatus，Rattus，162，171，191
cumaneus，Rhipidomys， $3^{6} 4,366$
cumbrae，Apodemus，95， 99
cumingi，Jicrotus，bo3
cumingi，Phlotomy＇s， 293
cumulator，Neotoma， 472
cunctator，（ricetonys， 289,290
cunicularis，Mus， $25^{\circ}$
cunicularius，Microtus， 608
cuniculoides，Resthrodon， 458,459
cuninghamei，Nylomys， 120
cunirghamei，Rattus，171，212
cuppedius，Steatonys， 3 II， 312
cupreus，Otomys， 320,323
currentium，Reithrodon， 458,459
cursor，Akodon，+10
curtata，Bandicota，278， 280
curtatus，Cricetulus，+35
curtatus，Lagurus， 635
custos，Anteliomv＇s， 577
cutchicus group，Rattus，157，172
cutchicus，Rattus，151，154，157，171， 172
cuvieri，＇Tatera，512，513，514
C）NOMYS，+3
CYROMIS $5,35,232,233$
dabben，Euncomys， 460
daccaensis，Bandicota， 278
dacius，Patymys，622， 623
DACNONIS $, 9,17,36,39,52,72,139,156$ ， 292
daemon，Tachyoryctes， 493,496
daghestanicus，Pitymys，622， 623
dalli，Synaptomys， 560
dalloni，Gerbillus， 510
daltoni，Rattus， $168,171,211$
dalversinncus，Rhombenmys， 540
damarensis，Malacothrix， 314
damarensis，Thallomys， $146,1+7$
dammermani，Hyomys， 111
dammermans，Rattus，171，182， 219
daphre，Thomasomys， 367,370
DAPTONYS，九＇i，485
dariensis，（）ryzomys， $3+7$
darjilingensis，Nus， 243,249
dartmouthi，（）tomys， 320,322
darwini，Molochilus， 462
darwini，Oryzonys， $3+3,35 \%$
darwinii，Phyllots，+53
DAS゙オIVS， $9,20,31,32,39,40,50,70,120$ ， 123， 223
DASYPROCTA， 545
dasytrichos，Oxymycterus，+22
dasyuroides，Gerbillus， 505
dasyurus，Gerbillus，502，503，505
dasyurus eroup，Cierbillus，503， 505
datac，Apomy＇s， 225
dauricus，Nicrotus， 6 I 3
dawsoni，Clethrionomys，568，572
davi，Akodon， 410,411
decaryi，Rattus， 183
deceptor，Akodon， 4 ro， 414
decolor，Mus， $2+3,245$
decoloratus，Phyllotis， 455
decolorus，Nyctomys， 375
decumanoides，Rattus， 183
decumanus，Rattus， 183
definitus，Phyllotis， $45+$
defua group，Rattus， 169
defua，Rattus， $169,171,210$
degeni，（）tomys，320， 321
dekayi，Microtus， 598
delacouri，Hapalonys， 8 o
delator，（）xymycterus， 421
delectorum，Rattus， 171,200
delfini，Notiomys， 125
delicatula group，Leggadına， 256
delicatula，Leggadina， 256
delicatus，Uryzomys， 355
DELOMISS， 366,367
DELTAMI＇S， $406,40 \%, 409,+14$
delticola，Oryzomys， 345,350
dembeensis，Pelomys， 128,129
DENDRONLLS， $9,22,305,306,307,308$ ，
311， 315
DENDRONYINAE， 9,305
DENDROSNIINHUS， 12
denniae，Rattus，168，171， 209
dentatus，Batomys，Ioy
dentatus，hicrotus， 610
dentarus，Rattus， 178
dents，C＇olomys， 257
denti，Otomys， $320,321,324$
DEONIINAE，6，316
DE（OMIS $, ~ 1,6,22,56,261,317$
DE1JIONIY＇S， $37,40,149,169,210$
depressa，．Iicrotus， 608
depressus，Pitymys，622，625
derimapa，l＇ogonomy＇s，8z
deserts，Gerbillus， 504
deserti，Mus，2＋1，243， 253
deserti，Parotomys， 326
desert1，Reithrodontomys，3xo
deserti，Rhabdomys， 134 deserticola，Peromyscus， 391
desertor，Gyomys， 221
desertorum，Alticola， 581
desertorum group，Neotoma，470，471，476
desertorum，Neotoma， 469,476
desmarestii，Megalomys， 360
DESMIODILLISCL＇S，2，7，23，497，498， 499， 523
DESMODILLUS，7，23，498，499， 522
DESMONYS， $34,39,51,123,127,128,129$
destructor，Arvicola， 630
destructor，Oryzomys， 352
devia，Neotoma， 474
devius group，Oryzomys， $344,348,352$
devius，Oryzomys， $340,345,348$
diardi，Rattus，171， 180
dichrootis，Cricetulus， 433
dichrous，Phyllotis， 453
dichrura，Tatera，513，516
dichrurus，Apodemus，95， 97
dichrurus，Cricetomys，289， 290
dickeyi，Peromyscus， 389
dickinsoni，Reithrodontomys， 379
DICROSTONY゙メ，6，12，14，549，551，556， 559，562
difficilis，Peromyscus，386， 398
difficilis，Reithrodontomys， 381
dilectus，Rhabdomys，134， 135
dilutior，Oryzomys， 348
dimidiatus，Acomys，272， 273
dimidiatus，Nectomys， 362
diminutivus，Oryzomys， 352
diminutus，Gerbillus，502，503，506
diminutus，Rhabdomys，134， 135
dinniki．Microtus， 616
DIOMIS， 36
DIPLOTHRIX， $36,149,157$
DIPODILLUS，498，500，501，502，50．4， 510,528
DIPODONIYS， 264
discolor，Apodemus， 97
discolor，Arvicanthis， 124
discolor，Grammomys，105， 106
dispar，Neotoma， 477
dispar，Thomasomy＇s， 369
disparilis，Peromyscus， 387
dissimilis，Cricetomys， 290
distincta，Neotoma，+75
divinorum，Otomys， 321,323
djukovi，Arvicola， 632
doboensis，Rattus， 183
dodsoni，Gerbillus，502， 504
dolichocephalus，Lasiopodomys，616， 617
dolichonyx，Phyllotis， 453
dolichops，Cricetornys，289， 290
dolichurus，Gramnomys，105， 107
dollmani，Aethomys， $1+4$
dollmani，Melomys，228， 230
dollmani，Otomys， 323
dollmani，Rattus，215，218， 219
DO1，OMY＇S， $7,{ }^{1} 3,550,552,584$
dolores，Akodon，410， 411
domelicus，Rattus， 200
domesticus，Rattus， 174
dominator group，Rattus， 217
dominator，Rattus， $159,160,161,17 \mathrm{t}, 189$ ， 216，217， 219
domitor，Rattus， 188
domorum，Graomys，450， 451
donavani，Rhabdomys， 134
dongolanus，Gerbillus， 609
doriae，Rattus， 174
doris，Oxymycterus， 421
dorogostaiskii，Clethrionomys， 574
dorsalis，Apodemus， 101
dorsalis group，Thomasomys， 368
dorsalis，Lemniscomys， 133
dorsalis，Peromyscus， 392
dorsalis，Reithrodontomys， 382
dorsalis，Thomasomys， 367,369
draco，Apodemus，95， 101
draco，Tatera，512，513， 517
drakensbergi，Thallomys， 148
DROSOMYS， 300
druentius，Pitymys， 623
drummondi，Microtus，596， 598
drummondi，Neotoma， 471,478
dryas，Grammomys， 105,106
dryas，Oryzomys，343，345，356， 357
dryas，Pogonomys， 81,82
DRYMOMIYS， $24^{\circ}$
dubius，Bandicota，278， 279
dubius，Nlus，243， 245
dubius，Peromyscus， 392
ducilla，Hesperomys， 446,447
ducis，Rattus， 180
ductor，Uromys，233， 234
dukelskiana，Nesokia， 282
dumecolus，Vandeleuria， 87
dumeticola，Vandeleuria， 87
dumetorum，Akodon， 416
dunckeri，Mus， 246
dundasi，Tatera，513， 516
dunni，Gerbillus，502，503， 509
dunni，Lemniscomys， 130 ， 131
dunni，Millardia， 138
dunni，Mus，243， 249
dunni，Tatera，513，514
duodecimcostatus，Pitymys，622， 625
duplicatus，Microtus，596， 608
duprasi，Pachyuromys， 524
durangae，Neotoma， 473
durumae，Rattus， 212
dutcheri，Microtus，596，600
dybowskii，Myospalax，541，544，546，548
dybowskii，Pelomys， 129
dychei，Reithrodontomys， 378,380
dyselius，Peromyscus， 397
catoni，Gerbillus，502， 508
eboreus，Melomys，228， 231
ebriosus，Neotomys，457，458
echimyoides，Rattus， 187
I：CHIOTHRIS゙，10，18，32，41，45，58，68，
$268,276,294,296,297$
eclipsis，Rattus，171， 198
edax，Andinomys， 468

6,to
c. lin, Nicrotus, 526, (100
celithax, (iraomys, 450
edithae, Mermaies, 520, 535
cditus, Oenomys, ifs, IK)
edsoni, Dasym!s, 122
cilulis, Steatomys, 31 x
edusa, Psammomys, 53 S
cdwardsi group, Rattus, 163, 201, 220
edwardsi, Malacomys, 67, 236
cdwardss, Rattus, 154, 155, 164, 1/1, 201
edwardsil group, Notionms, 424
edwardsii, Notiomys, 224
cffectus, Rattus, 171, 212
efficax, Nectomys, 362
egeria, Malacothrix, 314
egressa, Neotoma, 4 - 6
cha group, Rattus, 162,197
tha, Rattus, 151, 153, 154, 155, 162, 163, 164, 175, 197
chika, Pitymys, bizt
classodon, Otomys, 320,322
clatturus, Rhipidomys, $3^{6 / 5}$
elegans, l:ligmodontia, +4 ()
clegans, Leptomys, 303
elegans, Macruromys, 260
clegans, Phloeomys, 293
elegans, Psammoniys, 538
elegans, Rattus, 192
clegans, Saccostonus, 285
elegantulus, Phellotis, 453,454
cleusis, Eothenomys, 576
eleusis, Thomasomys, 367,370
eigonis, (ricetonys, 289,201
elgonis, Grammonyss, 105,106
elgonis, ()tomys, 320,322
ELIGMODONTIA, 8, 27, $331,335,339$, 447. 449

1:1,11R1, 4. 75
1 LILRLS, 3, 5, 6, 9, 30, 31, 32, 37, 44, 45. $60,75,77,+90$

- liurus, Oryzomys, 34.5.350

Cliotana, Bandicota. 275 , 2 月o
Minoti, Golunda, 267, 268
IELLOBILS, 2, 7, 14, 549, 550, 551, 638, 639
clusus, Peromyscus, 392
cly mocetes, Microtus, 602
emeritus, Thomasomys, 367,370
emesi, Mus, 252
emihat, Oryzomys, 358
emini, Cricetomys, 289,290
emini, Taterillus, 520, 521
emmonst, Peromyscus, $3^{1 / 2}+$
enclavae, Mus, 251
endersi, Oryzomys, 358
endoecus, Microtus, 60 a
endorobae, Rattus, 204
enganus, Rattus, 214
enguvi, ('ricetomys, 291
cond, Acomys, 272, 274
eninus, Microtus. 546,509
1.OSACCOMIS, 283

1. OTHENOMISS, $7,13,14,552,575,577$, 616

## INDEA

ephippium, Rattus, 171, 185 epinelas, Apodemus, 95 , 96
EPIMISS, $34,148,166$
epsilanus, Ayospalax, $545,546,547$
equatoris, Rhipidomys, 364
equile, Rattus, 185
eremicoides. Peromyscus, 397
etenmicus, P'etomyseus, 386, 387
eremicus, Sigmodon, 464
eremus, Peromyscus, 389
IERETHHZOX, 376
erica, Clethrionomys, 568,570
FRIORYZONIYS, 366
ernstmayri, Leptomys, 303
EROPLPLL'S, 9, T7, 36, 39, 52, 72, 140
erro, Thomasomys, 370
erythroleucus, Rattus, 171, 213
erythronotus, Apodemus, 98
erythrotis, Micromys, 90, 92
ery throurus, Meriones, $529,530,534$
esmeraldorum, Nectomys, 361, 362
esox, Hydromys, 299, 300
estuae. Microtus, $63_{3}$
ECNEOMIYS, 8, 27, 331, 334, 452, 458, 459, 461
eurous, Rattus, 186,215
euxinus, Apodemus, o6
eva, Clethrionomys, 568,571
tva, Peromyscus, $38 \mathrm{tr}, 387$
evae, Reithrodon, $+5 \%, 45$ )
evelynae, Meriones, 520. 535
evelyni, Rattus, 171, 212
everesti, Phaiomys, 6 I8
everetti, Rattus, 154, 159, 171, 140
eversmanni, Cricetulus, $429,+32,+35$
eversmanni, Meriones, 535
eversmanni, Microtus, 596,615
evides, Peromyscus, 306
ETOTOA1YS, 365
excelsior, Rattus, 162, 171, 191
exiguus, Peromyscus, 392
exguus, Rattus, 177
exulas, L romys, 234
eximius, Miscotus, 600
exitus, Arvicola, 630, 632
exoneratus, Dendromus, 307, 310
expulsus, Mesperonys, $4+7$
exsputus, Sigmodon, $46+$
exsul, Dierostonyx, $55^{\circ}$
exsul, Microtus, 596, 611
exsul, Rattus, 178
exterus, Peromyscus, 392
exulans, Rattus, 171 , is, 220
faberi, Rattus, 214
facetus, Rattus, 189
facceus, Microtus, 614
facroensis, Mus, 244
fallax. Crunomys, 250
fallax, Neotona, 471,474
fallax, Petomys, 128
fallax, Tatera, 513, 529
falzfeini, C'ricetulus, 434
famulus, Gerbillus, 502, 505
famulus group, Gicrhillus, 502, 505
famulus, Mus, 234. 249
far, Mlus, $2+5$
faradjius, Otomys, 323
faroulti, Pachyuromys, 524
farsistani, Ellohius, $6+1$
fasciatus, Lemniscomys, I30, I 32
fatioi, Pitynys, 622, 623
fatuus, Synaptomys, 559
feae, Rattus, $164,171,204$
fecundus, Hesperomys, $+\psi^{6}, 4+7$
feliccus, Rattus, 171, 205
felipensis, Neotoma, 473
felipensis, Peromyscus, 386,398
fenniae, Micromys, 91
fennicus, Apodemus, 97
ferculinus, Pseudomys, 223, 224
fergussoni, Apodemus, 95, 102
furnandovi, Mus, 243, 254
ferreocanus, Rattus, $164,171,204$
ferruginea, Neotoma, 471, 475
ferrugincus, Arvicola, 631
ferrugineus, Deomys, 317
ferrugineus, Phaenomys, 372
fertilis, Hyperacrius, 58 r
fervidus, Rhipidomys, 364, 366
fervidus, Sigmodon, 465
FIBER, 636
fidelis, Eothenomys, 576
fieldi, Leggadina, 256
fingeri, Pitymys, 623
finis, Rattus, 171, 197
fiolagan, Apodemus, 95, 99
fiona, Nicrotus, 612
firmus, Rattus, 171 , 188
fisheri, Microtus, 602
fitasimonsi, Lemniscomys, 133
flaccidus, Peromyscus, 394
flammarum, Reithrodon, 458, 459
flava, Microtus, 609
flava, Ncotoma, 477
flavescens, Lemmus, 564
flavescens, Mus, $2++$
flavescens, Oryzomys, 345,350
flavescens, Pitymys, 625
flavescens, Pscudomys, 224
flavescens, Rattus, 176
flavicans, Oryzornys, $341,344,3+5,350$
flavicollis, Apodemus, $93,95,96,99$
Alavidior, Phyllotis, 455
thavidulus, Rattus, 171, 198
thavidus, Acomys, 272, 273
flavidus, Peromyscus, 386 , 401
Havigrandis, Rattus, 171, 198
thavipectus, Rattus, 158 , 171, 173
thavipes, 'l'atera, 513,516
tlasipilis, Rattus, 193
Haviventer, Itydromys, 299
thaviventer, Rattus, iof
thaviventris, Microtus, 616
flaviventris, Rattus, 175
flavobrunneus, Apodemus, 97
flavopunctatus, Lophuromys, 261, 262
flavus, Mus, $2+3$
flebilis, Rattus, 18 I
florenciae, Oryzomys, $35^{8}$
floridana group, Neotoma, 471
floridana, Neotoma, 471
floridanus, Oryzomys, 345
floridanus, Peromyscus, $3^{8} 5,386$, , 01
floweri, Gerbillus, 502, 509
fluvicinctus, Arvicanthis, 124, 125
foederis, Rattus, 171, 188
foleyi, Gerbillus, 510
fontanseri group, Myospalax, 546,547
fontanieri, Myospalax, $541,546,547$
fontanus, Myospalax, $545,546,547$
fontigenus, Microtus, 596,598
forbesi, Pogonomys, $81,82,83$
formosanus, Mus, 253
formosovi, Mus, 244
forresti group, Leggadina, 256
forresti, Leggadina, 255, 256
forresti, Neodon, 619, 620
fors, Mus, 243, 250
forsteri, Rattus, 205
fortior, Otomys, 320, 32 I
fortis, Microtus, 596, 61 II
fortunatus, Rattus, 178
fossor, Chelemyscus, 461
fossor, Notiomys, $42+$
foxi, Dasymys, $12 \mathrm{I}, 122$
foxi, U'ranomys, 276
francei, Akodon, 410,416
frater, Clethrionomys, 568,570
frater, Pelomys, 128, 129
fraterculus, Melomys, 228, 232
fraterculus, Peromyscus, 386,387
fraterculus, Tatera, 513, 519
fraterculus, Zygodontomys, 418
fraternus, Rattus, 171, 195
fraternus, Thomasomys, 367,370
fratrorum, Rattus, $155,165,171,190,219$
fredericae, Mus, 2.46
fredericae, Rartus, 197
fremens, Rattus, 203
frida, Hesperomys, $4+7$
fridariensis, Apodemus, 95, 96, 99
frontalis, Oryzomys, $3 \psi^{8}$
frosti, Rattus, 215, 216, 217. 219
frugivorus, Rattus, 171, 175
frumentarius, Cricetus, $14^{\circ}$
frustrator, Zygodontomys, +17
fruticicolus, Phyllotis, 454
fryi, Malacothrix, 314
tucosus, Microtus, 599
fulgens, Melomys, 228, 231
fulgens, Oryzomys, 345, $3 \ddagger 6$
fuliginosus, Akodon, 414
fuliginosus, Arvicola, 63o
fuliginosus, Hydromys, 299
fuliginosus, Onychomys, 405
fuliginosus, Rattus, 174
fulmineus, Rattus, $1 \Omega_{\mathrm{I}}$

## INDEX

fulva, W1erotus, 598
fulvaster, Rattus, 174
fulvescens group, Reithrodontomys, 379, 38 I
fulvescens, Oryzomys, 345, 354
fulvescens, Rattus, 161, 171, 193, 220
fulvescens, Reithrodontomys, 381
fulvidiventris, Mus, 249
fulvinus, Nectonys, 362,363
fulvipectus, Apodemus, 97
fulvirostris, Oryzomys, 345,355
fulviventer, group sigmodon, 464,466
fulviventer, Neotoma, 475
fulviventer, Microtus, $596,60+$
fulviventer, Otyzomys, $3+2,3+5,351$
fulviventer, Rhipidomys, 364
fulviventer, sigmodon, 466
fulviventer, Tylomys, 373
fulvogaster, Hydromys, 299
fulvolavatus, Hydronys, 299
fulvoventer, Hydromys, 299
fulvus, Chiropodomys, 85,86
fulvus, Clethrionomys, 56 S
fulsus, Cricetulus, $+32,+3+$
fulvus, Cricetus, +40
fulvus, Meriones, 535
fulvus, Microtus, 608, 609
fulvus, Peromyscus, 391
fumatus, Cricetulus, 432
fumatus, Rattus, $168,172,210$
fumeus, Akodon, $+10,412$
fumeus, (hilonys, 372
fumeus, Gyomys, 221
fumeus, Ototylomys, 374
fumeus, Thomasomys, 371
funisola, Rhombomys, 540
funlosus, MIsstromys, $4+5$
fumosus, Notiomys, $42+, 425$
funereus, Mus, 2+3, 244
FL N1SCILRLS, 376
furunculus, Cricetulus, +32
furvus, Peromyscus, 386,399
furvus, Sigmodon, 465
fusca, Neotoma, $47^{8}$
fusca, Thallomys, 147
fuscatus, Cricetulus, 434
fuscatus, Thomasomys, 368, 369
fuscidorsis, Cricetus, +40
fuscinus, Zygodontomys, +17,418
fuscipes, Cricetulus, 435
fuscipes, Ellobius, 640, 641
fuscipes eroup, Neotoma, 470
fuscapes group, Rattus, $164,166,207$
fuscipes, Neotoma, 471, 477
fuscipes, Rattus, 145, 155, 166, 171, 207
fuscirostris. Rattus, 210
fuscoater, Akodon, 716
fuscocapillus, Ellobius, 639, 640
fuscocapillus group, Ellobius, 639, 640
fuscodorsalis, Clethrionomys, 573
fuscogerseus, Onychomys, fo4
fuscus, Dasymys, 12I, 122
fuscus, Mastacomys, 266, 267
tuscus, Melomys, 228, 221
fuscus, Notomys, 265
fuscus, Phaiomys, 618
fuscus, Phyllotis, 454
fuscus, Pitymys, 622, 625
fuscus, Rattus, 171, 174, 211
fuscus, Saccostomus, 286
fusus, Peromyscus, 394
gadovii, Peromyscus, 386, 398
gaetulus, Meriones, 529, 534
gaillardi, Microtus, 608
gairdneri, Mus, 250
gala, Rattus, 190
galanus, Rattus, 214
galapagnensis, Oryzomys, 343, 345, 350, 351
galapagoensis, Rattus, 174
galei, C'lethrionomys, 573
GALINONIS $,+51,452,455$
gallarum, Nus, 243, 25 :
gallarum, Tachyoryctes, 496
gambelii, Peromyscus, 386. 390
gambiana, Tatera, 513,519
gambianus, Cricetomys, 289
gambianus, Rattus, 171, 213
gangutrianus, Rattus, 171, 176
gansuensis, Mus, 248
gapperi, Clethrionomys, 568,572,573
garamantis, Gerbillus, 502, 503, 505
garamantis group, Gerbillus, 502, 505
gardulensis, Rattus, 211
garleppii, Nectomy's, 362,363
garleppii, Phyllotis, $+53,+55$
garonum, Rattus, 171, 201
gatunensis, Oryzomys, $34^{6}$
gaurus, Peromyscus, 395
gazellae, Grammomys, 105, 106
gazellae, Steatomys, 311,312
geisha, Apodemus, $93,15,100$
getsha group, Apodemus, 96, 100
gentilis, Nus, 243,246
gentilis, Peromyscus, 307
gentilulus, Blus, 243,246
GEONLS, 423,424
gerbii, Gerbillus, 504
gerbu, Pitymys, 622, 624
GERBJLLJNAE, 7, 497
gerbillinus, Nus, 248, 252
GERBILLISCUS, $48,510,515,513,519$
GERBILLUS, $7,11,19,23,+98,499,500$,
501, $503,507,51 \mathrm{I}, 522,524,528$
gerbillus, Gerbillus, 501, 502, 503, 508
gerbillus group, Gerbillus, 503,508
gerbillus, Hesperomys, $446,4+7,44^{8}$
gerbillus, Nus, $2+3$
germaini, Akodon, 412
germain, Rattus, 171, $21+$
germanicus, Cricetus, 440
germanicus, Mlus, 247
geronmmensis, Peromyscus, 392
gestri, kattus, 558 , 171,183
gha, Apodemus, 45, 90
ghigu, Utomys, 322
giffardi, Tatera, 513, 519 gigantea, Bandicota, 278, 280 sigantea group, Bandicota, 278 , 280
\&iganteus, Rhombomys, 540
gigas, Grammomys, 105, 107
gigas, Rattus, 201
gilberti, Peronyseus, 386, 397
gilbiventer, Rattus, 195
giliacus, Apodemus, 95, 101
gilli, Tatera, 517
gilva, Neotoma, 473
girensis, Rattus, 171, 176
glacialis, Alticola, 579
glareolus, Clethrionomys, 568
glareolus group, Clethrionomys, 565,568,572
glasselli, Peromyscus, 396
glaucinus, Akodon, 410,413
glaucus, Gyomys, 220, 22 I
glauerti, Rattus, 17t, 207
gleadowi, Gerbillus, 502, 503, 509
gleadowi group, Nillardia, 138
gleadnwi, Millardia, $52,74,137,138,241$
GLIRISCUS, 578
gliroides, Chiropodomys, 85
gnambiquarae group, Scapteromys, 426,427
gnambiquarae, Scapteromys, 426, 427
goeidii, Oryzomys, 345, 351
goldmani, Neotoma, 477, 480
goldmani, Oryzomys, 345
goldmani, Peromyscus, 388
goldmani, Reithrodontomys, 383
goldmani, Sigmodon, 466
goliath, Cricetomys, 289
goliath, Nallomys, 113
GOLUNDA, $10,18,32,33,41,45,50,57$, $65,119,130,266,267$
gondokorae, Mus, 243, 25 I
goodfellowi, Rhipidomys, 364, 365
gorka, Clethrionomys, 568,570
goslingi, Colomys, 257
gossei, Akodon, 4 ro, 4 II
gossii, Synaptomys, 559
gossypinus, Peromyscus, 386, 395
gotshohi, Microtus, 606
gouldi group, Mesembriomys, 117
gouldi, Mesembriomys, 117
gouldi. Notomys, 265
gouldi, Pseudomys, 223, 224
grabenscikovi, Dolomys, 585
gracilicaudatus, Pseudomys, 223, 224
gracilipes, Hesperomys, $447,44^{8}$
gracilis, Alticola, 580
gracilis, Bandicota, 277, 278, 279
gracilis group, Bandicota, 278,279
gracilis, Melomys, 228, 230
gracilis, Oryzomys, 345, 351
gracilis, Peromyscus, 389
gracilis, Rattus, 194
gracilis, Reithrodontomys, 384
gracilis, 'Tatera, 520
gracilis, Thomasomys, 367,370
grahami, Cricetomys, 289, 291
grahami, Mus, 243, 254
grahami, Thallomy's, 148
GRAMIMOMIYS, $9,20,34,35,38,42,45$, $46,47,65,104,261$
grandis, Mleriones, 529, 534
grandis, Nectomys, 362,363
grandis, Neotoma, 472
grandis, Peromyscus, 400
grandis, Rattus, 171, 198
grangeri, Neotoma, +78
granti, Apodemus, 95, 99
granti, Batomys, 109
granti group, Rattus, 170, 171, 213
granti, Otomys, 320, 325
granti, Rattus, $170,171,213$
GRAOMYS, $8,27,335,339,446,450$
GRAPHIURLS, 317, 578
gratus, Mus, 242, 243, 251
gratus, Peromyscus, 386,397
gravesi, Microtus, 606
gregalis group, Nicrotus, 587, 591, 594
gregalis, Mierotus, 594, 614
gregarius, Microtus, 6 I I
greyi, Rattus, 166, 171, 207
griffithi, Nesokia, 28:
grinnelli, Microtus, 601
griquae, Rhabdomy's, 134
griquae, Tatera, 513, 517
griseifrons, Dasymys, 122
griseipectus, Rattus, 171, I 80
griseiventer, Rattus, 171, 180
griseiventris, Cricetulus, 432, 433
griselda group, Lemniscomys, 130, 132
griselda, Lemniscomys, 130, 132
griseocaeruleus, Rattus, 175
griseoflavus, Graomys, $45^{\circ}$
griseoflavus, Reithrodontomys, 38 I
griseolus, Oryzomys, 355
grisescens, Baiomys, 402
griseus, Apodemus, 100
griseus, Cricetulus, 432
griseus, Peromyscus, 397
griseus, Reithrodontomys, 379
griseus, Sigmodon, 465
griseus, Zygodontomys, 418
grobbeni, Gerbillus, 507
groenlandicus, Dicrostonyx, 557, 558
grootensis, Hydromys, 300
GRIPOMYS, 35: 137
guadalupensis, Microtus, 604
guardia, Peromyscus, 388
guatemalae, Ototylomys, 374
guatemalensis, Herpetomys, 586
guatemalensis, Peromyscus, 386, 399
gud, Microtus, $590,593,596,605$
gudauricus, Microtus, 608
gueinzii, Dasymys, 122
guentheri group, Microtus, $587,589,591$, $592,593,595,607$
guentheri, Microtus, $594,595,596,607$
guerrerensis, Oryzomys, 348
guerrerensis, Sigmodon, 466
guianae, Holochilus, 462
guianae, Neacomys, $360,36 \mathrm{x}$

## INDEX

guianae, Oryzomys, 345,358
guincae, Tatera, 512, 513, 516
quieratt, (iolunda, 267,268
GUNOMYS. 33, 277, 278
gurkha, Apodenus, 173, 95, 102
gurkha, Mus, 243, 254
GLIIA, 36, 137
guyoni, Neriones, 529, 533
gyas, Tatera, 520,522
GliNOMYS, 232
grmnotis, Peromyscus, 386,309
GY'MNLROMIN1NE, 8, 487
GYMNLROMIYA, $3,4,5,6,8,30,488$
GYOMISS, リ, 29, 34, 40, 54, 73, 220, 222, 223
hamgeri, Cricetomys, 391
HADRONJS: $0,17,35,30,51,70,75,217$, 223
haematoreia, Neotoma, 471
HAEROMIV:, 9, 18, 35, 37, 40, 55, 72, 236, 237
haggardi, Phyllotis, 453, 454
hamanicus, Rattus, 177
halicoetes, Reithrodontomy's, 38 I
halli. Nicrotus, 603
H.Al, OMYS, 375,376
hallucalis, Clethrionomys, 568, 569
hamatus, Rattus, 1812,216
hamiltoni, Apodemus, 95,99
hammondi, Nectornvs, 362,363
HANSTER, 437
hanatedzum, Microtus, 610
hannengtoni, Nus, 243, 254
HAPALOMISS, 2, 4, 16, 32, 37, 44, 46, 47, $62,75,79,110,237$
HAPALOTIS, 1 з
HA1',OMILLOMI's, $3^{84}, 385,386,408$
hapsahensis, Mus, 247
hardwickes, Nesokia, 281
hardwackei, Tatera, 512, 513,514
harrmgtoni, Pelomys, 128, 129
harrmetoni, Taterillus, 520,521
harroldi, Lemmus, 565
hart1, Apodemus, 95, 102
harting, Microtus, 596, 607
harwoodı, Gerhillus, 502, 503, 506
hatchert, Reithrodon, $+58,459$
hatti, Utonyctomys, $4^{5}$
haussa, Mus. 243, 252
hawarenss, Rattus, 171, 187
hawashensis, Acomys, 275
hawelkae, Miterotus, 6019
haydenis. Pedomys, 621
hay, Apodemus, 95, 49
haymarn, Dendromus, $30 \%$, 310
haymani, Rattus, 171, 206
bebratensis, Apodemus, $95,96,407$
heck1, Tachyoryctes, $4 \boldsymbol{5}$
hemricha, Hyosciurus, 210
hemerchi, Rattus, 191, 218
helolete' synaptomys, 554

LIILJUNIS'S, 437
helleri, Aethomys, $1+3$
helleri, Otomys, 322
hellwaldi group, Rattus, 218
hellwaldi, Rattus, 163, 17t, 201, 217, 218, 219
helukus, Dasymys, 121, 122
helveticus, Clethrionomys, 568,560
helvolus, Lemmus, 562, 564
helvolus, Mus, $2+3$
helwolus, Oryzomys, 351
helvolus, Reithrodontomys, 382
hemileucurus, ('onilurus, 114
hemionotus, Peromyscus, 397
11ENDECAPLELRA, $408,500,502$
henlevi, Gerbillus, 502, 503, 506
henseli, Akodon, +10, +14
herberti, Rattus, 171, 202
hercegovinersis, Pitymys, 622
hercules, Mallomys, 112, 113
hereynicus, Clethrionomy's, 568
herero, Thallomys, $146,1+7$
hermannsbergensis, Leggadina, 256
hermonis, Mhcrotus, 605
heroldii, Mus, 247
HIERPETOMIYS, $7,28,554,583,585,586$, 596
herronai, Peromyscus, 387
hesperinus, Gerkillus, 504
HESPEROMY゙S, 8, 26, 328, 320, 331, 370, $341,402,407,408,417,445,447,449$, $+50,+51,+52$
hesperus, Oryzumys, 340
HETER()CEPHA1, L -303
hibermicus, Rattus, 183
hidongis, Rattus, 200
higginsi, Pseudomys, 223, 224
hilda, Gerhillus, 502, 503.507
hildae, siaccostomus, 285
hildebrandti, Rattus, 171, 212
hildegardeae, Zelotomys, 23 S
hindei, Aethomys, $1+3$
hindei, Beamys, $28_{3}$
hintoni, Aethemys, 1+3,144
hinton, Antelomys, 577
hintoni, Arvicola, 632
hinton, Clethrionomys, 574
hintoni, Melomys, 230
hirsutus, Golunda, 268
hirsutus, Mesembriomys, 117
hirsutus, Microtus, 598
harsutus, Renthrodontomys, 383
hirsutus, sigmodon, 464, 467
hirta, Akodon, $4 \mathrm{r} 0,410$
hirtensis, Apodemus, $93,45,46,90$
hirtipes, Eligmodontia, $4+4$
hirtipes, Gerhillus, 502, 504, 504
hirtus, Alicrotus, 596, h12
hispancus, Nus, 243,247
hispidus, Acomys, 273
hisprdus group, Aigmirdon, $4^{\text {h }} 4$
hispidus, ()xymseterus, 421
hispidus, sigmodom, 4ti4

HODOMYS, $8,27,331,334,459,470,478$, 479,480
hoffmani group, Rattus, 160,184
hotfmani, Rattus, 160,184
hokkaidi, Apodemus, 95, 100
hollisterı, P'eromyscus, 390
HOLOCHIC.U'S, 8, 27, 331, 334, 335, 451, $45^{8}, 461,479$
homericus, Acomys, 272, 273
homochroia, Peromyscus, 387
HOMODONTOMIS $, 469,470,477$
homourus, Mus, 243, 245
hondonis, Micromys, 92
hopkinsoni, Tatera, 513,519
horeites, Rattus, 180
hortulanus, Mus, 243, 244
hotsoni, Calomyscus, 403
howelli, Reithrodontomys, 384
huang, Rattus, 161, 171, 193, 220
huberti, Rattus, 171,213
hudsoni, Thomasomys, 370
hudsonius, Dicrostonyx, 557, 558
hudsonius, Ondatra, 637
huegeli, Rattus, 171, 187
hueyi, Peromyscus, 392
humei, Iladromys, 127
humiliatus, Rattus, $159,171,184$
humilior, Oryzomys, 345, 356
humulis group, Reithrodontomys, 379
humulis, Reithrodontomys, 378,379
hungaricus, Pitymys, 623
hunteri, Acomys, 272, 273
hunteri, Akodon, 410
huon, Pogonomys, 82
hurrianae group, Meriones, 531
hurrianae, Meriones, 528,529,531, 536
huttoni, Nesokia, 281, 282
HYBOMI'S, 9, 20, 34, 35, 39, 51, 73, 135
hybridus, Rattus, 183
hyarobates, Ichthyomys, 482
HIDROMYINAE, 9, 297
HYDROMI'S, $2,9,30,298,300,301,302$, 304, 481
hylacus, Peromyscus, 390
IIYI.ENOMIS $9,21,37,41,55,67,75$, 238, 239
hylocetes, Oryzonys, $3+8$
hylocetes, Peromyscus, 396
hylococtes, Apomys, 225
hylomyoides, Rattus, 171,194
HYL.OMYCCLS, 37, 40, $149,167,209$
HYOMI'S $9,28,33,3^{8}, 44,48,64,111$, 112, 293
HYPERACRICS, 7, 13, 553, 581
hyperythrus, Microtus, 601
hypoboreus, Microtus, 595, 614
hypogacus, Graomys, 451
HYPOGFOMIS, $4,5,6,8,30,331,334$, $480,48 \mathrm{~s}, 485,492$
hypoleucus, Rattus, 208
hypophilus, 'I'homasomys, 367, 370
hypoxanthus, Oenomys, 118
HYPムINIS, $406,408,409,414$

HリPMDAELS, 561
hystrella, Acomys, 275
HYSTRIX, 220
iheanus, Grammomys, 105, 106
iheanus, Tachyoryctes, 493, 495
ibericus group, Pitymys, 62t, 622, 625
ibericus, Pitymys, $621,622,625$
1CHTHYON13S, 2, 8, 28, 29א, $327,33 \mathrm{t}$, $332,481,483,484,485$
iconica, Tatera, 5:3,515
idahoensis, Clethrionomy's, 572,573
IDOMENEUS, 525
idoneus, Oryzomys, 356
ifniensis, Lemniscomys, 131
ighesicus, Nicrotus, 606
igmanensis, Microtus, 611
ignitus, Acomys, 272, 274
iheringi, Microxus, 419
ilaeus, Microtus, 591, 596, 609
ilex, Apodemus, 95, 100
illapelinus, Phyllotis, 454
illectus, Oryzomys, 358
illinoensis, Neotoma, 471
illovoensis, Rattus, 212
illustris, Taterillus, 520,521
illutea, Akodon, 410,416 illuteus, Hydromys, 299, 300 illyricus, Arvicola, 630 imago, Aethomys, 143, 144 imbellis, Ammodillus, 525 imberbis, Muriculus, 239 imitator, Alticola, 579 imitator, Anisomys, 77, 79 imperator group, ( romys, 233, 234 imperator, (Tromys, 233, 234 impiger, Reithrodontomys, 379 inambarii, Akodon, 410,416 inas, Rattus, 171, 196 inca, Oxymycterus, 421 incanus, Cricetulus, 432,435 incanus, Thomasomys, 367,370 incarum, Holochilus, +62 incertoides, Pitymys, 624 incertus, Microtus, 596,600 incertus, Myospalax, 548,60 ) incertus, Oryzomys, 347, 353 inclusa, Tatera, 513, 518 incognitus, Nlicrotus, 609 incnmtus, Dasymys, 121, 122 indefessus, Oryzomys, 345, 359 indica, Bandicota, 278,280 indica group, Bandicota, 278, 279 indica group, Tatera, 512,513 indica, Nesokia, 28 I indica, Tatera, 512, 513 indicus, Rattus, 171, 176 indosinicus, Rattus, 194,220 indus, Gerbillus, 502, 505 indutus, Mus, 243, 251 indutus, Kyzomys, 115 meptus, Acthomys, 143, 144

## 666

inexoratus, sigmodon, 465
mexpectatus, Reithrodontomys, $38_{1}$
inez, Clethronomys, 568,571
infans, Akodon, +13
inferior, Rattus, 191
inflatus, Rattus, 154, 153, 171, 200
infralincatus, Rattus, 176
infraluteus, Rattus, 171,180
ingens, Dacnomys, 140
ingoldbyi, Rattus, 172, 211
iniscatus, Akodon, 410,411
innuitus, Microtus, 593, 602
innuitus, Synaptomys, 560
ISOMIYS, 366,367
inopinata, Neotoma, 475
inopinatus, Sigmodon, 467
inornatus, Akodon, 455
insignatus, Pelomys, 128, 121)
insignis, Apomys, 225
insignts, Dendromus, 307, 308
insignts, Grammomys, 105, 106
insignis, Peromyscus, 386,389
insolatus, Peromyscus, 391
insperatus, Microtes, $59 \$$
instans, Chilomys, 372
instans, Zelotomys, 238
insulac, Helomys, 231
INSiLLAEMIUS, 37,84
insulanus, Peromyseus, 395
insulanus, Rattus, 178
insularis, Bandicota, 278, 279
insulars, Clethrionomys, 573
insularis, Microtus, 599, 611
insularis, Neotoma, 474
insularis, Kattus, 174
insularum, Rattus, 202
insulicola, l'eromyscus, 387
intectus, Oryzomys, $3+1,3+5,35$ I
integer, Rattus, 189
interdictus, Peromyscus, 392
intermedra group, Neotoma, 471, 473
intermedia, Microtus, 612
intermedia, Neotona, 471, 473
intermedius, Acomys, 275
intermedius, Apodernus, 97
intermedius, Ellobius, 640
intermedius group, Phenacomys, 583
intermedius, Lagurus, 635
intermedius, Melomys, 228,229
intermedius, Oryzomys, 345, 351
intormedius, Phenacomys, 583
intermedius, P1tymys, 622, b23
intermedius, Rattus, 175
intermedius, Reithrodontomys, 381
intermedius, Rhabdomys, $13+$
interpartetahs, Peromyscus, 389
intraponticus, Meriones, 532
irani, Microtes, $594,590,607$
irazu, scotnomys, +28
irene, Neodon, 619, 620
IRENOMIS, \&, $27,75,331,333,456,479$
iridescens, Pelomys, 129
irs, oxymycterus, 421

## INDEX

trkutensis, Clethrionomys, 571
irroratus group, Otomys, 320,322
irroratus, Otomys, $320,321,323$
tsahellinus, Cricetulus, 434
ischyrus, Thomasomys, 367,370
isiolae, , 'accostomus, 285,286
isis, Meriones, 529, 533
islandicus, Apodemus, 97
ismahelis, Meriones, $527,528,529,530,535$
ismailae, Rattus, 171, 212
isolatus, Peromyscus, 393
isolatus, Rattus, 184
ISOMIY: 123
isseli, Pelomys, 128, 129
istericus, Clethrionomys, 568,569
isthmica, Neotoma, 475
italicus, Arvicola, 630
italicus, Clethrionomys, 568,569
itigiensis, Rattus, 212
ituricus, Rattus, 171, 208
jabouillei, Bandicota, 278, 280
jacentior, Oxymycterus, 421,422
jacksoni, Otomys, 320, 322
jacksoni, Rattus, 171, 208
jacksoni, Sigmodon, 465
jacksoni, Steatomys, 311,312
jacksoniae, Nlus, $243,249,250$
jacobiae, Rattus, 174
jacutensts, Arvicola, 63 I
jacutensis, Clethrionomys, 568,570
jalapae, Mus, 243
jalapae, Oryzomys, 345
jalapae, Reithrodontomys, $3^{8} 3$
jalorensis, Rattus, 171, 178
jamesoni, Dendromus, 307, 308
jamesoni, Mlus, $2+4$
japonicus, Micromys, 90,91
jarak, Rattus, 159, 171, 188
jaxartensis, Meriones, 532
jebelae, Arvicanthis, 124
jelskii, Akodon, $+10,+15$
jemuris, Rattus, 179
jenissejensis, Arvicola, 631
jeppei, Otomys, 325
jerdoni, Rattus, 171, 193
jessook, Rattus, 187
jeudii, Cricetus, $44^{\circ}$
joanae, Tatera, 513, 518
jobiensis, Melomys, 230
jobiensis, Rattus, 205
jochelsoni, Clethrionomy's, 570
johannes, Microtus, 590, 594, 596, 614
johannis, Acomys, 272, 273
jonesi, Leporillus, 222
jordani, Gcrbillus, 502, 503, 506
jucundus, Akodon, 410,41 I
jucundus, Eligmodontia, $4+1$ )
judex, Oxymucterus, 421
jujensis, Rattus, 175
juldaschı group, Neodon, 619, 620
juldaschı, Neodon, 659,620
juliacae, Oxymycterus, 421
juliani, Gerbillus, 502, 503, 506
julianus, Rattus, 182
kadiacensis, Microtus, 60I
kadugliensis, Taterillus, 522
kaimosae, Rattus, 209
kaiseri, Aethomys, 142, 143
kakhyensis, Mus, 248
kalaharicus, Gerbillus, 502, 508
kalaharicus, Malacothrix, 314
kalaharicus, Steatomys, 313
kalaharicus, Thallomys, 146
kalinowski, Thomasomys, 367,370
kamensis, Cricetulus, 432,433
kamtschaticus, Clethrionomys, 571
kamtschaticus, Microtus, 613
kandianus, Rattus, 171, 176
karelini, Meriones, 536
karjateni, Meriones, 530,532
keroensis, Otomys, 320,32 I, 324
kasaica, Mus, 243, 251
kasaicus, Steatomys, 312
kashtchenkoi, Ellobius, 640
kathleenae group, Millardia, 138
kathleenae, Millardia, 137, 138
kaznakovi, Alticola, 581
keaysi, Oryzomys, 345, 351, 352
keeni, Peromyscus, 390
kelaarti, Rattus, 171, 176
kelleri, Rattus, $18 z$
kempi, Acomys, 272, 274
kempi, Akodon, 4 10, 414
kempi, Otomys, 320, 321, 324
kempi, Tatera, 513,519
kempi, 'Thamnomys, 103, 104
kennethi, Rattus, 202
kennicotti, Pitymys, 626
kenyensis, Cricetomys, 289, 291
kerensis, Rattus, 213
kernensis, Microtus, 601
khyensis, Rattus, 171 , 176
kijabius, Rattus, 175
kikuchi, Microtus, 616
kina, Rattus, 171, 195
kishidai, Microtus, 610
kivu, Dendromus, 307, 308
kivuensis, Cricetomys, 291
kjusjerensis, Microtus, 613
klagesi, Rhipidomys, 365
klaverensis, Thallomys, 148
klossi, Rattus, 171, 196
klossi, Stenomys, 171, 206
klumensis, Rattus, 171, 177
koenigi, Mesocricetus, 443, 444
kok, Bandicota, 278, 279
koka, Rattus, 160, 191
kokandicus, Meriones, 532
kolymensis, Clethrionomys, 572
komationsis, Rattus, 213
KOMEMVYS, $36,39,51,127,128,129$
komurai, Myospalax, 546,548
korabensis, Arvicola, 630
korabensis, Dolomys, $5^{8} 5$
koratensis, Rattus, 178
koratis, Rattus, 199
kordofanensis, Arvicanthis, 124
koreni, Microtus, 613
korinchi, Rattus, $156,171,172$
kossogolicus, Microtus, 615
kozhantscikovi, Cricetulus, 433
kozlovi, Cricetulus, 428, 429, 435
kozlovi, Meriones, 535
kraensis, Rattus, 171, 178
kramensis, Rattus, 178
kramis, Rattus, 199
krebsii, Steatomys, 313
kukunoriensis, Myospalax, 546,548
kundurensis, Rattus, 178
kupelwiescri, Pitymys, 62.4
kurauchi, Meriones, 537
kurilensis, Clethrionomys, 572
kurilensis, Mus, 248
kuru, Thamnomys, 103,104
kuruschi, Arvicola, 632
kutensis, Rattus, 171, 197
kuvelaiensis, Zelotomys, 238
kuznetzovi, Arvicola, 631
kytmanovi, Micromys, 11
labecula, Peromyscus, 391
labiosus, Scapteromys, 487
labradorius, Microtus, 598
laceianus, Peromyscus, 397
lacernatus, Arvicanthis, 125
lacernatus, Meriones, 537
laceyi, Peromyscus, 396
laceyi, Reithrodontomys, 381
lactens, Akodon, 409, 410, 45
lactiventer, Rattus, 204
lacustris, Otomys, 32 I
lacustris, Taterillus, 520, 521
ladewi, Thomasomys, 370
lagunae, Peromyscus, 397
LAGURUS, $7,14,16,553,633,634$
lagurus group, Lagurus, 633,634
lagurus, Lagurus, 634
laholis, Rattus, 182
lahulius, Alticola, 579
lama, Aiticola, 579, 580
lama, Cricetulus, 428, 429, 431, 432, 433
lama group, Cricctulus, 431,433
lambertoni, Nesomy's, 376
lambi, Oryzomys, 346
lamia, Oryzonys, 345,351
lamia, Pogonomys, $81,82,83$
laminatus group, Otomys, 320,321
laminatus, Otomys, $319,320,321$
LAMOTOMYS, 318,319
lampo, Lenomys, 84
lamucotanus, Rattus, 180
!ancavensis, Rattus, 171, 202
lanensis, Rattus, 178
langbianis, Rattus, 171, 195
1.met, Cricetomys, 200
lanker, Thomasonts, 367.370
lanosus, Delomys, 228, 220
lanosus, Metoxus, 419
lanuginosus, Mystromys, ++5
LAOM1Y 5, $9,28,34.38,49,64,75,114$, 115
lapudarius, saccostomus, 285
laplatensts, Neotoma, 473
larus, Apodemus, 05,99
larvatus, Ellobius, $6+1$
lasiae, Ratrus, 18 I
L.ASIONIYS, 260

LASIOPODOMIYS, $7,13,555,59 \mathrm{I}, 594$, 51)6, 616,617
lasintis. Akodon, 4 10, 714
lassstanius, Microtus, 605
lasiurus, Zygodontomys, $410,417,418$
lastus, Peromyscus, 397
lassacqueri, Rattus, 187
latastei. Clethrionomys, 568,571
latastei, Gerbillus, 502, 508
latebricola, Nicrovus, 4 io
lateralıs, Rattus, 2017
laticeps, (lethrenomys, 57 I
laticeps, Lophuromys, 263
laticeps, Mermones, 533
laticeps, 1 ryzomys, $3+1,3+5,351$
laticeps, Rattus, 209
latiftons, Microtus, 612
latifrons, Deotoma, $\$ 73$
1atmanus, Phenacomys, 583,584
Jatumanus, Rhipudomys, 364.365
latipes, Nelomys, 231
latipes, Rattus, 177
latirostra, Neotoma, 476
latoucher, Rattus, $17 \mathrm{t}, 204$
letronum, Apodemus, 95, 101
latus, Microtus, 603
latycrantus, Cricetus, +70
laucha, Hesperomys, +48
lawnensis, Hydromys, 300
leander, Anotomys, +84
lebombotenss, Thallomys, 147
lebrumii, Mtcrotus, 59f,606
lechei, Thomasomys, 369
legatus, Chropodomys, 85,86
legatus, (ryzomys, 341, 345, 35 I
legatus, Rattus, 151, 154, 157, 171, 173
legeri, Mermones, 534
LEGGADA, 34, 240, 241, 242
1.J(;GADILLA, 35, +1, 55, 223, 240, 241, $242,253,254$
LFGGADIX.A, $9,24,34,+1,4+55,67,220$, $222,223,255$
lehocla, Thallomys, 1 th, $1+8$
lehochlosides, Thallomys, $14 \%$
LIEMAC()MIS. 204, 305
LEA1M11, 6, 550, 556
lemmonus, Aschuomys, 575
LEMIMISCL $\stackrel{2}{ }, 633,63+, 635$
1.EMIMLS, 6, 12, $15,549,551,557,559$, - 710,561
lemmus group, Lenmmus, 561, 562
lemmus, Lemmus, 562
LEMINISCOMIY, 9, 10, 20, 36, 39, 42, 47, 51, 69, 123, 130, 135
lenaensis, Clethronomys, 571
lenensis, Dicrostonys, 557
lenguarum, Akodon, 406, 410,411
lenis, Oryzomys, 354
LJNOMIS, $9,16,33,38,46,63,83,112$, 156, 216,
LKNOTIIRIX, 33, 148,157
LENOLVS, 8, 26, 330, 333, 419,420
leonis, Rattus, $17 \mathrm{t}, 198$
lepcha, Rattus, 171, 195
Iepida, Neotoma, $+70,+7 \mathrm{I},+76$
lepidnides, Mus, $2+9$
lepidus, Hesperomys, $446,447,448$
lepidus, Mus, 24'
lepidus, Pogonomys, $81,8 z$
lepidus, Rattus, Iot
LEPOR1LLLS, 9, 29, 32, $33,40,50,54,57$, 71, 73, 221, 222
LIEPT()MIYS, 1, 30, 208, 302, 303, 304
lepturoides. Rattus, 193
lepturus, Akodon, 412
lepturus group, Peromyscus, 398
lepturus group, Rattus, 162,197
lepturus, Meriones, 537
kepturus, Peromyscus, 308
lepturus, Rattus, $150,15 \mathrm{I}, 153,154,155$, $162,163,165,171,197$
leucanthus, Gerbillus, 502. 507
leucocephalus, Apodemus, 47
leucocephalus, Peromyscus, 393
leucodactylus, Rhupidomys, $3^{64}+365$
leucudon, Neotoma, 472
leucogaster, Holochilus, 462
leucogaster, Hydromys, 299
leucogaster, Melomys, 231
leucogaster, ()nychomys, 40.4
leucogaster, Rattus, 175
leucogaster, 'latera, 513,517
leucogula, Akodon, +12
leucolmmaneus, Akidon, 415
leuconoe, Thallomys, $1+6$
leucophaea, Neotuma, 472
leucophactus, Rattus, 186
leucophaeus, Wictotus, bot
leucopus group, Peromyscus, 344
leucopus group, Rattus, $16+1265,204$
leucopus, Peromyscus, 386,394
leucopus, Pseudomys, 22.4
leucopus, Rattus, 152, 155, 171, 20.7
leucosternum, Rattus, $171,18_{3}$
leucostomus, Demdromus, 30\%
leucotis, Sigmodim, fion
lencura, l:chothrix, 269
leucurus, Mherotus, 596, ,ooh
heucuras, Peromyseus, 380,398
leucurus, Phaiomys, 62 8
kencurus, Phyllotis, 453,455
leverned 11 , Microtus, 506,612
levipes group, Reathrodontomys, 378,383
levipes, Melomys, 228
levipes, Oryzomys, 345, 352
levipes, Peromyscus, 396
levipes, Reithrodontomys, 383
levis, Microtus, 596, 608
levis, Phenacomys, 583
liberiae, Cricetomys, 289
libonntus, Lothenomys, 576
libycus group, Meriones, 527, 528, 530, 533
libycus, Meriones, 528,529,530, 533, 534
lichtensteini, Pitymys, 62.4
limatus, Phyllotis, 453,454
limbatus, Rattus, 253
limicauda, Melomys, 231
limicola, Reithrodontomys, 380
limitaris, Golunda, 267, 268
limitis, Clethrionomys, 573
LIMNOMIYS, 33, 42, $448,295,300$
limnophilus, Microtus, 615
limpopoensis, Rattus, 213
limpopnensis, Saccostomus, 286
limpopoensis, Tatera, 518
linduensis, Rattus, 185
lineatnaffinis, Arvicanthis, 126
lineatus, Dendromus, 307, 309
lineatus, Rhabdomys, 134
lineolatus, Pseudomy's, 223
ling, Rattus, $162,171,192,220$
lingensis, Rattus, 171, 198
linulus, Lemniscomys, 130,133
liodon group, Tatera, 513, 516
liodon, Tatera, $511,512,513,516$
LOTOMYS, $318,325,326$
listeri, Rattus, 171, 201
listoni, Millardia, 138
littledalei, Parotomys, 326
litoralis, Meriones, 536
littoralis, Arvicola, 630
littoralis, Grammomys, 106
littoralis, Melomys, 231
littoralis, Mlicrotus, 603
littoralis, Neotoma, $\$ 72$
littoralis, Sigmodon, 46
littoralis, Tatera, 5 i8
littoreus, Rattus, 192
lixa, Gerbillus, 502, 503, 506
lobengulae, 'l'atera, 513, 517
localis, Rattus, 201
lockwoodi, Graomys, 450,451
lomitensis, Oryzomys, 357
langicauda, Alticola, 580
longicaudatus, Cricetulus, 432
longicaudatus, Dendromus, 310
longicaudatus group, Cricetulus, $\ddagger 32$
longicaudatus group, Notomys, 266
longicaudatus group, Rattus, 166
longicaudatus, Hapalomys, 80
longicaudatus, Irenomys, 457
inngicaudatus, Mystromy's, 445
longicaudatus, Notomys, 264, 265, 266
longicaudatus, Oryzomys, 345,352
longicaudatus, Rattus, 171,208
longicaudus, Cierbillus, 508
longicaudus group, Microtus, 587, 591, 593, 603
longicaudus group, Phenacomys, 583,584
longicaudus, Lenomys, 84
longicaudus, Microtus, 603
longicaudus, Onychomys, 405
longicaudus, Phenacomy's, 583,584
longicaudus, Reithrodontomys, 378 , 380
longiceps, Meriones, 528, 529, 533
longifrons, Meriones, $529,530,535$
longipes, Malacomys, 236
longipes, Meriones, 535
longipes, Onychomys, 404, 405
longipilis, Akodon, $+10,+16$
longipilis, Microtus, 598
longipilis, Rattus, 207
longirostris, Mlicrotus, 599
longmani, Hydromys, 299, 300
lonnbergi, Sigmodon, 464,467
LOPHIOMYIDAE, 2
LOPHUROAYS, $10,21,32,41,45,56,59$, $66,239,260,276,294,317,330$
lophurus, Peromyscus, 398
lordi, Bandicota, 278, 279
lorentzii, Melomys, 228
LORENTZ1MI'S, 9, 29, 35, 42, 60, 295
lorenzi, Taterillus, 522
loriae, Pogonomys, 81,82
loringi, Clethrionomys, 568,573
loringi, Thallomys, $1+6$
losea, Rattus, 158, 171, 173
lotipes, Rattus, 192
louisae, Acomys, 272, 274
lovati, Dendromus, 307, 311
loveridgei, Steatomys, 311,312
loveridgei, Tatera, 519
lowei, Gerbillus, 502, 504
lowei. Mylomys, 120
lowei, 'Taterillus, 520, 521
lucas, Rattus, 203
luch, Microtus, 596, 612
lucia, Tatera, 513,516
luciae, Alegalomys, 360
lucida, Neotoma, 478
lucidus, Microtus, 606
lucifrons, Reithrodontomys, 383
luctuosus, Arvicanthis, 124
lucullus, Rhipidomys, 364,365
ludovicianus, Pedomys, 621
lugens group, Thomasomys, 368, 360
lugens, Rattus, 181
lugens, 'Thomasomys, $367,368,360$
lukolelae, Rattus, 209
luluae, Lemniscomys, 132
luluae, Pelomys, 129
lunaris, Dendromus, $30 \$$
lunaris, Hybonnss, 136
lusitanicus, Mus, $2+3,246$
lusitanicus, Pitymys, 622, 625
luta, Rattus, 203
luteiventris, Rattus, 186
luteogaster, Lophuromys, 203
lutenlus, Gerballus, 502, 505

670
luteolus, Parotomys, 326
luteolus, Rattus, 200
luteolus, Reithrodontomys, $3 \mathrm{~S}_{2}$
lutescens, Akodon, 41 I
lutescens, Ellobius, 639. 640
lutescens, Holochilus or Rattus, 463
lutescens, XIylomys, 120
lutescens, Phyllotis, $+53,454$
luteus, Cricetomys, 289,291
Juteus, Gerbillus, 502, 506
luteus group, Lagurus, 633,634
luteus, Lagurus, 633, 63+
luteus, Peromyscus, 391
luticola, Rattus, 171, 192
lutillus, Melomys, 227, 228, 230
lutosus, Grammomys, 105,106
lutreolus, Rattus, $154,166,171,208,221$
lutrilla, Hydromys, 299
luxuriosus, Rattus, 179
luzonicus, Rattus, 154, 159, 160, 171, 190
Iycaon, Meriones, 529. 530, 532
lydius, Nicrotus, $596,598,607$
Iynesi, Lemniscomys, 130, 132
dynesi, Mus, 247
mabalus, Rattus, 199
maccalinus, Tatera, 517
macconnelli, Oryzomys, 345, 352
macconnelli, Thomasomys, 367,371
macculus, Lemniscomys, 130,133
mactarlani, Microtus, 601
macgllivia1, Microtus, 596,612
mackenziei, Rattus, 151, 161, 164, 371, 20+
mackenzii, Phenacomys, 584
mackilligini, Gerbillus, $502,503,506$
maclean, Apodemus, 95. 99
macleari grnup, Rattus, 156,172
macleari, Rattus, 151, 554, 156, 171, 172, 218
macmillant, Grammomys, 105
macmillani, Rattus, 171 , 180
macrocephalus group, Tachyoryctes, 493
macrocephalus, Tachyoryctes, 493
macrocercus, Oryzomys, 352
macrocranius, Microtus, 596,608
macrodon, Ondatra, 637
macrolepsus, Rattus, 175,213
macronyx, Notiomys, $+24,425$
macropus, Bandicota, 280
macropus, Microtus, 597
macropus, Notomys, 265
macropus, Peromyscus, +01
macropus, Tatera, 512, 51 +
macropus, Utromys, 233, 234
macrorhmus, Peromyscus, 390
MALR(9TARAOMIS, $30,48 \mathrm{I}, 485$
macrotis, Alticola, $579,5 \mathrm{Ko}$
macrotus, Neotoma, 471, 477
macrotis, Notomys, 265
macrotes, Onychomys, 405
macrourus, Pozonomys, $81,8=$
A1ACRLROXIS, 9, 29, 37, 41, 50, 56, 66, 75, 259, 260, 295
macrurus group, Nesembriomys, 117
macrurus, Mesembriomys, 117
macrurus, Nicrotus, 596,603
macrurus, Rhipidomys, $3^{64}, 365$
maculatus, Apodemus, 102
maculatus, Mus, $2+3$
maculipectus, Rattus, 197
maculiventer, Oryzomys, $34+345,349$
maculosus, Lemniscomys, 132
madrensis, Neotoma, +75
madrensis, Peromyscus, 386,396
maerens, Rattus, 181
magalakuini, Aethomys, 145
magdalenae, Nectomis, 362,363
magdalenae, Oryzonyss, 351
magdalenar, Peromyscus, 392
magellanicus, Oryzomys, $3+5,352$
magister, Phyllotis, 453, 457
magnirostris, Rattus, 183
magnus, Rattus, 171, 204
mahomet, Mus, 243, 252
major, Apodemus, 95, 101
major, Apomys, 225
major, Arvicanthis, 124
major, Beamys, 283
major, Chiropodomrs, 85,86
major, Dendromus, 307, 308
major, Lophuromys, 262
major, Nlacruromys, 260
major, Microtus, 594,615
major, Peromyscus, 386, 390
major, Pogonomys, 83
major, Rattus, 18.4
major, Rhabdomys, 134
major, Sigmodon $4^{65}$
major, Thamnomys, 104
majori, Eliurus, 7h
majori, Pitymys, $622,622,623$
majusculus, Apodemus, 98
makensis, Rattus, 171, 177
malabarica, Bandicota, 278, 280
NALACON1Уミ, 9, 21, 32, 40, 55. 70, 123,
235, 257
MALACOTHRIX, 2, 9, 22, 305, 306, 307, 313
malaisıa, Rattus, 173
malawali, Rattus, 196
malcolmi, Nicrotus, 596,610
malkensis, Otomys, 322
malleus, Otomys, 320
MALLOAV'S, 9, 17, 28, 33, 38, 46, 49, 65, 79, 111,112, 293
malyi, Microtus, 606
mambatus, Pogonomys, 81, 83
mamorat, Oryzomys, $345,35^{8}$
manchu, Mus, $2+3,247$
manchuricus, Cricetulus, 432
mandarinus group, Microtus, 555, 587, 590, $591,593,594,6 \pm 4,617$
mandatmus, Microtus, 506, bry
mandus, Rattus, 104
manei, Nus, 243, 245
mangalums, Jattus, 17\%
manicalis, Rattus, 198
manicatus, Rattus, 166, 171, 207
maniculatus group, Deromyscus, 389
maniculatus, Peromyscus, 368,389
maniculatus, Rattus, 183
manipulus, Rattus, 151, 154, 164, 171, 204
manoquarius, Rattus, 187
mansalaris, Rattus, 203
mantchuricus, Apodemus, 95, 102
manteufeli, Aethomys, 143
manteufeli, Lemniscomys, 131
manteufeli, Lophuromys, 262, 263
manuselae, Rattus, 171, 183
maorium, Rattus, 171 , 187
maputa, Tatcra, 520
mara, Rattus, 182
marakovici, Dolomys, 585
maranonicus. Oryzomys, 355
marcarum, Hesperomys, +47
marcosensis, Neotoma, 476
margarettac, Hacromys, 236
margarettae, Lophuromys, 262
margaritae, Peromyscus, 391
marginiae, Meriones, 534
mariae, Gerbillus, 502, 503, 506
mariae, Meriones, 536
mariae, Pitymys, 622, 625
marica, Eligmodontia, 449
marica, Mus, 243,251
marica, Vandeleuria, 87
matiepsi, Otomys, 32 I
marikquensis, Rattus, 171, 213
marinus, Rattus, 171, 193
marinus, Reithrodon, $45 \mathrm{~S}, 459$
mariposae, Microtus, 600
mariposae, Peromyscus, 387
maritimus, Phyllotis, 453
marmosa, Hapalomys, 81
marmosurus, Oryzomys, 345, 358
marmosurus, Rattus, 159, 171, 189, 216, 219
MARMOTA, +3
MLARMIOTOPS, 43
martinensis, Neotoma, 474
martinensis, Peromyscus, 392
martinoi, Pitymys, 624
martirensis, Neotoma, 478
martirensis, Peromyscus, 386, 397
marungensis, Oenomys, 119
masae, Rattus, 203
mascotensis, sigmodon, $464,465,466$
mashona, Otomys, 320, 323
mashonae, Saccostomus, 284, 285
mashonac, Tatera, 513, 517
massagetes, Meriones, 536
massaicus, Lemniscomys, 130, 132
massaicus, Mylomys, 120
mastacalis, Rhipidomys, 365
MASTACOMIS, $10,30,32,41,45,57,66$, 266, 285
MASTOMYS, 35, $40,149,168,211,294$
matrensis, Pitymys, 623
matschici, Mus, 253
mattensis, Nectomys, 362,363
matthaeus, Rattus, 203
mattogrossae, Oryzomys, $3: 5$
maunensis, Steatomys, 312
maurus, Rattus, 171, 183, 209
maxeratis, Meriones, 534
maxi, Rattus, 189
maximowiczi, Microtus, 616
maximus, Otomys, 320,324
MAXOMYS, $37,149,163$
mayapahit, Rattus, 17r, 202
mayensis, Oryzomys, 354
mayeri, Lenomys, $8_{4}$
mayeri, Melomys, 227, 228, 232
mayonicus, Rattus, 186
mayori, Coelomys, 235
mazama, Clethrionomys, 572, 573
mearnsi, Arvicanthis, 125
mearnsi, Lemniscomys, 132
mearnsi, Limnomys, 295
mearnsi, Neotoma, 472
mearnsi, Peromyscus, 386, 394
mearnsi, Saccostomus, 286
meator, Mus, 249
medicatus, Aethomys, 143
mediocris, Rattus, 205
medioximus, Synaptomys, 560
medius, Dasymys, 121, 122
medius, Graomys, 450 , 45 I
medius, Microtus, 613
medius, Oryzomys, 344, $35^{2}$
medius, Peromyscus, 386, 390
medius, Rattus, 171, 173
meeki, Hyomys, 111
meeki, Melomys, 228
megacephalus, Peromyscus, 395
MEGADONTOMIS, $384,385,401$, 408
MEGALOMYS, 8, 24, 338, 359
megalonyx group, Notiomys, 423, 425
megalonyx, Notiomys, 424, 425
megalops group, Peromyscus, 368,400
megalops, Peromyscus, 386,400
megalotis, Acomys, 273
megalotis group, Reithrodontomys, 379
megalotis, Notomys, 265
megalotis, Peromyscus, 397
megalotis, Reithrodontomys, 380
mehelyi, Micromys, 91
mehelyi, Microtus, 614
meihsiensis, Cricetulus, 435
mejiae, Peromyscus, 388
mekisturus, Peromyscus, 398
mekongis, Rattus, 171, 195
melampus, Akodon, +16
melanius, Crunomys, 258, 259
melanius, Nectomys, 362, 363
melanius, Phyllotis, 453, 454
melanocarpus, Peromyscus, 400
melanogaster, Eothenomys, 575, 576
melanogaster group. Eothenomys, 57 h
MELANOMIS, $340,3+1,34+356,36 \mathrm{r}, 408$
melanophrys group, Peromyscus, $3^{86}, 39^{8}$
melanophrys, Onychomys, 404
melanophrys, Peromyscus, 398

672
nelamops, ticolonmys, 485
melanops, Taterillus, 521
melanostroma, Oryzomys, 352
melanotis, Dendromus, 307,300
melanotis group, ()ryzomys, 344, 347
inclabotis, Oryzomys, $3+5,3+7$
melanotis, Peromyscus, 386,303
melanotis, Phyllotis, +53
melanotis, Aipmodon, +66
melanotus, Rattus, 208
melanura, Neotoma, 472
melaburus, Carpoonss, 108
melanurus group, Carpomys, 108
melanurus, Meriodes, 529,533
melanurus, Peronyscus, 400
melaourus Pithecheir, ion
melas, Neotoma, 773
NELASAIOTIIRIX, 10, 19, 36, 42, 60, 294
melibeus, Conilurus, 114
melicertes, Hydromys, 290. 300
melicus, Melomys, 228, 231
melinogaster, Rattus, ro6
melleus, (ryzomys, 35 K
melli, Rattus, 201
NIELOMYS, $9,29,36,37,40,54,71,225$, $226,227,230,233$
meltada group, Millardia, 138
meltada, Millardia, 138
melualleosis, Mesembriomys, 117
melvilleus, Rattus, 165, 166, 171, 206
mengurus, Rattus, 106
meogkoka, Rattus, 185
mentawi, Rattus, 179
meatosus, Rattus, 171, $19+$
mergens, Ondatra, 637
meridebsis, Akodon, 414
meridensis, Oryzomys, $340,34+345,350,352$
meridianus group, Neriones, $525,527,530$, 535
mendianus, Mermoes, 529, 531, 535, 537
meridianus, Microtus, 596, 608
meridionalıs, Arvicola, 630
meridionalis, . Nicromys, 90
meridionalis, Rhahdomys, 134
MERIONES, 7, 12, 19, 23, 75, 331, 456,498 , $500,501,511,524,525,528,530,532$, 537,538 , 539
metriani, Peromyscus, 387
merrianm, Reithrodontomys, 379
mesanus, Rattus, 178
AHSLMBRIOMSS, , $28,32,33,34,38$, 49, $6+11+, 116,222$
 421), 43 3, 441
mesomelas, Dendromus, 307,308
mesomedas, Peromyseus, $30+$
MESOMPA1,AX, 540
méhsorius, 3)endromus. 307.30K
messortus, lequadina, 25 o
messorius, Mheromys, 90
messortus, ()ryzomys, 345,355
metalhenla, Peroms'scus, 395
the xueand proup, Neotoma, 470, 474

INDEX
mexicana, Neotoma, 475,474
mexicanus group, Nicrotus. 587, 591. 593. 604
mexicanus group, Peromyscus, 386,390
mexicaous group, Reithrodontomys, 370
mexicanus, Microtus, 590, 596, 60t
mexicanus, Oryzomys, $3+5$
mexicadus, Peromyscus, 386,399
mexicanus, Reithrodontomys, 378,383
mial, Microtus, 506, 612
MIC'AELAMIIS, +0, 149, 170, 171, 213
michaelseni, Notiomys, +24
michiganensis, Peromyscus, 386, 391
michnoi, Microtus, 595, 596,611
microbullatus, Rattus, 190, 217
microcephalus, Microtus, 598
MICRODILLLS, 7, 23, 498, 499, 510
MILCRODIPUDOPA, 523
micrsidon, Aponys, 225
microdon, Cricetulus, $+32,435$
microdon, Rattus, 171, 198, 211
microdon, Reithrodontomys, 384
microdoo, sigmodon, +65
MICR(OMYS, $2,10,17,31,33,34,38,47$, $63,85,86,89$
meronesiensis, Rattus, 187
micropus, Lemmiscomys, 130, 132
micropus, Nicrotus, 600
micropus, Neotona, $+71,+72$
micropus, Phyllotis, $+53,+55$
AlICRORYZOMY'S, $3 \neq 0,341,342,343,356$, 408
MICROT1, 7, 551, 565
MIICROTINAE, $6,541,54+548$
microtinus, Zygodontomys, fo8, 417, 418
microtis, Apodemus, 18
microtis, Cricctomys, 200
microtis, Notiomys, 424
microtis, Oryzomys, 355
microtis, Rhipidomys, 364.365
MICROTCS, 7, 13, 16, 19, 28, 409,550 , $555,582,583,586,592,596,597,616$, 6is, 620, 627
MICROXUS, 8, 26, 333, +06, 419, 485
micruros, Microtus, 607
MICRURLS, 621, 622
MIC"TOMIV's, $55 \mathrm{~S}, 559,500$
madeleodorffi group, Microtus, 595, 614
middendorlfi, Xicrotus, 587, 590, 591, 592, $505,506,614$
onddeodorffi, Myopus, 561
omgratorius, ('ricetulus, $42 \%, 432, \$ 33$
migratoriss цroup, Crictulus, 432,433
mheratorius, Lagurus, 63.4
migratorius, Ledmmus, 504
makado, Clethrooomys, 567,568,571
miketus, Viothenomys, 576
milata, Tatera, 513.518
mallardi, 1), anomys, ito
MIILL ARDiA, 19, 10, 17, 35.39,51, 74, 137, 20) 3
orillert, ()ryzonys, 358
milleri, Reythrodontomys. 384
milleri, Rhipidomys, 366
milletti, Rattus, 171, 201
millicens group, Microtus, 594, 614
millicens, Microtus, $587,590,591,592,593$, 596,614
MHMOMYS, 583
mimula, Leggadina, 256
mimulus, Gerbillus, 502,503, 505
mimus, Microxus, 419,420
minahassae, Haeromys, 236, 237
mincae, Oryzomys, 358
mindanensis, Rattus, 171, 18z
mindorensis, Rattus, 171,183
miniatus, Micromys, 90
minimus, Micromys, 90
minimus, Mus, 251
minimus, Sigmodon, 466
minnesotae, Peromyscus, 394
minnie, Pseudomys, 223, 224
minor, Arvicanthis, 124
minor, Arvicola, 630
minor, Clethrionomys, 568
minor, Eliurus, 76
minor, Lermmus, $5^{6} 4$
minor, Mus, 243
minor, Myospalax, 546,548
minor, Pedomys, 620, 621
minor, Pelomys, 128,129
minor, Rattus, 192, 209
minous, Acomys, 272, 273
minuscula, Tatera, 512,513,515
minusculus, Lemmus, $56_{4}$
minusculus, Reithrodontomys, 383
minutoidcs, group, Mus, 241, 242, 251
minutoides, Mus, 243, 25 I
minutus, Gerbillus, 504
minutus, Micromys, 90
minutus, Oryzomys, $343,345,356$
minutus, Steatomys, 311,312
mirae, Tylomys, 373
misionalis, Oxymycterus, 421
MISOTHERNUS, 556, 557
missippiensis, Peromyscus, 395
missouriensis, Onychomys, 404
mitchelli group, Notomys, 265
mitchelli, Notomys, 265
mitchelli, Tatera, 517
miurus, Hesperomys, 447,448
miurus, Microtus, 593, 602
mixtus, Melomys, 231
mizurus, Oryzomys, 345,352
moae, Hydromys, 300
mochae, Irenomys, 457
modesta, Vandeleuria, 87
modestior, Akodon, 410,416
modestus, Mlicrotus, 596, 598
modestus, Mus, 2.43
modestus, Oryzomys, 352
modestus, Reithrodontonys, 378,382
modestus, Scapteromys, 487
modicus, Rhipidomys, 364,365
moerens, Akodon, 410,416
moerens, Oenomys, 118, 119
22-Living Rodents-II
mocrex, Oryzomys, 345, 349
mogei, Thallomys, 147
mogollonensis, Microtus, 604 mogrebinus, Mus, 2.47
mohavensis, Microtus, 601
mohavensis, Neotoma, 477 mohri, Mus, 2.46
moi, Rattus, 155, 163, 171, 197
molestus, Oryzomys, 346
mollessonae, Clethrionomys, 570
mollicomulus, Rattus, 185
mollicomus, Rattus, 185
molliculus, Rattus, 171, 173
mollipilosus, Oryzomys, 344, 352
mollipilosus, Pogonomys, 82
mollis, Akodon, $+10,411$
mollis, Melomys, 227, 228
mollis, Phyllotis, 454
mollis, Rattus, 205
mollissimus, Mus, 244
mollissimus, Rhipidomys, 365
molopensis, Malacothrix, 314
molopensis, Parotomys, 326
molopensis, Thallomys, 147
molossinus, Mus, 243, 248 moluccarius, Rattus, 180 mombasae, Tatera, 513, 515 moncktoni, Crossomys, 302 moncktoni, Melomys, 227, 228, 229 mondraineus, Rattus, $166,171,207$ mongol, Microtus, 596, 613 mongolicus, Microtus, 596, 610 mongolium, MIus, 243, 247 monochromus, Thomasomys, 371 monochroura, Neotoma, 477 monstrabilis, Neotoma, 476 montanus, Acomys, 274 montanus, Dasymys, 121, 122
montanus group, Nicrotus, $587,593,599$
montanus, Microtus, 599
montanus, Phyllotis, 453
montanus, Rattus, 171, 180
montanus, Reithrodontomys, 379
montanus, Tatera, 517
montebelloi, Microtus, 596, 610
montensis, Akodon, 410,411 montezumae, Neotoma, 473 monticola, Arvicola, 630, 632 monticola, Oryzomys, 356 monticola, Tatera, $513,5^{14}$ monticolaris, Thallomys, 146,148 monticolus, Neusticomys, 48 monticularis group, Petromyscus, 316 monticularis, Petromyscus, 316 montipinoris, Peromyscus, 397 montis, Rattus, 171, 208 montosa, Alticola, 578, 579 montosus, Microtus, 6 I 5 mordax, Arvicanthis, 124, 125 mordax, Bandicota, 278, 280 mordax, Euneomys, 460 mordax, Nicrotus, 591, 596, 603 mordax, Notomys, 265
mordax, Rattus, 171,205
mordicus, Mastacomys, 266, 267
moreni, Eligmodontia, 449
morgani, Eligmodontia, 449
morio, Rattus, 171, 209
morosus, Microtus, 597
morulus, Myopus, 561
morungensis, Bandicota, 279
MOSCHOMYS, 359
MOSCHOPHOROMIミ, 359
moshesh, Rhabdomys, 134
mosquensis, Apodemus, 95, 98
muansae, Ariacanthis, 126
muansae, Rattus, 175
muansae, Tatera, 515
muanzae, Steatomys. 311,312
mucronatus, Eothenomys, 576
muhlisi, गıcrotus, 609
mullah, Acomys, 272, 274
mulleri group, Rattus, $159,187,217$
mulleri, Rattus, $151,161,171,187$
mullulus, Kattus, 171,204
multiplex, I'itymys, 622,623
multiplicatus, L romys, 233, 237
munchiquensis, Oryzomys, 355
muralis, Mus, $243,24+$
murchae, Oryzomys, 353
MLRES, 9, T9
IILRICLLLS, 9, 21, 33, 41,55,67, 75,239
muriculus, Gerbillus, $502,503,506$
muriculus, Hesperomys, $4+7,44^{h}$
DURIDAE, 1
muries, Microtus, 593, 602, 615
murilla, Nus, $2+3,250$
murillus, Hesperomys, 447, 44
murina, Tatera, 5I+
MLRINAL, $9,30,+2$
murinus, Cricetulus, 433
murinus, Ellobius, 6,40
murinus, Nelomys, 228.,230
murinus, F'seudohydromys, 304
murinus, Pseudomys, 223
murinus, scuurillus, 220
murrayi, Rattus, 171,207
MLS, $9,10,18,21,31,34,41,44,54,55$, $67,134,168,169,235,239,240,2+2$, $243,254,255,261,284$
musavora, Nelonys, 230
muscalıs, Melomys, $227,228,230$
MUS(AR1)IN1DAE, 2, 317
muscardmus, Rattus?, 214
musculordes, Mus, $242,243,252$
musculordes, Peromyscus, 386,395
musculmus, 1 ferperomys, $4+7,4+8$
musculus, Apomys, 225
musculus, Batomys, 402
musculus group, Nus, $241,2 \neq 2,243$
musculus, Nus, 240, 242, 243
musignani, Arvicola, 630, 133
musschenbrocki group, Rattus, 195, 218
musschenbrocki, Rattus, 162, 171, 195, 217, 218,219
mustelinus, Reathrodontomys. $3 \mathrm{~S}^{2}$
mustersi, Microtus, $589,596,607$
mustersi, Pitymys, 622
MYCTERONIS, $9,18,35,+1,55,67,75$, 254
MILOMISS, 9, 20, 33, 39, 42, 50, 57, 68, $119,130,136,266,267$
MYODES, 561
myoides, Peromyscus, 389
myoides, Xeromys, $30+$
MIONYS, $35,40,149,168,210$
MYOPL'S, $6,12,551,559,560$
MYOSPALAC1NAE, 6, 541
WYOSPALAX, $2,3,6,11,45,161,330,541$, 545. 547
myospalax group, Myospalax, $544.546,54 \mathrm{~B}$
myospalax, Myospalax, $541,545,546,548$ myosura, Nesokia, 282
MIOTALPA, $5+1,5+6$
myothrix, Golunda, 267, 268
MYOTONYS, $318,319,320$
myoxinus, Eliurus, 76
mystacalis, Dendromus, 307, 310
mystacinus, Apodemus, 93, 95, 906
mystacinus group, Apodemus, of
mystacinus, Microtus, 596, 607
mystacinus, Mus, 246
mystax, Calomyscus, 403
MYSTRONY: $8,23,315,326,331,331,444$
nagarum, Mus, 243, 249. 250
nageri, Clethriononys. 568,509
mageri group, Clethrionomys, $565,56 y_{3}, 572$
nairobae, Arvicanthis, 124,126
nairobat, Dendromus, 310
naivashae, Mus, 250
naivashae, Tachyoryctes, 403,496
namaquensis group, Thallomys, 1.47
namaquensis, Thallomys, $52,7+1+2,1 \neq 0$. 147,223
namihensis. Parotomys, 326
nambensis, Rhabdomys, 135
nancillus, Gerbillus, 501, 502, 507
nancillus group, Gerbillus, 503 50;
NANVOMIS, 240
nanschanicus, Alticola, 580
nanus, Gerbillus, 502, 503, 505
nanus, Holochilus, +62
nanus, Microtus, 596,
nanus, Pseudomys, 223,224
narbadae, Rattus, $171,: 76$
narboroughi, Oryzomys, 345,359
nasica, Akodon. +12
naso, Arvicanthis, 124
naso, Lophuronys, $261,262,263$
naso, Nelasmothrix, $29+$
naso, Nelomys, 22 S
naso, Lromys, 233, 234
nasuta, Microtus, 598
nasutus, ()xymycterus, 421,422
nasurus, Peromyscus, 397
nasutus, Rattus, 203
natalensis, ()tomys, 324
natalensis, Rattus, 212
natalensis, Steatomys, 313
natalensis, Tatera, 520
natator, Oryzomys, 345
nativittatus group, Rattus, 156, 172
nativittatus, Rattus, 151, 153, 154, 156, 171, 172,226
natronensis, l'achyuromys, 524
nauticus, Hydromys, 299, 300
navaho, Microtus, 604
navigator, Apodemus, 95, 101
navus, Neotoma, 475
navus, Oryzomys, 355
ndolae, Tatera, 513,518
NEACOMNS, 8, 24, 336, 360, 485
neavei, Mus, 243, 252
neavei, Tatera, 513,516
nebrascensis, Peromyscus, 386,391
nebrascensis, Reithrodontomys, 380
nebrodensis, Pitymys, 622, 624
NECTOMI'S, 8, 24, 329, 337, 341, 344, 351, $361,+26$
neglectus, Cricetulus, +34
neglectus, Microtus, $596,601,612$
neglectus, Rattus, 172, 180
negrinus, Rattus, 172,186
negrita, Akodon, $+10,414$
negrito, Akodon, 409, $+10,415$
nehringi, Cricetus, $44^{\circ}$
nelsoni, Dicrostonyx, $55^{8}$
nelsoni, Neotoma, 473
nelsoni, Oryzomys, $3+7$
nelsoni, Peromyscus, 401
nelsoni, Reithrodontomys, $3^{82}$
nelsoni, Xenomys, 484
NELSON1A, 8, 28, 331, 333, 479
NEMOMYS, 36,92
nemoralis, Akodon, 416
nemoralis, Pitymys, 626
nemoralis, Rattus, 172, 175, 176
nemorivaga, Bandicota, 278, 280
NEOASCHIZOMYS, $550,574,641$
neobritannicus group, Uromys, 233
neobritannicus, Hydromys, 300
neobritannicus, Uromys, 61, 233
neocenus, Akodon, 409, 410, 413
$\mathrm{NEODON}, 7,14,19,554,592,594,596$, 618, 620, 627
NEOFIBER, $7,16,552,635$
NEOTOMA, 2, 5, 8, $15,27,328,331,335$, $408,469,471,479,480,484$
NEOTOMINAE, 479
NEOTOMODON, 8, 27, 333, 334, 468
neotomodon, Nelsonia, 480
NEOTOMIS, $8,27,331,333,457,479$
nericola, Rattus, 175
nerterus, Reithrodontomys, 382
nesiotes, Acomys, 272, 273
NESOK1A, 10, 11, 19, 32, 33, 41, 45, 58, 60, 6r, 75, 277, 278, 280, 292
NESOMYS, $4,5,6,8,30,329,336,375$, 488
nesophilus, Microtus, 599
$22^{*}-$ Living Rodents-II

NESOROMVS, $9,29,36,41,50,56,66,75$ 258
NESORYZOMY゙S, $340,343,359$
nestor, Cricetulus, 432, 435
neujukovi, Microtus, 606
neumanni, Arvicanthis, 124, 126
neumanni, Rattus, 211
NEUSTICOMISS, $48 \mathrm{r}, 484$
nevadensis, Microtus, 600
nevadensis, Neotoma, 476
newera, Golunda, 267, 268
newtoni, Mesocricetus, 443, 444
niadis, Chiropodomys, 85
nicaraguae, Oryzomys, 352
nicaraguae, Peromyscus, 399
nicefori, Ichthyomys, 482
nicefori, Thomasomys, 367,368
nicolli, Psammomys, $53^{8}$
nigellus, Peromyscus, 387
nigellus, Rattus, 191
niger, Apodemus, 96
niger, Arvicola, 632
niger, Cricetus, $44^{\circ}$
niger, Mlus, $2+3$
niger, Notiomys, 425
niger, Ondatra, 637
nigeriae, Gerbillus, 502, 508
nigeriae, Lemniscomys, 130, 131
nigeriae, Taterillus, 520, 52 !
nigra, Microtus, 612
nigrans, Microtus, 598
nigrescens, Baiomys, 402
nigrescens, Cricetulus, 433
nigrescens, Neofiber, 636
nigrescens, Reithrodontomys, 380
nigrescens, Rhombomys, 540
nigribarbis, Oryzomys, 352
nigricans, Arvicola, 632
nigricans, Cricetus, $44^{\circ}$
nigricans, Mesocricetus, 443, 444
nigricans, Microtus, 611 nigricauda group, Thallomys, 146 nigricauda, Tatera, 512, 513, 515 nigricauda, Thallomys, 146
nigriculus, Mesocricetus, 444
nigriculus, Peromyscus, 395
nigridius, Dasymys, 122
nigrifrons, Dendromus, 307, 310
nigripes, Lemmus, 562,564
nigripes, Oryzomys, $35^{\circ}$
nigrita, Tatera, 513, 516
nigritalus, Apodemus, 101
nigrotibialis, Tatera, 518
niggitae, Clethrionomys, $568,57^{2}$
nikolskii, Apodemus, 102
nilagirica, Vandeleuria, 87
NILOPEGAMYS, 37, 42, 294
niloticus, Arvicanthis, 124
nimbosus, Oryzomys, 349
ningpoensis, Apodemus, 95, 102
ninus, Rattus, 172, 197
niobe group, Rattus, 164, 165, 206 niobe, Rattus, 172, 206
nipalensis, Nus, 245
nitedulus, Oryzomys, $3+5,35^{8}$
nitela, Rhipidomys, 364,366
nitela, Thallomys, 146,147
nitellmus, Nyetomys, 375
nitidulus, Mus, 243,249
nitidus, Oryzomys, 345,351
nitidus, Rattus, 172, sio
nivalis group, Microtus, $587,590,593,595$, 605
nivalis, Microtus, 589, 591, 502, 593, 594, $506,605,618$
nixarius, Clethrionomys, 568,572, 57t
niveipes, Thomasomys, 367, 371
niveiventer, Rattus, 161, 172, 192, 220
niveiventris, Peromyscus, 386, 393
niveiventris, Kattus, 172,210
niveus, Mus, 243
nivicola, Microtus, 605
nogaiorum, Meriones, 536
nogaiorum, Mus, $2++$
nogalaris, Phyllot is, $45 \mathrm{f}, 452,453,454$
nolthenii, Vandeleuria, 87
norae, Aethomys, $1+3$
nordenskioldi, Microtus, 615
norvegicus, Clethrionomys, 568,570
norvegicus group, Rattus, 158, 165, 183
norvegicus, Lemmus, 562
norvegicus, Rattus, 151, 153, 154, 155, 15t, 158, 159, 172, 183, 223, 233
notatus, Thomasomys, 367,371
notia, Neutoma, 473
NOTIOMIS $2,8,26,161,330,332,408$, $+09,425,423,461$
NOTOMISS, 2, 10, $30,31,32,33,41,45,57$, $68,222,263,26+, 327,501$
nouhuysii, Lorentzinys, 295
novaeboracensis, Microtus, 597
novaeboracensis, Pernmyscus, 394
novaehollandiae, Gyomys, 220, 221
novaezelandrae, Rattus, 175
novarate, Rattus, isi
novossbiricus, !, emomus, 562,564
nubalis, Lemmscomys, 130,131
nubicus, Acomys, 275
nubila, Akodon, $+10,+16$
nubilans, Arvicanthis, 124, 125
nubilus, Acomys, 272, 274
nubilus, ()tomys, 320,322
nubilus, Taterillus, $520,52 \mathrm{~s}$
rubiterrae, Peromyscus, 3 So
nucus, Akodon, +10 , 412
nudicauda, Neotoma, 474
nudicaudus, Lophuromys, 262, 263
nudicaudus, Tylomys, 373
nudipes, Dasymys, 121,122
nudipes, Peromyscus, 386, 349
nudoplicatus, Mus, $2+3$
nuttalli, Peromyscus, 385 , for
nux, Clethrionomys, 568, 571
nyama, Tatera, 512, 513,515
nyasae, Dendromus, 307,308
nyasat, Rhabdomys, 134,135
nyasae, Tatera, 513,518
NV'CTOMIS, $8,25,105,329,336,364,372$, $373,374,485$
nyikae, Aethomys, 143, 144
nyikae, Dendromus, 307, 350
nyikae, Otonys, $320,321,322$
nyirensis, Pitymys, 624
oaxacensis, Peromyscus, 396
obensis group, Lemmus, 562, 567
obensis, Lemmus, 562,564
obesus, Psammomys, 538
obiensis, Melomys, 228, 23 r
oblitus, Grammomys, rof
obscura, Ondatra, 637
obscura, Otomys, 323
obscura, Thomasomys, 369
obscurior, Oryzomys, 345,357
obscurus, Akodon, +o6, 410,412
obscurus, Clethrionomys, 572, 574
obscurus, Cricetulus, +32
obscurus, Microtus, 596, 608, 614
obscurus, Rattus, I 86
obscurus, Reithrodon, +59
obscurus, Reithrodontomys, 380
obsoletus, Kattus, 172, 180
obtusirostris, Zygodontomys, +18
occidentalis, Arvicanthis, 124,125
occidentalis, Cletbrionomys, $572,57+$
occidentalis, Microtus, 602,605
occidentalis, Neotoma, $47 \mathrm{I},+78$
occipitalis, Ondatra, 637
oceanicus, Peromyscus, 393
OCHETODON, 377
ochracea, Neotoma, +76
ochracciventer, Rattus, 172,194
ochraceus, Clethrionomys, 568, 573
ochraccus, Grammomys, ion
ochraceus, Nectomys, 362
ochraceus, Peromyscus, 394
ochrinus, Oryzomys, $341,345,350$
ochrogaster, Pedomys, 620
ochrogaster, Rhipidomys, 364, $3^{h} 3$ ochrognathus, Sigmodon, 466
OCHROMIS, 36, 40, 149, 171, 213
ochropus, Arvicanthis, ${ }^{2}+$
ochropus, Dendromus, 30 n
(OCHROTOMIS, 384.385 , for
o'connelli, Oryzomys, 353
octomammis, Kattus, 193
OHCOMISS, $340,345,3+2,357,40$ K
oeconomus group, Microtus, $587,591,593$, $505,601,610,613$
oeconomus, Microtus, $59 \mathrm{I}, 54+, 596,613$
oenax, Thomasomys, 367,371
OENOMIS, y, 20, 33, $38,46,50,68,118$, 128, 306, 355
ognevi, Apodemus, 102
ognevi, Arvicola, 631
ognevi, Clethrionomys, 568, 564
ognevi, Cricetulus, +34
ognevi, Ellobius, 640
ognevi, Lemmus, 564
ohiensis, Rattus, 172, 194
okiensis, Clethrionomys, 572
okinavensis, Rattus, 173
oleracea, Vandeleuria, 87
olga, Lemniscomys, 130, 131
OL,1GORYZOMYS, 340, 342, 343, 344, 354
olitor, Eothenomys, $575,576,577$
olitor group, Eothenomys, 576
olivaceus, Akodon, 410,412
oliviae, Cricetomys, 289,290
olivinus, Oryzomys, 345, 357
olympicus, Phenacomys, 584
olympius, Microtus, 606
omoensis, Tachyoryctes, 495
ONDATRA, $2,7,16,549,550,552,635,636$
oneida, Microtus, 598
oniscus, Neodon, 619, 620
oniscus, Oryzomys, 345, 353
ONYCHONYS, 8, $15,25,328,329,339,403$
operarius group, Microtus, $587,593,601$
operarius, Microtus, 591, 601
opimus, Rhombomys, 540
opimus, fiteatomys, 313
oralis, Gerbillus, 502, 507
oralis, Pseudomys, 223, 224
oramontis, Phenacomys, $5^{8} 3$
orangiae, Mlus, 252
orangiae, Steatomys, 313
orbus, Akodon, $409,410,415$
orbus, Rattus, 172, 195
orca, Clethrionomys, 572, 573
orcadensis, Microtus, 595, 596,610
oreas, Dendromus, 309
oreas, Microtus, 602
oreas, Peromyscus, 390
oreas, Thomasomys, 371
oregoni group, Microtus, 587, 591
oregoni, Microtus, 596, 597
oreigenus, Phyllotis, 453, 454
OREINONY'S, 318
OREOMYS, 318
oresterus, Peromy'scus, 391
orestes, Apodemus, 95, 101
orestes, Otomys, $320,321,323$
orientalis, Akodon, 412
orientalis, Ellobius, 6.41
orientalis, 1chthyomys, 482
orientalis, Lemniscomys, 13: 132
orientalis Mus, 243, 244
orientalis, Pitymys, 623
orientalis, Rattus, 190
orii, Mus, 248
orioccus, Microtus, 612
oris, Oenomys, 118,119
orizabae, Neotoma, 475
orizabae, Neotomodon, 469
orizabae, Peromyscus, 386,399
orizabae, Reithrodontomys, 383
ornatulus, Rattus, 187
ornatus, Oenomys, 118 , 119
orobinus, Akodon, 410
oroensis, ()ryzomys, 357
orolestes, Neotoma, 478
OROMYS, 35, 254
orophilus, Akodon, 410,412
orophilus, Phenacomys, 583
orthos. Dasymys, 121, 123
ORTHRIOMYS, $7,28,553,55_{3}, 585,586$, 596
orycter, Akodon, 417
oryzivora, Oryzomys, 345
oryzivorus, Micromys, yo
ORYZOMYS, $5,8,14,24,328,329.330$, $331,338,340,342,343,344,345,360$, $361,364,372,373,375,376,407,408$, 426
oseticus, Microtus, 606
osgoodi, Cricetomys, 289, 291
osgoodi, Oryzomys, $342,345,358$
osgoodi, Peromyscus, 391
osgoodi, 'Taterillus, 520, 521
osilae, Phyllotis, 453,454
osimensis, Rattus, 193
osoyoosensis, Ondatra, 637
otaria, Tatera, $5: 3$
otiosus, Rattus, 188
OTOMIINAE, 7, 318
OTOMIYS, $7,22,115,318,320,325$
OTONYCTOMIS, $8,25,332,485$
OTOTYLOMYS, 8, 25, 329, 337, 373, 374 376
otteni, Rattus, 185
ottleyi, Thomasomys, 369
otus, Clethrionomys, 570
otus, Reithrodontomys, 382
ouangthomae, Rattus, 184
ouralensis, Microtus, 613
ouwensi, Mus, 246
ovamboensis, Rattus, 212
oweni, Lemniscomys, 130, 131
oweni, Uranomys, 276
oxianus, Meriones, 534
OXYMYCTERUS, 8, 26, $317,330,367,419$, 420
ozarkium, Peromyscus, 392
pachycephalus. Reithrodon, 459
pachycercus, Mus, 243, 247
PACHYURONIYS, 7, 12, 498, 490, 522, 523
pachyurus, (Rattus), 214
pacificus, Akodon, 410,412
pacificus, Reithrodontomys, 383
pacba, Gerbillus, 502, 503, 508
paedulcus, Thallomys, 146, 147
pagei, Saccostomus, 285,286
pagensis, Rattus, 200
pahari, Mus, 231, 242, 243, 249, 250
palatina, Ncotoma, 473
palatinus, Oryzomys, 347
palawanensis, Rattus, 201
palclae, Rattus, 185
palembang. Rattus, 179
PALLASIOMYS, $498,525,528$
pallescens, Arvicanthis, 124, 126

678
pallescens, Dendromus, 309
pallescens, Mus, 246
pallescens, Onychomys, 404
pallescens, Peromyscus, 391
pallida, Ondatra, 637
pallida, Parotomys, 326
pallidior, Apodemus, 95, 102
pallidior, Millardia, 138
pallidıssimus, Peromyscus, 386
pallidus, Apodemus, 98
pallidus, Dendromus, 310
pallidus, Lagurus, 635
pallidus, Nelomys, 231
pallidus, Meriones, 529, 534
pallidus, Onychomys, 404
pallidus, Phloeomys, 292, 293
pallidus, Rattus, 172, 212
pallidus, Reithrodontomys, 378
pallidus, Rhombomys, 540
pallidus, Sigmodon, 464
pallıpes, Apodemus, 98
palmarius, Oryzomys, 34t. 353
palmarıus, Peromyscus, 386,395
palmarum, Rattus, 181
palmeri, Oryzomys, 345, 359
palmipes, Nectomys, 362,363
palmirae, Orszomys, 345,353
palnica, Mus, 243, 249
paludicola, Microtus, 601
paludosus, Arvicola, 630
palustris group, Oryzomys, $3+4.345$
palustris, Microtus, 598
palustris, ()ryzomys, 340,345
pamurensis, (ricetulus, +34
pammrensis, Veodon, 619, 620
pampanus, Retthrodon, 458, 459
pamparum, Eligmodontia, $4+9$
pan, Rattus, 172, 193
panamensis, Oryzomys, 345,348
panamensis, Tylomys, 373
panclima, Rattus, $163,172,201$
panja, Tatera, 513, 518
pannellus, Rattus, i8:
pannonicus, Nicrotus, 612
pannosus, Rattus, 172,181
pantarensis, Rattus, 186
panya, Rattus, 212
papagensis, Peromyscus, 388
papuanus, U'romys, 234
paradoxus, Microtus, 594, 607
paraganus, Oryzomys, 345,353
PARAHVDROMY 301
PARALONIYS, 446,448
PARAMELOMIYS, 36, 40, 54, 225, 226, 227, 228
paramensis, Oxymycterus, 421, 422
PARAMERIONLS, 498, 501, $525,528,529$, 531
paramorum, Thomasomys, 367,371
parasiticus, Peromyscus, 395
paricola, Orvzomys, 345, 358
1'AROT' $\$ IY $5,7,23,318,319,320,325,326$

## INDEX

parvidens, Clethrionomys, 575
parvidens, Neotoma, 475
parvulus, Micromys, 90
parvulus, Mus, 243
parvulus, Pitymys, 626
parvus, Apodermus, 96
parvus, Microtus, 596, 607
parvus, Pithecherr, 109, 1 Io
parvus, Steatomys, 312
pascuus, Pitymys, 625
pasha, Mus, 243, 252
pasquieri, Hapalomys, 80
patrius, Leggadina, 256
patrizii, Gerbillus, 504
paulina, Mus, 252
paulus, Baiomys, 402
paulus, Lemmus, 564
pauper, Rattus, 179
paupera, Golunda, 267, 268
paupermmus, Lagurus, 635
pavidus, Peromyscus, 397
payanus, Rattus, 178
pearcei, Hybomys, 136, 137
pecchioli, Apodemus, 97
pecilei, Dendromus, 307, 310
pectoralis, Oryzornys, 345,353
pectoralis, Peronysscus, 397
pedester, Aethomys, 143, 144
PEDONIY: 7, 16, 554, 596, 619, 620
pedunculatus, Lamys, in 5, ir6
peeli, Microdillus, 510
peguensis, Chiropodomys, 85
pelagius, Rattus, 172, 198
pelandonius, Pitymys, 622, 625
pelerinus, Meriones, 529, 533
pellax, Rattus, 172, 199
pelliceus, Arvicanthis, 124,125
pelliceus, Microtus, 596, 611
PELOMIY's, 9, 20, 32, 33, 36, 39, 42, 50, 51,
$68,123,127,128,130$
pemangilis, Rattus, 172, 198
pembertoni, Peromyscus, 389
pendulinus, Micromys, 90
penicillatus, Chıropodomys, 85
penicillatus, Conilurus, 114
penicillatus group, Conilurus, 114
pencillatus, Eliutus, 76
penicillatus, Peromyscus, 395
penicilhger, Meriones, 536
peninsulae, Apodemus, 95,10 :
perinsulae, Oryzomys, 345,347
peninsulae, Reithrodontomys, 380
penitus, Rattus, 191
pennsylvansca group, Neotoma, 470, 477
pennsylvanıca, Neotoma, $470,471,477$
pennsylvanicus group. Microtus, 587,590 , 593. 547
pennsylvanicus, Microtus, 597
pentax, Apodenlus, 95, 98
pentonyx, hiteatomys, 311,312
peragrus, Oryzomys, 346
percevalı, Acomys, 272, 273
percevalı, Dendromus, 308
percevali, Gerhillus, 502, 503, 506, 507
percevali, Otomys, 320,322
perchal, Bandicota, 280
percivali, Tatera, 515
peregrinus, Rattus, 172, 211
perenensis, Oryzomy's, 345, 35 1
perflavus, Rattus, 200
perimekurus, Peromyscus, 390
perluteus, Tatcrillus, 520, 522
perlutus, Rattus, 172, 196
pernanus, Rattus, $169,172,213$
PEROMIYSCUS, $8,14,15,25,328,329,330$, 335. 336. 339, 384, 386, 389, 401, 402, 403. 408, 446
peromyscus, Rattus, 208
perotensis, Neotoma, 469
perotensis, Reithrodontomys, 383
perpallida, Neotoma, 474
perpallida, Tatera, 513, 517
perpallidus, Onychomys, 405
perplexabilis, Microtus, 601
persica, Tatera, 513, 514
persicus, Arvicola, 630
persicus group, Meriones, 528,529, 531
persicus, Meriones, 501, 528, 529, 531
personatus, Microtus, 605
personatus, Rattus, 174
pertinax, Arvicola, 630
peruanus, Sigmodon, 467
peruvianus, Mus, 244
pervalens, Akodon, 413
pesticulus, Rattus, 172, 182
pestis, Tatera, 517
PETALRISTA, 3, 45
petersoni, Euneomys, 460
petilus, Mus, 251
petraeus, Apomys, 225
petraius, Peromyscus, 386
petroanus, Oryzomys, $35^{2}$
PETROMI'S, 92
PETROMY'SCUS, 9, 22, 306, 315
petrophilus, Microtus, 605
petterdi (Rattus), 214
petulans, Phaiomys, 618
PHAESOMYS, 8, 25, 336, 364, 371
phaeopus, Oryzomys, 345, 357
phaeotis, Lemniscomys, 130,132
phaeotis, Oryzomys, 345, 358
phaeurus, Carpomys, 108
phaeurus group, Carpomys, 108
phacurus, Peromyscus, 388
phaeus, Clethrionomys, 572
phae us, Cricetulus, 432, 433
phaeus, Microtus, 604
phacus, Ototylomys, 374
PHAIOMIYS, 7, 13, 19, 554, 596, 616, 617, 619, 627
phasma, Alticola, 579
phasma, Peromyscus, 386, 393
PHACLOMYS, 565
PHENACOMIYS, $7,15,550,552,582,583$
phenax, Teanopus, $+8+$
philippi, Oryzomys, 352
philistinus, Microtus, 589, 591, 592, 595, 597, 607
phillipsi, Mus, 253
phillipsi, Tatera, 512, 513. 515
philombrinus, Peromyscus, 399
PHLOEOMY゙NAE, 292
PHLOEOMY'S, 2, 5, 6, 10, 19, 31, 32, 42, $44,45,49,59,60,61,75,115,291,293$
PHODOPUS, $8,11,330,338,428,429,431$. 436
PHYLLOTIS, 8, 27, 328, 331, 335, 340, 408, $445,447,450,451,452,453,460,468$. 479
phyllotis, Ototylomys, 374
physodes, Holochilus, 462
picinus, Limnomys, 295
picta, Neotoma, 476
picta, Tatera, 513, 516
picteti, Rattus, 175
pictipes, Thomasomys, 371
pictor, Chiropodomys, 85
pictor, Rhipidomys, 364,365
pictus, Neacomys, ${ }^{661}$
pictus, Phyllotis, 453,455
pinalis, Peromyscus, 386,396
pinatus, Rattus, 199 pinetorum, Neotoma, 475 pinetorum, Pitymys, 622,626
pinicola, Oryzomys, 346
pirrensis, Oryzomys, 348
pirrensis, Peromyscus, 4a1
PITHECHEIR, $9,17,32,38,47,48,55,63$, 75, 109
pitmani, Tatera, 513, 514
PITYMYS, 7, 14, 16, 28, 33, 554. 581, 583 , 592, 596, 619, 621, 622, 627
planiceps, Neotoma, 472
planiceps, Pitymys, 622, 624
planifrons, Hybomys, 136, 137
planifrons, Sigmodon, 466
PLATACANTHOMIS, 5, 488
platensis, Oxymycterus, 421,422
PLATYCRANIUS, 578, 581,590
platyops, Melomys, 228, 229
platythrix group, Mus, 242
platythrix, Mus, 243. 253
plenus, Sigmodon, 465
plumbeus, Nilopegamys, 294
plumbeus, Rattus, 184
plurimammis, Bandicota, 279
pococki, Rattus, 206
PODANOMLALES, 32, 263, 264
PODONIYS, $384,385,4$ IOI
PODOKYMIS, 485
poecilops, Gerbillus, 501,502,504
POEMYS, 306, 307
poenitentiari, Rattus, 172, 177
poensis, Cricetomys, 289, 290
POGONOMELOMYS, $36,226,227$
POGONOMYS, $9,28,32,38,46,47,63$. 81, 82
pohlei, Apodemus, 100
pohlei, Melomys, 229
polionops, Grammonys, 106 polionotus, Peromyscus, 303
polius, Oryzomys, $3+1,3+5,353$
polius, Peromyscus, 398
poljakowi, Microtus, 614
pollens, Nectomys, 363
pollens, Rattus, 188
polychrona, Cricetus, +10 polypolius, Peromyseus, 388
ponceleti, Nelomys, 227, 232
pondolensis, Otomys, 321
pongolensis, Dendromus, 308
ponticus, Apodemus, 100
ponticus, Clethrionomys, 568,570
pontifex, Tachyoryetes, 495
pontius, Microtus, 597, 605
popaeus, Mus, 243, 249
popayanus, Thomasomys, $367,36 \mathrm{~s}^{\circ}$
popofensis, Microtus, 602
porculus group, Melomys, 230
porculus, Melonys, 228, 230
portus, Rattus, 172, 177
poschiavinus, Mus, 243
posticalis, Phyllotis, 453, 454
potens, Rattus, 188
pothae, Tatera, 515
povensis, Vandeleuria, $8_{7}$
praceeps, Arvicanthis, 524,125
praecoms, Pseudoniys, 223, 224
praedilectus, Cricetulus, 437
praestans, Rattus, $1 \mathrm{~S}_{+}$
praetextus, Mus, $2+4$
practor, Apodemus, 101
practor, Rattus, 172, 205
practor, Thomasomys, 367,368
PRAOM1YS, 35, 37, $40,1 \not+6,1 \not+8,167,168$, 208
pratensis, Apodemus, 102
pratensis, C'lethrionomys, 568
pratensis group, Siteatomys, 311
pratensis, Micromys, 90,91
pratensis, Microtus, 597
pratensis, Steatonys, 311
preblei, Phenacomys, 583
premensis, Dolomys, 585
pretiosa, Neotoma, $47+$
pretorrae, Aethomys, $1+4$
pretoriae, Dendromus, 30,
pretoriac, Mus, 253
pretoriae, ()tomys, 324
pretoriae, 'Tatera, 517
prevostensis, Peromyscus, 303
prestly, Pyromys, 130
promarius, Rattus, 183
princeps, Apodemus, ys
princeps, Thomasomys, 367,368
principalis, Microtus, 597, hos
proncipulus, Gerbillus, $502,503,505$
PR1ONONIYS, 9, 22, 305, 306, 315
pritties, Lophuronys, 262
proconodon, Mus, 252
proditer, Kothenomy's, $575,57 \mathrm{~h}$
1R()EDR()NIVタ, 7, $13,55+, 617$

## INDEX

profusus, Rattus, 172, 207
prolixus, L'romys, 232, 234
PROMETHEOMIV, $2,7,14,161,330,423$. $528,54^{9}, 550,551,638,639$
proparator, (ricetomys, 289,291
propinquus, Peromyscus, 387
PROTECHINISS, 49I
proteus, Clethrionomys, 568,572,577
provectus, Microtus, 598
providens, Bandıcota, 279
provincialis, Pitymys, 621, 622, 625
przewalskii, Brachiones, 539
przewalskii, Lagurus, 634, 635
PSAMMONIYE, $7,12,24,497,498,500$ 537, 538
psammophilus, Merioncs, 529, 536
PSEUDOCONOMYS, 240
pseudocrinitus, Peromyscus, 388
PSEUDOHYDRON['S, 9, 30, 207, 304
PSEUDOMYA, $9,29,34,40,50,54,57,71$, $73,220,222,223,255,264$
pshavus, Microtus, 605
psilurus group, Myospalax, 546,547
psilurus, Myospalax, $5+1,545,546,547$
PTEROMYS, 3,45
pudicus, Desmodillus, 522, 523
puer, Akodon, $+10,412$
pulchellus, Acomys, 272, 274
pulchellus, Lemniscomys, 130, 132
pulcher, Cricetulus, 434
pulcher, Lemmiscomys, 130, 132
pulcher, Onychomys, 405
pulcher, Pogonomys, $81,8_{3}$
pulcherrimus, Akodon, 410,415
pulliventer, Rattus, 185
pullus, Microtus, 590, 594, 597,614
pullus, Peromyscus, 388
pullus, Rattus, 186
pulvinatus, Gerbillus, 509
pumilio, Dendromus, 309
pumilio, Rhabdomys, 134
pumilus, Gyomys, 22 I
pumilus, Micromys, 90
pumilus, Pherracomys, 584
puna, Sigmodon, $\ddagger 64,467$
punctulatus, Zygodontomys, 408, 417 . $+18$
punctus, Microtus, 612
punicans, Rattus, 190,216
punukensis, Microtus, 602
pusillus, Akodon, +12
pusillus, Chiropodomys, 85,86
pusillus, Gerbillus, 502, 506,507
pusillus, Haeromys, 236, 237
pusillus, Neacomys, 361
pyctoris, Rattus, 172, 174
pygargus, Gurbillus, 502, 50
pygmacus, Clethrionomys, 574
pygmatus, Micromys, yo, 41
pygmaeus, Oryzomys, 350
pyramidum gresup, Gerbillus, 504. 501)
pyranidium, Gerbillus, $50 \mathrm{r}, 502,504,504$
pyrenaicus, Pitymys, 622, 624

PYROMYS', $9,17,35,39,52,58,72,74,75,138$
pyrrhonotus group, Thomasomys, 368
pyrrhonotus, Thomasomys, 367, 368
pyrrhorhinus group, Oryzomys, 349
pyrrhorhinus, Oryzomys, 341, 342, 345, 349
pyrrhotis, Akodon, 410, 415
pyrrhus, Lophuromys, 263
quadrimaculatus, Gerbillus, 502, 507
quasstor, Oxymycterus, 421, $\$ 22$
quasiater, Pitymys, 622, 626
querceti, Rattus, 186
quindianus, Rhipidomys, 365
raddei, Mesocricetus, 44
raddei, Microtus, 597, 615
raddei, Mus, 245
raffertyi, Arvicanthis, 125
rahengis, Mus, 250
rahengis, Rattus, 180
raineyi, Cricetomys, 291
rajah group, Rattus, $163,197,218$
rajah, Rattus, 43, 73, 151, 154, 155, 163, 172, 199
rajput, Rattus, 172, 173
rallus, Rattus, 191
rama, Mus, 245
ramirohitra, Brachyuromys, 3, 490, 492
ramirohitra group, Brachyuromys, 492
ramnadensis, Mus, 243, 253
ramona, Onychomys, 405
randensis, Otomys, 324
rangensis, Rattus, 172, 177
rapit, Rattus, 172,194
raptor, Rheomys, 483
ratticeps, Microtus, 595, 597, 613
ratticeps, Oryzomys, 341, 342, 345, 353
ratticolor, Rattus, 172, 204
rattiformis, Rattus, 175
rattoides, Melomys, 228
rattoides, Mesembriomys, 117
rattoides, Rattus, 172,174
RATTLS, 2, 9, 10, 17, 18, 21, 28, 29, 31, 34 , $35,37,39,40,43,44,45,50,51,52,53$, $54,55,73,84,135,141,142,145,148$, $166,220,222,223,225,226,227,235$, $236,237,238,240,255,257,258,269$, $292,294,295,328,408,592,622$
rattus group, Rattus, $158,159,164,173,215$, 220, 29.4
rattus, Rattus. 151, 153, 154, 155, 156, 165, 172, 174, 233
raveni, Rattus, 186, 215, 219
ravidi, Neotoma, 474
ravidulus, Microtus, 597, 615
raviventris, Reithrodontomys, 38 t
ravus, Microtus, 604
ravus, Rattus, 172 , 199
rawlinnac, P'scudomys, 224
regillus, Oryzomys, 346
reginae, 11 ydromys, 299, 300
regulus, Clethrionomys, 568,571
regulus, Pitymys, 622, 625
reichardi, Arvicanthis, 125
reinwaldti, Clethrionomys, 568,569
REITHRODON, $8,27,331,333,458,460$, 479
REJTHRODONTOMYS, 8, 14, 25, 329, $335,377,379,408$
relicta, Neotoma, 474
relictus, Microtus, 609
remotus, Rattus, 172, 181
renaulti, Meriones, 534
renggeri, Akodon, 412
reptans, Arwicanthis, 12.4, 126
reta, Arvicola, 630, 632
revertens, Rattus, 172, 202
rex group, Metiones, 528, 529, 532
rex, Meriones, 501, 525, 528, 529, 530, 531, 532
rex, Oryzomys, 345, 359
rex, Pelomys, 128, 129
rex, Rhipidomys, 364,366
rex, Tachyoryctes, 496
rex, Uromys, 233, 234
RHABDONIYS, $9,20,36,39,47,51,74$, 130, 133
rhabdops, Oryzomys, 347
RHAGOMIS, 8, 25, 329, 339, 377
RHEOMYS, $8,28,321,332,482$
rhionis, Rattus, 172,178
RHIPIDOMY'S, 8, 24, 328, 329, 337, 342,
$363,367,373,374,375$
RHIZOMIIDAE, 2
RHIZOMYS, 44, 58, 281, 490
rhoadsi, Peromyscus, 393
rhoadsi, Thomasomys, 367,371
rhoadsii, Clethrionomys, 573
rhodesiae, Arvicanthis, 126
rhodesiae, Pelomys, 129
rhodesiae, Thallomys, 146,147
rhodius, Apodemus, 96
rhodopensis, Microtus, 609
RHOMIBOIIYS, $2,7,12,497,498,500,511$, 539, 544
RHYNCIOMIYNAE, 7, 296
RHYNCHOAYS, $2,7,19,58,269,296$
ricardulus, Phyllotis, 453, 455
richardi, Meriones, 529, 533
richardsoni, Dicrostonyx, 557, 558
richardsoni group, Microtus, $5^{8} 7$
richardsoni, Microtus, 592, 597
richardsoni, Notomys, 265
richardsoni, Oryzomys, 345
richmondi, Oryzomys, 346
rifensis, Mus, 247
riggenbachi, Gerbillus, 502, 504. 509
ringens, Rattus, 151, 152, 16 $4,172,204$
riparia, Clethrionomys, 568
riparius, Gerbillus, 504
riparius, Microtus, 597, 508
riparius, Ondatra, 637
rita, Lophuromys, 262
rivalieta, Ondatra, 638
rivularis, Microtus, 599
rivularis, Oryzomys, 345,353
roa, Rattus, 18 I
roberti group, Microtus, 595, 605
roberti, Gynmuromys, 489
roberti, Microtus, $587,589,590,591,592$, $593,59+, 595,596,597,605$
roberti, Oryzomys, 345,358
roberti, Oxymycterus, $+21,422$
robertsi, Otomys, 324
robiginosus, Rattus, is3
roborovski group, Phodopus, 436,437
roborovski, Meriones, 529,535
roborovski, Phodopus, +37
robusta group, Tatera, 512,517
robusta, Tatera, 512, 513, 5i4
robustulus, Oryzomys, $3+5,357$
robustulus, Rattus, 177
robustus, Nectomys, 363
robustus, Peromyscus, 395
rogersi, Rattus, $151,160,172,185$
romaldshaierrsis, Microtus, 610
rooseveldti, Mylomys, 120
roquei, Rattus, 178
roraimae, Podoxymys, 485
rosalıa, Lemniscomys, 130, 133
rosalinda, Gerbillus, $502,504,509$
rosalinda, Thomasomys, 367,371
rosilla, Oryzomys, 345,359
rossi, Arvicanthes, 126
rosstameridionalis, Microtus, 597, 608
rossicus, Clethrionomys, $57+$
rossicus, Meriones, 531
rostellatus, Oxymycterus, 422
rostratus, Oryzomys, $3+5$
rostratus, Rattus, 208
rotans, Mus, 247
rothsehuldi, Mallomys, 113
rothschuldi, Myospalax, $545,546,547,548$
rothschuldi, Uromys, 233
roudairei, Psammomys, 537,538
rousaiensis, Microtus, 610
rowleyi, Otomys, $320,321,323$
rowleyi, Peronyscus, 395
roylei, Alticola, 578,579
royles group, Alticola, 579
rozianus, Microtus, 597,612
rozsikae, Gerbillus, 502,504
ruandae, Tachyoryctes, 496
rubeculus, Lophuromys, 261, 262
rubeculus, Otomys, $320,321,323$
ruhelanus, Putymys, 623
rubehus, Anteliomys, 577
rubens, Apodemus, 102
ruber, Rattus, 205
ruberrimus, (ierbillus, 502, 503, 507
rubestens, Arveanthis, 124, 126
rubex, Melomys, 228, 230
rubreola, Melomys, 228, 231
rubida, Neotoma, 771
rubida, Vandeleuria, 87
rubidus, Clethrionomys, 568
rubidus, Peromyscus, 390
rubricatus, Dicrostonyx, 557,558
rubricosa, Rattus, 172, 192, 220
rubriventer, Callosciurus, 220
ruddi, Dendromus, 307, 309
ruddi, Grammonys, 105,107
ruddi group, Tatera, 513, 519
ruddi, Tachyoryctes, $+93,496$
ruddi, Tatera, 513,519
ruddi, Uranomys, 276
rufa, Microtus, 612
rufescens, Arvicola, 630
rufescens, Clethrionomys, 568
rufescens, Cricetus, $4+0$
rufescens, Ellobius, 640
rufescens, Melomys, 228, 230
rufescens, Microtus, 508
rufescens, Myospalax, 546,548
rufescens, Rattus, 172, 176
rufescens group, Reithrodontomys, 378 , 379, 382
rufescens, Reithrodontonys, 378, 38z
rufescens, Rhagomys, 377
rufescentefuscus, Pitymys, 622
ruficaudus, Akodon, +12
rufidorsalis, Rattus, 213
rufidorsum, Microtus, 548
rufifrons, Parotomys, 326
rufinus, Arvicanthis, 124, 125
rufirus, ()enomys, 188
rufinus, Oryzomys, 345
rufinus, Peromyscus, 386 , 391
rufiventris, Mus, $2+5$
rufocanus, Clethrionomys, $550,567,568$, 571,572
rufocanus group, Clethrionomys, 565,571
rufocanus, Hybomy's, 136
rufofuscus, Pitymys, 622
rufoniger, Scotinomys, 428
rufulus, Apodemus, IOI
rufulus, Dasymys, 121, 123
rufulus, Rattus, 172, 206
rufus, Nesomys, 376
rufus, Oryzomys, $3+6$
rufus, Oxymycterus, 421,422
rufus, Tatera, 520,521
ruidosae, Onychomys, 405
rumpia, Rattus, 172,179
rumruti, Arvicanthus, 124, 126
rupestris, Akodon, +17
rupicola, Neotoma, +78
rusiges, Apodemus, 100
russatus, Acomys, 272
russatus, (lethrionomys, 568,570
russatus, Holochilus, 462
russulus, Nectomys, $361,362,363$
ruthenus, Rattus, 174
rutilans group, Thamnomys, 104
rutilans, Thamnomys, 103, 104
rutilus, Clethrionomys, 568,570
rutilus group, Clethrionomys, $565,568,570$, 572
rutilus, Melomys, 228, 229
rutilus, Oryzomys, 359
ruttneri, Clethrionomys, 569
ruwenzori, Tatera, 513,516
sahanus, Rattus, 151, 164, 172, 201, 220
sabiensis, Otomys, 324
sabryi, Acomys, 272, 273
sabulata, Lemniscomys, 130, 133
sacarensis, Peromyscus, 396
sacer, Rattus, 172, 192
SACCOSTOMUS, $10,22,31,32,42,45,50$, $59,62,117,283,285,287,305$
sacramenti, Meriones, 529, 533
sadhu, Mus, 243, 253
sagax, Apodemus, 95, 100
sagax, Peromyscus, 397
sahamae, Chinchillula, 456
saianicus, Clethrionomys, 568, 569
saianicus, Myopus, 561
sakeratensis, Rattus, 196
salairicus, Clethrionomys, 571
salamomis, Melomys or Uromys, 232, 234
salebrosus, Melomys, 232
saloceo, Rattus, 190
salsa, Tatera, 513, 518
saltator, Oryzomys, 35 1, 352
salvadorensis, Peromy'scus, 399
salvini, Nyctomys, 375
samaricus, Apodemus, 100
samariensis, Apodemus, 100
samati, Rattus, 179
samharensis, Rattus, 174
sanctaemartae, Sigmodon, 467
sanctacmartae, Zygodontomys, 417, 418
sanctidiegi, Microtus, 601
sanctus, Cricetomys, 289,290
sandayensis, Microtus, 597, 610
santacruzae, Peromyscus, 392
santalum, Rattus, 180
sapidus, Arvicola, 629, 630, 632
sapientis, Melomys, 228,232
sareptae, Micromys, 91
sareptanicus, Mus, 247
sarnius, Microtus, 597, 610
satarae, Rattus, 172, 176
satisfactus, Pogonomys, 83
satschouensis, Meriones, 533
satunini, Microtus, 606,607
satunini, Niesokia, 281, 282
saturatior, Oryzomys, 348
saturatus, Arvicanthis, 124, 125
saturatus, Clethrionomys, 573
saturatus, Nectomys, 362,363
saturatus, Peromyscus, 386, 390
saturatus, Rattus, 172, 200, 211
saturatus, Reithrodontomys, 378, 380
saturatus, Sigmodon, 465
saundersiac, Otomy's, 324
savannarum, Sigmomys, 467,468
savannus, Dasymys, 122
savii group, Pitymys, 621, 622, 624
savii, Pitymys, 622, 624
savilei, Bandicota, 277, 278, 279
saxamans, Neotoma, 478
saxatilis, Microtus, 616
saxatilis, Peromyscus, 386,399
scalops, Akodon, 416
scalopsoides, Pitymys, 626
scandens, Rhipidomys, 366
scandens, Vandeleuria, 87
scansa, Tatera, 513, 514
scaphax, Uromys, 233, 234
SCAPTEROMYS, $8,26,330,337,425$
SCARTURUS, 42, 43
schadenbergi, Crateromys, 110, 111
schaposchnikowi, Prometheomys, 638, 639
schelkovnikovi, Microtus, 609
scherman, Arvicola, 629, 630, 632
schidlovski, Microtus, 607
schinzi, Tatera, 512, 513, 518
schisticolor, Myopus, 561
schlegeli, Tatera, 517
schouesboei, Meriones, 529, 534
schoutedeni, Rattus, 172, 209
schoutcdeni, Thamnomys, 104
schuitemakeri, Rattus, 186
scirpensis, Microtus, 600
scitulus, Peromyscus, 386
sciureus, Holochilus, 462
SCIURUS, 500
sclateri, Rhipidomys, 364, 366
SCOLOMY'S, 485
SCOTINOMYS, $8,26,330,338,426,427$
scotti, Thallomys, 147
scullyi, Nesokia, 282
scythicus, Arvicola, 630, 631
sebastianus, Rattus, 172, 208
sebucus, Rattus, 189
segethi, Phyllotis, 454
sejugis, Peromyscus, 393
sellysii, Mcriones, 533
selousi, Acomys, 272, 274
selysii, Pitymys, 622, 623, 624
semjcanus, Aĺticola, 579,580
semotus, Apodernus, 95, 101
senilis, Akodon, 412
seorsus, Zygodontomys, 418
septemvittatus, Rhabdomy's, 134
septentrionalis, Apodemus, 102
septicus, Rattus, 180
sergii, Mus, $24+$
seri, Neotoma, 473
sericatus, Rattus, 191, 215,219
serpens, Microtus, 597
serrensis, Akodon, 410,412
serutus, IRattus, 200
servorum, Cricctomys, 289, 290
sestinensis, Reithrodontomys, 380
setifer, Bandicota, 278,280
setiger, Rattus, 172, 201
setosus, Arvicanthis, 124, 125
setosus, Rattus, 174
setulosus, Mus, 243, 252
seurati, Acomys, 275
severt2ovi, Mus, 245
sevia, Dldomys, 22\%, 232
sexplicatus, Melomys, 230
shanseius, Clethrionomys, 568, 571
shanseius, Myospalax, $545,5+7$
shantaricus, Xlicrotus, 613
shattucki, Microtus, 598
shawi, Dasymys, $12 \mathrm{I}, 122$
shawt, Nelomys, 220
shawi, Merionies, $529,530,533$
shawmayert, Melonys, 228, 229
sheldoni, Neotoma, +72
sherrinı, Cromys, 233, 234
sherrini, Tiatera, 513,514
sherketı, Microtus, 607
shigarius, Rattus, 175
shirensis, Tatera, 513,518
shitkov, Meriones, 536
shoana, Tatera, 512, 515
shortridgei, Dendromus, 307, 310
shortridgei, Mus, 241, 243, 254
shortridge, Petromyscus, 316
shortridgei, Pseudomys, 223,224,
shortridgei, Rattus, $68,172,211$
shortridgei, Thallomys, $1 \not+6,147$
shortridgei, Zelotomys, 238
siamensis, Bandicota, 280
stantanicus, Rattus, isz
sıarma, Rattus, 199
siburica, Clethrionomys, 571
sibuanus, Limnomys, 295
sibylla, Mus, 243, 25 i
sibylla, Vandelcuria, 87
siccatus, Thallomys, $1+6,1 \not+8$
siculae, Rattus, 175
siebersi, L'romys, 233, 234
sierrae, Microtus, 603
SIGMODON, 4, 8, 15, 27, 328, 331. 334, $335,451,457,+58,460,463,467,479$
SIGMODONTUNIYS, 361,362
SIGN1OMIS, $8,27,333,467$
sikapusi group, Lophuromys, 262
stkapuss, Lophuromys, 261, 262, 263
skimensis group, Neodon, bug
skimensis, Neodon, 619
skkumensis, Rattus, 172,177
sikotanensis, Neoaschizomys, $6+1$
silaceus, Celacnomys, 303
silaccus, Rattus, 211
silberbauer, ()tomys, 324
silvestris, Thonnasomys, 371
silvicola, Phenacomys, 584
simalurensis, Rattus, 181
simenss, Lophuromys, 262, 263
stmols, Rattus, 172, 199
simules, Rhipidomys, 366
smmoni, Gerbillus, 502, 503, 506
samon group, Gerhillus, 503, 506
samonsi, Sumzodon, 464,467
simplex, Microtus, hod
simplex, Xeotoma, 477
simplex, Gryzomys, 359
smpsesn, Holochilus, $+1,3$
smsom, DIus, 243

## INDEX

simulator, Akodon, 410,413
simulatus, Peromyscus, 308
simulus, Peromyscus, 396
simus, Rattus, 210
sinaloar, Neotoma, 471,475
sindicus, Bandicota, 278,279
singidae, Aethomys, 143, 144
sinianus, Rattus, 192
sinicus, Mus, 246
SIPHNEUS, 541, 546
siporanus, Rattus, 172, 203
sitkensis, Microtus, hoz
sitkensis, Peronyscus, 393
SITONIYS, 384
siva, Mus, 254
siva, Rattus, 172, 173
skomerensis, Clethrionomys, 568,570
sladeni, Rattus, 177
slevini, Peromyscus, 388
sloggetti, Otomys, $320,321,325$
slowzowi, Microtus, 597,655
smithi, Clethrionomys, 568,572
smithi group, Myospalax, 546, 547
smithi, Alyospalax, $541,545,546,547$
smithi, Tatera, 513, 516
smyrnensis, Apodemus, 95, 96
sobrus, Clethrionomys, 568,560
soccatus, Rattus, 203
socer, Rattus, 184
socialis group, Microtus, 591, 593, 594, 606
socualis, Mlictotus, $587,5 \times 9,590,592,594$,
595, 507, 606
socialis, Rattus, 213
sodalis, Akodon, +10, 415
soderstromi, Ichthyomys, 482
soderstromi, Reithrodontomys, 378,384
sogdianus, Meriones, 534
sola, Neotoma, 473
solaris, Rattus, 199
solatus, Arvicanthis, 124
solitaria, Neotoma, 475
SOLONLYS, $36,37,40,54,226,227,2,32$
solus, Rattus, 146
somalicus, Arsicanthis, 124,126
somalicus, Gerbillus, $502,503,506$
somalicus, Tachyoryctes, 443, 495
somereni, Rattus, 172,212
songorus group, Phodopus, 436,437
songorus, Phodopus, $428,436,4.37$
sonortensis, Peromyscus, 386,391
sordıdus, Rattus, 166, 172, 207
sorella, Hesperomys, $447,44^{\kappa}$
sorella, Mus, 243, 250
sorex, Mus, 243
soricinus, Micromys, 90
sortcordes, Mus, 251
soricoides, Rhynchomys, 297
soror, Tatera, 513, 516
sowerbyi, Rattus, 184
spadicea, Vandeleuria, 87
spadicipygus, Sigmodon, $4^{6}+$
spadix, Apodemus, 97
SPALACIDAE $, 2,541,545$
spalacinus, Tachyoryctes, 493, 496
SPALACOMYS, 280
SPAI,AN, $330,426,490,54 \mathrm{r}, 542,545,546$ spatulata, Ondatra, 637
spatulatus, Rattus, 194
speciosus, Apodemus, 93, 95, 101
speciosus group, Apodemus, 95, 101
speciosus, Oryzomys, 353
spectabilis, Dendromus, 310
spegazzinii, Akodon, $+10,413$
spekei, Lemniscomys, 130, 131
spermophilus, Lemniscomys, 132
sphagnicola, Synaptomys, 560
spicilegus, Mus, 242, 243,246
spicilegus, I'cromyseus, 386,396
spinalis, Lemniscomys, 133
spinosissimus, Acomys, 275
spinosus, Neacomys, 360,361
spinulosus, Mus, 253
splendens group, Tachyoryetes, 495
splendens, Neotoma, 477
splendens, Oryzomys, 345
splendens, Tachyoryetes, 493, +95
spretus, Mus, 243, 246
spurcus, Rattus, 172,198
squalorum, Gyomys, 220, 221
squalus, Otomys, 320,323
squarnipes, Nectomys, 363
stalkeri, Melomys, 228, 230
stankovici, Apodemus, 95
stannarius, Aethomys, 143, 145
stavropolicus, Cricetus, +40
S'ГEATOMY'S, 9, 22, 285, 294, 305, 306, 311 steini, Melomys, 229
steini, Rattus, 205
stella, Rattus, 168,209
stellae, 'Tatera, 513, 517
stellae, Zygodontornys, 417, +18
STENOCEPHALEMIYS, 9, 20, 35, 39, 52, 71, 75, 121, 141, 222
STENOCRANILS, $409,586,591,593,594$, $596,602,614$
STENOMYS, $35,148,151,352,160,164$, 227, 258
stenops, Phyllotis, 253
stentor, Rattus, 203
stephani, Pernmyscus, 388
stephensi, Mierotus, 601
stephensi, Neotoma, 476
stephensi, Peromyscus, 386
stevensi, Melomys, 229
stevensi, Rattus, 206
stevensom, Dicrostonyx, 558
stevensoni, Thallomys, 147
stigmonyx, Gerbillus, 502, 503, 505
stimmingi, Microtus, 614
stirtoni, Peromyseus, 400
stirtoni, Rheomys, 483
STOCHOMIS, 37, 40, 149, 166, 208
stoicus, Rattus, 202
stoliczkanus, Alticola, 580
stoliczkanus group, Alticola, 578, 580
stolzmanni, Ichthyomys, 482
stolzmanni, Oryzomys, 345, 355
stonei, Mlicrotus, 598
stonei, Synaptomys, 559
storeyi, Tachyoryctes, 493, 496
stracheyi, Alticola, 579, 580
stragulum, Rattus, 172,185
strauchi, Phaiomys, 618
streatori, Neotoma, 471, 477
streatori, Peromyscus, 392
streeteri, Saccostomus, 286
strelzowi, Alticola, 579, 581
strepitans, Rattus, 203
stresemanni, Melomys, 229
striatus group, Lemniscomys, 130,132
striatus, Lemniscomys, 130,132
striatus, Mus, 243
stridens, Rattus, 172, 203
stridulus, Rattus, 203
strobilurus, Hyomys, 113
strophiatus, Mus, 250
sturti, Notomys, $264,265,266$
suahelicus, Mus, 243, 252
subarcticus, Peromy seus, 390
subater, Baiomys, 402
subcaerulus, Mus, $24+$
subcaerulus, Rattus, 174
subditivus, Rattus, 185
subflavus, Oryzomys, 342, 345, 353
subfuscus, Rattus, 210
subgriseus, Peromyscus, 393
sublimis, Mus, 248
sublimis, Phyllotis, 453, 455
sublineatus, Thomasomys, $367,368,369$
subluteus, Alticola, 579, 580
subluteus, Oryzomys, 345, 35 I
subnubilus, Scotinomys, 428
subobscurus, Micromys, 91
subspinosus, Acomys, 271, 272, 275
subspinosus group, Acomys, 272, 275
subterraneus, Akodon, 410,414
subterraneus group, Pitymys, 621,622
subterraneus, Pitymys, $62 z$
subtilis, Dendromus, 309
suecicus, Clethriononys, 568,569
sueirensis, Rattus, 175
suffusa, Akodon, 410,416
suilla, Nesokia, 281,282
sumatrae, Thecurus, 220
sumbae, Rattus, 180
SUMERIOMI'S, 586, 589
sumichrasti, Nyetomys, 375
sumichrasti, Reithrodontomys, 381
sundavensis, Bandicota, 279
sungarae, Mus, 251
suntaricus, Microtus, 613
superans, Oryzomys, 345, 359
superus, Mierotus, 597, 611
surberi, Neotoma, 472
surdaster, Grammomys, 105, 106
surdus, Akodon, 410,413
surdus, Rattus, 172,186
surifer, Rattus, 154, 163, 172, 197
surkha, Mus, 243, 254
surmolottus, Rattus, 183
surrufus, Onychomys, to6
suschkini, Neriones, 531
sviridenkoi, Cricetulus, +33
swalius, Gerbillus, 502, 503, 507
swalius group, (ierbillus, 503,507
swalius, Steatomys, 311,312
swaythlingi, Tatera, 512,513,515
swinhoei, Meriones, 529,534
SVLVAEMLS, $3^{6}, 92$
sylvanus, Akodon, $+10,+13$
sylvaticus, Apodemus, 93, 95, 96
sylvaticus group, Apodemus, 95, 96
sylvaticus, Oryzomys, $343,345,353$
sylvestris, Pogonomys, 81,82
sylvestris, Rattus, 175
SINAPTOMYS, 6, $15,551,558,559,582$
syriacus, Microtus, 605
syrius, Meriones, 529, 535
tablas1, Rattus, 182
taborae, Tatera, 513, 519
tacaziena, Rattus, 211
taciturnus, Rattus, 202
TACHIORVCTAE, 8, 491,492
TACHYORYCTES, $2,3,4,8,23,44,45$. +90, +91, 492
TACHYORYCTINAE, 8, 489
taczanowski1, Thomasomys, 367,371
taeniura, Tatera, 513, 514
taerae, Rattus, 189
tafa, Melomys, 229
tagulayensis, Rattus, 190
taitae, Rattus, 209
taitiensis, Nlus, 246
talamancae group, Oryzomys, $344,348,352$
talamancae, Oryzomys, $3+8$
talaudrum, Melomys, 228, 231
talpinus group, Ellobius, 640
talpinus, Ellobius, 639,640
tamarensis, Rattus, 175
tamaricinus group, Neriones, 525, 530, 532
tamaricinus, Meriones, $527,528,529,530$, 532
tambelanicus, Rattus, 182
tamborum, Phyllotis, 453
tana, Rattus, 210
tanaitica, Arvicola, 632
tanala, Eliurus, 76
tancrei, Ellobius, 640
tanei. Apodemus, 100
tanezumi, Rattus, $158,172,173$
tantillus, Mus, 248
tapajinus, Oryzomys, 345,359
tapanulius, Rattus, 202
tapirapoanus, Zygodontomys, 418
tarabuln, (jerbillus, 502, 309
tarayensis, Bandicata, 278, 279
tarbagatatcus, Jyospalax, 548
tarquinius, Anteliomys, 577
TARSOXIYS, 33,42, 294
tartarcus, Akodon, $+10,413$
tataricus, Arvicola, 631
tataricus, Mus, 245
tatei, Rattus, 215,219
TATERA, 7, 12, 19, 23, +97, 498, 409, 501,
$510,511,513,520,525,539$
TATERILLU'S. 7, 23, 498, +9ッ, 511, 520
TATERINA, +98, 520
TATERONA, +28, 510,511
taterona, Graomys, 450, 451
tatkonensis, Rattus, 172, 177
tauricus, Apodemus, 98
tauricus, Arvicola, 631
tauricus, Cricetus, $4+1$
TAUTATUS, $36,240,242$
taylori, Baionys, $40 z$
taylori, Tatera, 51.4
TEANOPUS, $8,27,332,479,484$
teapensis, Oryzomys, $3+5$
teapensis, Peromyscus. 399
tectorum, Rattus, 175
tectus group, Oryzomys, $34+348,350$
tectus, Oryzonnys, $3+0,3+1,342,345,348$
tegura, Scotinomys, 427,428
tchuantepicus, Peromyscus, 386, 399
temmincki, Rattus, 172, 193
tenaster, Rattus, 172, 195
tenebricus, Arvicola, 630, 633
tenebricus, Taterillus, 520, 521
tenebrosus, Arvicanthis, 124, 126
tenebrosus, Rattus, 172, 198
tenebrosus, Uranomys, 276
tenellus group, Mus, 243, 252
tenellus, Mus, $241,2+3,252$
tener, Hesperomys, $4+7,+48$
tenuicauda, Neotoma, $+71,+76$
tenuicauda, Oryzomys, 354
tenuipes, Neacomys, $3^{61}$
tenuipes, Oryzonys, 356
tenuirostris group, Reithrodontomys, 378,384
tenuirostris, Reithrodontomys, $3^{8} 4$
tenuis, Gerbillus, 508
tenuis, Reithrodontomys, 378,381
TEONOMA, $408,464,470,478$
tephrus, Cricetomys, 2,20
terempa, Rattus, 188
terraenovae, Microtus, 597, 599
terraereginae, Rattus, $20 \%$
terraesanctae, Psammomys, $53^{8}$
terrestris, Arvicola, 629, 630
terricolor, Mus, 243, 249
tersus, Rattus, 172, 202
testicularis, Arvicanthis, 124
tetragonurus, Rattus, 172, 176
tetragonurus (Rattus), 214
TETRAMERODON,586
tetramerus, Microtus, 603
tetricus, Rattus, 195, 215, 21א, 219 ,
tettensis, Rattus, 175
texanus, Peromyscus, 394
texensis, Oryzomys, 345
texianus, Sigmodon, $46+$
thai, Mus, 249,250
thai, Rattus, 178

THALLOMYS, 9, 21, 36, 39, 44, 52, 73, 74, 105,145
TIIAI,I,OMYSCUS, $340,343,356$
TIIALPONIS, $406,407,409,414$
'ГHA.MNOMYS, 9, 20, 34, 35, 38, 47, 48, $50,63,93,103,104,105$
TIIAPTONYS, $406,407,409,414$
thayeri, Myopus, 561
theobaldi, Mus, 248
'ГIIETOMYS, $34,40,54,222,223,224$
thomasi, Aethomys, 143, 144
thomasi, Otomys, $320,321,323$
thomasi, Peromyscus, 386,401
thomasi, Pityrnys, $621,622,625$
thomasi, Rheomys, 483
thomasi, Zygodontomys, 417,419
THOMASOMIYS, 8, 25, 329, 337, 366, 372
thorntoni, Dendromus, 309
thricolis, Neodon, 619
thuleo, Apodemus, 95, 99
thurberi, Peromyscus, 390
TIILACOMISS, 32,263
thysanurus, Rattus, 196
tianschanicus, Microtus, 597, 615
tibetanus, Cricetulus, 432,433
tiburonensis, Peromyscus, 388
tikos, Rattus, 172, 177
tinctus, Rattus, 212
tingius, Rattus, 181
tiomanicus, Rattus, 172, 182
tirae, Apodemus, 99
tistae, Rattus, 172 , 177
tjibuniensis, Rattus, 197
toba, Akodon, 410,413
tobagi, Zygodontomys, 4 I7, 4 18
todayensis, Rattus, 172, 186
tokmak, Apodemus, 98
tolimae, Akodon, 410, 414
tolimensis, Oryzomys, 357
toltecus, Reithrodontomys, 381
toltecus, Sigmodon, 465
tolucae, Reithrodontomys, 383
tomensis, Cricetus, $44^{\circ}$
tomensis, Mus, 243,245
tomentosus, Scapteromys, 426
tompsoni, Rattus, 174
tonalensis, Sigmodon, 465
tondanus, Rattus, 189
tongensis, Aethomys, 144
tongensis, Grammomys, 107
tongensis, Steatomys, 313
tongensis, Tatera, 519
tornillo, Peromyscus, 394
torquata, Neotoma, 475
torquatus, Dicrostonyx, 557
torques, Akodon, $410,413,419$
torridus, Onychomys, 404, 405
totontcpicus, Peromyscus, 386, 399
townsendi group, Microtus, 587, 593.602 townsendi, Microtus, 591, 597,602
trabcatus, Oryzomys, 359
trachynotus, Rattus, 194
tramitius, Rattus, 172, 205
transcaspiae, Ellobius, 640
transcaspicus, Microtus, 595, 609
ranscaucasicus, Microtus, 597,608
transsylvanicus, Pitymys, 624
transuralensis, Microtus, 609
transvaalensis, Acomys, 275
transvaalensis, Steatomys, 313
treubi, Rattus, 172,193
trialeticus, Microtus, 606
trichotis, Akodon, 412
trichotis, Rheomys, 483
trichurus, Oryzomys, 354
tridentinus, Microtus, 613
trimucronatus, Lemmus, 562,564
trinitatis, Oryzomys, 345,354
TRINODON'TOMYS, 384
tripolitanus, Psammomys, 538
tripolius, Meriones, 528, 529, 534
tristrami, Meriones, 529, 530, 532
triticeus, Micromys, 90
triton, Cricetulus, 432,435
triton group, Cricetulus, 431
triton, Mus, 242, 243. 250
trivirgatus group, Hybomys, 136
trivirgatus, Hybomys, 136
tropicalis, Neotoma, 475
tropicalis, Otomys, 319, 320, $32 \mathrm{I}, 322$
tropicalis, Peromyscus, 399
tropicius, Oryzomys, 345,353
trouessarti, Meriones, 529, 534
trowbridgei, Microtus, 600
truei group, Peromyscus, 386,397
truei, Peromyscus, 386,397
truei, Phenacomys, 583
truei, Synaptomys, 560
TRYPHONYS, 35, 42, 294
tsaidamensis, Microtus, 609
tscherga, Apodemus, 95, 98
T'SCHERSKIA, $408,429,431,432,435$
tshuktshorum, Microtus, 613
tua, Rattus, I 82
tuancus, Rattus, 203
tuareg, Grammomys, 105, 106
tuareg, Meriones, 529,534
tucumanensis, Akodon, 410,413
tucumanus, Phyllotis, 453, 455
tugarinovi, Clethrionomys, 574
tugelensis, Otomys, 324
tularensis, Onychomys, 405
tullbergi group, Rattus, 167,168
tullbergi, lophuromys, 263
tuilbergi, Rattus, 168, 172, 208
tumbalensis, TyIomys, 373
tumidus group, scapteromys, 426
tumidus, Scapteromys, 426,427
tunneyi group, Rattus, $164,165,206$
tunnevi, Rattus, $151,154,166,172,206$
tural, Apodemus, 95, 99
turbidus, Rattus, 179
turfanensis, Rhombomys, 540
turkestanicus, Rattus, 158, 172, 173
turneri, Aethomys, 143
turneri group, Otomys, 321, 324
turneri, Otomys, $310,320,321,324$
turovi, Arvicola, 631
tweedi, Ichthyomys, 482
TVLLOMIS, 8, $25,320,337,360,367,373$, 374
typicus, Apodemus, 100
typicus, Dendromus, 308
typicus, Malacothrix, $31+$
typicus, Otomys, 323
typicus, Reithrodon, $458,45^{\prime}$ )
TYPOMYS, $34,35,135$
typus, Eliemodontia, $+49,450$
typus group, Otomys, 320,321
typus, Otomys, $318,320,321$
tyrannus, Rattus, 154,184 tytleri, Mus, 245
tzanemensts, Aethomys, 143, 144
tzaneenensis, Tatera, 518
ubecus, Rattus, 200
uchidae, Microtus, hio
ugandae, Rattus, 172, 212
ugandae, Uranomys, 276
ukrainicus, Pitymys, 623
ulae, Rattus, 210
ulpius, Microtus, 597,606
ultimus, Euneomys, 460
ululans, Rattus, 172, 202
umbratus, Acomys, 272, 274
umbratus, Mus, $2+3,252$
umbratus, Steatomys, 311,312
umbridorsum, kattus, 200
umbrinus, Peromyscus, 386, 389
umbriventer, Saccostomus, 285,286
umbrosa, Tatera, 513, 515
umbrosus, Orthrionys, 585
unalascensis, Dicrostonyx, 558
unalascensis, Microtus, 602
underwoodi, Rheomys, 483
undosus, Microtus, 600
ungava, Clethrionomys, 572,573
ungava group, Phenacomys, 583,584
ungava, Phenacomys, 572,573
unguiculatus group, Meriones, 531, 536
unguiculatus, Meriones, 525, 527, 528, 529, 536
ungurculatus, Nicrotus, 615
ungulatus, Dicrostonyx, 557
ungurensis, Microtus, 596, 597, 61I
unicolor, Rattus, 205
UNCOMISS, 37, 226
Undentifiable names in Neotropical cicetinae, $+86,487$
unisulcatus group, Otomys, 319, 321, 325
unisulcatus, Otomys, $320,321,325$
univittatus group, Hybomys, 136
univittatus, Hybomys, 136
unyors, fenomys, its
uralensis, Apodemus, 103
uralensis, Cle?hrionomys, 574
LRA.NO.MIS, $1022,34,41,45,58,65,271$, 275
urbanus, Mus, 243, 245
urianchiacus, Meriones, 537
urichi, Akodon, 4 ro, +14
urichi group, Akodon, 407, +1.3
UROCRICETLS, +29
URONIYS, $9,29,32,36,40,44,54,55,-1$, 150, 156, 226, 227, 232
ursulus, Ellobius, 640,641
usambarae, Grammomys, 105, 10 f
ussurtcus, Micromys, 90, 91
utakwa, Rattus, 172,205
utiaritensis, Oryzomys, 356
vaccarum, Phyllotis, $+53,4.4$
valdıvianus group, Notiomys, 433.424
valdivianus, Notiomys, +24
valens, Rattus, 188
valida, Tatera, 513, 516
validus, Rattus, 172,188
validus, Ctomys, 233, 234
vallesius, Rattus, 172, 206
vallicola, Microtus, 600
vallicola, Oenomys, 119
vallicola, Oryzomys, 357
vallinus group, Gerbillus, 503, 507
sallinus, Gerbillus, 501, 502, 507
valschensis, Mus, 253
VANDELELR1A, 2, 9, 16, 32, 3\%, 47, 55, $63,85,86$
vanheurm, Rattus, 183
varia, Neotoma, 473
varia, Tatera, 519
variabilis, Arvicola, 631
varrabilis, Microtus, 608
variabilis, Mus, $2+5$
variabilis, Rattus, 175
varlegatus, Arvicanthis, 124
varillus, Bandicota, 278,279
varıus, Akodon, 410,413
varius, Apodemus, 96
varıus, Bandreota, 278, 274
varius, Cricetus, +70
varius, Mus, $2+3$
varıus, Rattus, 174
vasconiae, Clethrionomys, 508,5 ho
vates, Pogonomys, 81, 82, 83
vaughanjonesi, Cricetomys, 281 ,
vegetus, Oryzomys, 345, 355
vellerosus, Xicrotus, 603
vellerosus, Rattus, 172, 208
velutmus, Oryzomy's, 345,354
velutinus, Rattus, 72, 141, 106, 172, 20.
venester, sigmomy's, 467,468
venezuelae, Daptomys, 485
venezuelae, Holochilus, 462,463
venczuelae, Rhipidomys, 364,366
venezuelensts, Akodon, $+10,+14$
ventriosus, Zygodontomys, 4 I8
venusta, Neotoma, 472
venustulus, Nyctomys, 375
venustus, Gerbillus, 507
venustus. Hesperomys, $446,477,44^{3}$
venustus, Lemniscomy's, 130, 132
venustus, Rhipidomys, 364,366
venustus group, Thamnomys, 104
venustus, Thamnomys, 103, 104
verbecki, Rattus, 199
verecundus group, Rattus, 164, 165, 205, $225,235,254$
verecundus, Rattus, 172, 205
vernula, Cricetulus, 432,434
verreauxi group, Rattus, 168
verreauxi, Rattus, 168
vesanus, Clethrionomys, 568, 569
VESPERIMUS, 384
vestitus, Notiomys, 424, 425
vestitus, Thomasomys, 367,371
vetulus, Hodomys, 479
vexillaris, Psammomys, 538
viator, Acomys, 272, 273
viator, Cricetomys, 289, 290
viator, Rattus, 172, 208
vicerex, Rattus, 151, 158, 172, 174
vicina, Neotoma, +74
vicina, Tatera, 512, 515
vieinior, Peromyscus, $4 \infty$
vicinus, Nus, 243, 25 I
viclana, Rattus, 179
victor, Rattus, 187
victoriae, Rattus, 212
victus, Oryzomys, 345,349
viculorum, Alus, 245
vignaudi, Mlus, $2+4$
vigoratus, Rattus, 187
villosa, Alticola, 580
villosissimus, Rattus, 166, 172, 207
villosus, Oryzomys, 354
villosus, Rattus, 159, 172, 188
vinaceus, Zelotomys, 238
vincenianus, Oryzomys, 354
vinealis, Akodon, 412
vinogradovi, Alticola, 580
vinogradovi, Meriones, 537
vinogradovi, Mus, 2.45
virescens, Arvieanthis, 124, 125
virtus, Rattus, 188
vitiensis, Rattus, 187
vittatus, Rhabdomys, 134
vivax, Gerbillus, 502, 503, 505
vivax, Otomys, 320,322
vociferans, Rattus, $164,172,202,220$
voi, Aethomys, $1+3,1+4$
volgensis, Arvicola, 631
vuleani, Mycteromys, 255
vulcani, leotoma, 476
vulcani, Rattus, 182,187
vulcani, Sigmodon, 466
vuleani, Thomasomys, $367,368,369$
vulcanicus, Otomys, 322
vulcanius, Reithrodontomys, 382
vulcanorum, Rattus, 209
vulgaris, Cricetus, $4+0$
vulgaris, Microtus, 608
vulgaris, Sciurus, 500
vulpicolor, Rattus, 193
vulpinoides, Oryzomy's, 353
vulpinus, 1 lolochilus, 462,463
vulpinus, Uryzomys, 353
vulturnus, Dendromus, 307, 310
vulturnus, Neotomys, 457,458
vulturnus, Pogonomys, 81,83
wagneri, Microtus, 398
wagneri, Mus, 242, 243, 247
wahema, Microtus, 598
waiguensis, Uromys, 234
waitei, Leggadina, 256
walambae, Aethomys, 142, 143
waltoni, Phaiomys, 6i8
wamae, Mus, 253
wambutti, Mus, 250
wardi, Antelionys, 577
wardi, Apodemus, 95,98
wardi, Bandicota, 278, 279
warreni, Neotoma, 472
warringtoni, Lasiopodomys, 6:6, 6:7
waterhousii, Phyllotis, 455
watersi, Gerbillus, 502, 503, 505
watsoni, Golunda, 267, 268
watsoni, Tylomys, 373
wavrini, Oryzomys, $341,343.354$
weileri, Rattus, 209
wellsi, Rattus, 172,204
welmani, Tatera, 513, 519
westrae, Mierotus, 597, 610
wettsteini, Microtus, 614
wettsteini, Pitymys, $62 z$
weylandi, Mallomys, 113
weylandi, Nelomys, 228
whiteheadi, Chrotomys, 302
whiteheadi group, Rattus, 162, 196
whiteheadi, Rattus, $150,151,154,155,165$, 172, 196
whytei, Dendromus, 307, 309
wichmani, Rattus, 186
wilsoni, Acomys, 272, 274
wilsoni, Malacomys, 236
wintoni, Apodemus, 95, 100
witherbyi, Acomys, 272,273
witherbyi, Apodemus, 95, 98
wolffsohni, Phyllotis, 453, 455
wongi, Rattus, 192
woodi, Uranomys, 276
woodwardi, Laomys, 116
woodwardi, Rattus, 166, 172, 207
woosnami, Ellobius, 640
woosnami group, Lophuromys, 262
woosnami group, Rattus, 171
woosnami, Lophuromy's, 261, 262
woosnami, Rattus, 171, 172, 213
worthingtoni, Alticola, 579, 580
wosnessenskii, Clethrionomys, 568, 572
wrangeli, Sinaptomys. $559,560,572$
wroughtont, Dacnomys, ito
wroughton, Lemniscomys, 130,132
wroughtoni, Rattus, 172, 176

## INDEX

Wroughtoni, Vandeleuria, 87
wynnei, Hyperacrius, 581,582
santhaeolus, Oryzonys, $341,345,354$
xanthognathus group, Microtus, 587, 593, 60 .
xanthognathus, Microtus, 597,604
xanthopygus, Phyllotis, $452,453.455$
vanthorhinus, Akodon, $\ddagger 10,413$
xanthurus group, Rattus, 159, 189, 216, 269
xanthurus, Rattus, $151,159,172,189,216$
XENOMYS, $8,28,332,479,484$
xenurus, Peromyscus, 398
xerampelinus, Scotinomys, $427,42 \mathrm{~S}$
工EROMIS, 9, 30, 297, 298, 304
yakiensis, Onychomys, 406 yakui, Apodemus, 95, 100
yakutatensis, Microtus, 601
yamashinai, Mus, 248
yamashinai, Cricetulus, 435
yaoshanensis, Rattus, 192
yesonis, Mus, 248
yonakuri, Mus, $2 \neq 8$
yosemite, Microtus, 599
youngi, Rattus, 172, 206
yucatanicus, Peromyscus, 400
yukonensis, Lemmus, $50+$
yunganus, Oryzomys, $343,345,354$
yunnanensis, Rattus, 173
yuruanus, Rhipidomys, 366
zacatecae, Neotoma, 473
zacatecae, Peromyscus, 380
zalopha, Ondatra, 637
zamboangue, Rattus, 182
zamelas, Peromyscus, 393
zammarani, Taterillus, 52 I
zamorae, Peromyscus, 398
zanjonensis, Sigmodon, 466
zaphiri, Arvicanthis, 124, 126
zaphiri, Lophuromys, 261, 262, 263
zappeyi, Rattus, 1 iq
zarhynchus, Peromyscus, $385,386,400$
zebra, Lemniscomys, 130, 131
zelotes, Peromyscus, 397
ZELOTOMIN, 9, 21, 34, 40, 55, 69, 171,
237, 257, 264
zena, Lophuromy's, 262
zibethica, Ondatra, 637
ZOKOR, 541, 546, 547
zuluensis, Lemniscomys, 133
zuluensis, Rattus, 172, 212
zuluensis, Tatera, 518
zvieresombi, Cricetulus, 434
ZJGODONTOAIYS, 8, 26, 340, 407, 408, $410,41 \mathrm{t}, 417,427$
zygomaticus, Uryzomys, $3 \ddagger 6$
ZYZOMIS $9,28,3 \neq 38,49,64,114$


[^0]:    ${ }^{1}$ For a full discussion see Hinton, Ann. Mag. Nat. Hist. 9. XI, p. 162, 1923.

[^1]:    2. GRAMIMOMIYS MACMILLANI ARIDULUS, Thomas \& Hinton 1923. Proc. Zool. Sơc. London, p. 268.

    Wadi Aribo, Darfur, Sudan.

[^2]:    1. HYOMYS MEEKI MEEKI, Thomas
    2. Proc. Zool. Soc. London, p. 198.

    Avera, Aroa River, British New Guinea.
    2. HYOMIS MEFKI DAMMHRMANI, stein
    1933. Zeitschr. für Säugeticrk. 8, p. 95.

    Kunupi, Weyland Range, Dutch New Guinea.
    3. HOOMYS STROBHELRUS, Rümmler
    1933. Zeitschr. für Säugctierk. S, p. 96.

    Sattelberg Mandated Territory, New Guinea.

[^3]:    + RATTU'S RATTL'S RLTHENLS, Ognev \& Straganor
    10,36. Abs. Works Zool. Inst. Noscow, State Univ. 3, p. 82.
    Former Elminsk subdistrict, Used, of former gove of Smolensk, Russia.

[^4]:    2so. RATTU'S EXCELSSIOR, Thomas
    191. Abstr. Proc. Zool. Soc. London, p. + ; Proc. Zool. Soc. London, p. 170. Ta-tsien-lu, W. China.
    251. RATTL's CULTLRATLS, Thomas
    1917. Ann. Mag. Nat. Hist. S, XX, p. 198.

    Mount Arizan, Formosa.

[^5]:    1. TIEPORIILL\& APICALIS, ciould

    IS51. Proc. Zool. Soc. London, p. 126.
    S. Australia.
    2. LEPORILLL J JOEES. Thomas
    1921. Ann. Mag. Nat. Hist. 9, VIII, p. 618.

    Franklyn Island, Nuyt's Archipelago, S. Australıa.
    3. LFPORIISLS CONDITOR, Nturt
    1848. Narr. Exped. Centr. Australia, I, p. 120, col. pl. ex Gould Ms. Darling River, New South Wales.

[^6]:    ${ }^{1}$ It will be seen that twelve distinct "species" are standing in this group. A perusal of the literature suggests that booduga, pahari, nitidulus, famulus, and perhaps cooki are valid. (Sce Wroughton's Key, 1920, J. Bombay Nat. Hist. Soc., X゙VI, p. 960). palnica is almost certainly a race or synonym of cooki; cervicolor appears to be a synonym of booduga; jacksoniae is probably a race of pahari; nagarum is probably a local race of booduga; and thai may be a synonym or race of cooki.

[^7]:    1. NESOKIA INDICA INDICA, Gray \& Hardwicke
    2. Ill. Ind. Zool. r, pl. xi.

    India.
    Synonym: hardzuckei, Gray, 1837, Charlesworth's Mag. Nat. Hist. 1, p. $5^{8} 5$.
    2. NESOKIA INDICA BEABA, Wroughton
    1908. Journ. Bombay Nat. Hist. Soc. XV1II, p. 741.

    Pithoro, Central Sind Desert.
    3. NESOKIA INDICA GRIFFITH!, Horsfield
    1851. Cat. Mamm. Ind. Mus, p. 145.

    Pushut, N.-WV. Frontier, N. India.

[^8]:    1. STEATONHS PRATENSIS PRATENSIS, Peters
    2. Monatsber. K. Preuss. Akad. Wiss. Merlin, p. $25 \%$.

    Mozambique.
    Synonym: edulis, Peters, 1852 , Reise nach Mossambique: Säugeth. p. 163.

[^9]:    1. NESOMIYS RLFLS, Peters
    2. Sitz. Ber. Ges. Nat. Fr. Berlin, p. 55.

    V'ohma, Nladagascar.
    2. NESOMIY' LAMBERTONI, Grandadier

    192S. Bull. Acad. Mateache, ir, p. 95.
    Rogez, near Brickaville, E. Madagascar.
    3. NESOMIY'S AL DEBERTI, lentink
    1879. Notes Levden Nlus. I, p. 107.

    Naisme, N.-E. Madaцascar.

[^10]:    
    1858. Arch. für Naturgesch. 1, XXIV, p. 303.

    Valdivia Province, W. Chsle.

[^11]:    sc：APTEROAIS＇A
    1920．Ann．Mag．Nat．Hist，9，V，p． 477.
    Isla Ella，J＇arana Delta，Buenos Arres Province，E．Argentina，
    sc：APTIROMIS TOMIFNTOSLS，Latehtenstem
    1ぶュ．Darstellung Neucr הäuqeth．VII，p．xxaiii，fig．I．
    Maldonado，Lruguay：

[^12]:    hi. NEOTOMA FERRUGINEA ISTHMHCA, Goldman 1904. Proc. Biol. Soc, Washington, XVII, p. So. I Iuilotepec, 8 miles south of Tehuantepec, Oaxaca, Mexico.

[^13]:    1. HODOMYS ALleNI, Merriam
    2. Proc. Biol. Soc. Washington, VII, p. 168.

    Manzanillo, Colima, Mexico.
    2. HODOMYS VETLLU'S, Merriam
    1894. Proc. Acad. Nat. Sci. Philadelphia, XLVI, p. 236.

    Tehuacan, Puebla, Mexico.

[^14]:    1. PEDOMLYS OCHROGASTIER, Wagner
    2. Schreber. Säugeth. Suppl. I1I, p. 592.
    "America." (Central part of Mississippi Valley.)
    Synonym austerns, Le Conte, 1853 , Jroc. Acad. Nat. Sci. Philadelphia, V1, p. 405. Racine, Wisconsin.
    cimumomeus, Bard, 1857, Mamm. North Amer. P. 517. Pemhina, N. Dakota.
